Performance e impatto sulla fisica Tracker Fase 2

CMS Italia - Piacenza 29 Novembre - 1 Dicembre 2017

<u>Giacomo Fedi</u> (Università di Pisa & INFN Pisa)

Timeline

Introduction: tracking

HL-LHC phase: CMS tracker layout

Challenges of tracking at the HL-LHC (2026):

- 140-200 piled up p-p collisions
- ~10 years of activity

In situ data reduction

- Two silicon sensors separated by a small gap (a few mm)
- hits in two sensors correlated: stub
- tracks bend in strong magnetic field
- stubs with p_T