[CMS – Italia – Piacenza 29 Novembre 2017]

- **3 Apr 2017**: MTD incluso nell'*upgrade scope* di CMS
 - 27 Nov 2017:
- Technical Proposal consegnato a LHCC
 - https://goo.gl/m9ZZqW
- 27 Feb 2018:

1

• Q4 2018:

- LHCC feedback
 - **Technical Design Report**

T. Tabarelli de Fatis]

Basic motivation: Extend performance at high pileup

If beam-spot *sliced* in successive O(30) ps time exposures, *effective pileup* reduced by a factor 4-5:
~15% merged vertices reduced to 1%
Phase-I track purity of vertices recovered

Luminous region • $t_{RMS} \sim 180 \text{ ps}$ • $z_{RMS} \sim 4.6 \text{ cm}$

 $VBFH \rightarrow \tau \tau$ in 200 pp collisions

Elements of the timing upgrade of CMS

Calorimeter upgrades: precision timing of showers High energy photons in ECAL All photons and high energy hadrons in HGCal

Mip Timing Detector: precision timing of tracks
A single layer between the tracker and the calorimeters
Acceptance: lηl<3.0 ps
p_T>0.7 GeV barrel; p>0.7 GeV endcap

VIS

Track-vertex association – with track timing

association pileup fraction **Frack-PV**

INFN

With timing, 'effective vertex density' down to LHC level !

- . Cleaner isolation cones
- 2. Improved primary and secondary vertex reconstruction
- 3. Improved jet and p_T^{miss} reconstruction

Boost performance of several observables

New

Isolation efficiency up by 7 ÷ 10% per lepton (*)

- Acceptance gain in searches and precision measurements
- [Gain amplified on multi-particle final states]

(*) at constant background rejection power]

5

Efficiency up 4-6% at constant background rejection of 1% for light jets from removal of spurious secondary vertices

- inclusion of timing in the b-jet algorithm ongoing
- ▶ [Gain ~ to the power N for multi-particle final states]

6

di-Higgs acceptance projections

INFN

Gain in signal yield ~20% in multi-object final states

[at constant rejection power for reducible background]
 Large impact from barrel MTD (central signatures)

Similar gain also for $H \rightarrow ZZ \rightarrow 4$ leptons: +25% (not shown here)

Projections for VBF + H $\rightarrow \tau\tau$

• Performance gain from timing (S/\sqrt{B}) :

- +30% from isolation
- +30% from VBF tagging [pileup jet rejection]
- +10% from di-tau mass resolution [p_T^{miss} resolution]
- Timing offsets performance degradations from 140 to 200 PU
- Large impact from endcap MTD

With MTD:

- MET Resolution improved: ~15%
- MET Tails reduced: 40% beyond 150 GeV
- Extend physics reach in searches of massive invisible particles : +150 GeV

Searches for long-lived particles (LLP)

- New capabilities afforded by the MTD (examples):
 - . Ability to measure decay time in addition to decay length
 - Extended acceptance for massive LLP

INFN

- 2. Ability to reconstruct LLP velocity from the space-time information of the primary and decay vertex
 - Peaking observable from constraint on the decay kinematics

New

	Signal	Detector requirement	Analysis impact	Physics impact				
	$\mathrm{H} ightarrow \gamma \gamma$	30 ps photon and track timing	S/\sqrt{B} :	+25% (statistical)				
avoia 1.1		 barrel: central signal 	+20% - isolation efficiency	precision on				
dal TP		 endcap: improved 	+30% - diphoton vertex	cross section				
		time-zero and acceptance						
	VBF+	30 ps track timing	S/\sqrt{B} :	+20% (statistical)				
	$H \rightarrow \tau \tau$	 barrel: central signature 	+30% - isolation efficiency	precision on				
		 endcap: forward jet tagging 	+30% - VBF tagging	cross section (upper limit or significance)				
		 hermetic coverage: optimal 	$+10\%$ - mass ($p_{\rm T}^{\rm miss}$) resolution					
		$p_{\rm T}^{\rm miss}$ reconstruction						
	HH	30 ps track timing	signal acceptance : +20%	Consolidate				
		 hermetic coverage 	b-jets and isolation efficiency	HH searches				
	$\chi^{\pm}\chi^{0} ightarrow$	30 ps track timing	S/\sqrt{B} :	+150 GeV				
	$W^{\pm}H+p_{T}^{miss}$	• hermetic coverage: $p_{\rm T}^{\rm miss}$	$+40\%$ - reduction of $p_{\rm T}^{\rm miss}$ tails	mass reach				
	Long-lived	30 ps track timing	mass reconstruction	unique sensitivity				
	particles	 barrel: central signature 	of the decay particle	to split-SUSY and				
				SUSY with com-				
				pressed spectra				

Higgs boson physics

Searches

- MTD: improves the full range of Phase-2 physics
 - ~20-30% improvements across all measurements
 - Recovery of performance for MET-tail based searches
- Enhanced capability for reconstructing the secondary vertices of long-lived particles (LLPs)
 - Resonance reconstruction for LLPs (novel method)

MTD: design and technologies

- Hermeticity: barrel (lηl<1.48) and endcap (1.6<lηl<2.95)
- Radiation: 2x10¹⁴ (barrel) and up to 2x10¹⁵ neq/cm² (endcap)
- Minimal impact on calorimeter performance

ĮNFŃ

Mechanics and services compatible with existing upgrades

Barrel timing layer (BTL) layout

LYSO/LSO:Ce + SiPMs embedded in the tracker support tube CO₂ cooling at ~ -30 °C (limit SiPMs self-heating and dark rate) "Production-ready" and scalable technology

- Adapt TOFPET2 ASIC (TOFHiR)
- Leading edge timing + amplitude meas.

ITALIA:

- Ottimizzazione sensori (MiB, Rm1)
- Meccanica: carrelli, moduli e cooling (MiB, Pd)
- Scheda di Front-End (MiB)
- Simulazione e ricostruzione (TS)
- Produzione: MiB, Rm1, Pd

INFN BTL R&D per il TDR

Production-like geometries qualified in test beams

- Need correction for hit position with nominal geometry :
 - $11x11x4 \text{ mm}^3 + \text{SiPM} 4x4 \text{ mm}^2$
 - Tracker z resolution insufficient (at low p_T)
- R&D1: Custom SiPM (sparse SPAD pitch over the full crystal area) R&D2: Crystal slabs with double-end readout

∆t (ns)

Endcap timing layer (ETL) layout

Low gain silicon detectors (LGADs) on HGCal nose

 Emerging technology available from at least three foundries

Double-disk structure

- Similar to tracker TEDD
- AI wedges with embedded cooling pipes (CO₂ cooling at ~ -30 °C)

Sensors on both disk sides

- Nominal geometry: 4.8 x 9.6 cm²
 modules with 1x3 mm² pads
 - Single layer hermetic coverage
 - ~3-5% occupancy
- ASIC under development

ITALIA:

- Sviluppo sensori (To, Ge)
 - Produzione (To)

Sensors qualification and R&D (I)

Irradiation studies with single pad LGADs:

- LGAD can deliver < 40 ps timing resolution for entirety of HL-LHC
- Need compensation of gain loss with increased external bias

R&D1: Bias scheme for individual pads

R&D2: Multi-pad sensors (uniformity, yield, fill factor)

Collaborazione e interessi italiani

Tabella 4.5 dal Technical Proposal (post CWR):

- Expressions of interest e impegni R&D fino al TDR
- Commitments per la costruzione saranno definiti nel TDR

Tasks	Expressions of interest									
Barrel sensors	INP-BY, DEB-HU, MiB-IT, Rm-IT, ViU-LT,									
	NSU-RU, CERN, Caltech-US, FU-US, UI-US,									
	PU-US, UVa-US									
Barrel modules and integration	MiB-IT, Pd-IT, Rm-IT, EDHZ-CH, Caltech-US,									
	MIT-US, PU-US, UVa-US									
Barrel front-end electronics	LIP-PT, MiB-IT, ETHZ-CH, KSU-US									
Endcap sensors	HIP-FI, KIT-GE, Ge-IT, To-IT, IFCA-SP, USe-SP,									
	UCSB-US, FNAL-US, FSU-US, UIC-US, KU-US									
Endcap modules and integration	To-IT, BUUS, FNAL-US									
Endcap front-end electronics	FNAL-US, USe-SP									
Back-end electronics and trigger	MIT-US, UW-US									
CMS and MTD clock distribution	IRFU ER									
Simulation and reconstruction	Ts-IT and others									

- Responsabilità sviluppo sensori LGAD
- Coordinamento (interinale) del (proto)progetto

MTD HIGH LEVEL MILESTONES TIMELINE		2016				2017 2018				018	2019						2020				2021				2022				23			20	024		I		
		Q	2 Q	3 Q4	4 Q	1 Q	2 Q3	Q 4	Q1	Q2	Q3	Q4	Q1	L Q2	Q.	3 Q	(4 Q	1 0	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q 4	Ĩ
MTD STAGES		TDR Sub. 09/18								•	B	TL E	DR	10/:	19 🛉				٠	E	IL EC	DR 1	0/19	•													
BTL COMPONENT	De	Design - Demo.								Engin Proto.					P	Pre-prod. Pro				od.															ĺ		
INTEGRATION BTL																			Integ			Pre	-Comm. Float			at											
1			1				1	1		1				I	I				I		1	1	1	1	1	1						1	1				
Endcap Timing Layer (ETL) Design - Demo.								Engin Pro						to.			Pre-prod.				Pro	d.															
Integration																													Inte	eg	Pre	-Con	nm.	Flo	at		

Feedback da LHCC – Febbraio 2018

TDR – Fine 2018

- Dimostrazione dei componenti principali
- Definizione dei *commitment*

EDR – 2019 (BTL) / 2020 (ETL)

- Construction timeline for ETL stretched
- Two years more than BTL should enable to complete the necessary R&D on sensor and on the ASIC development

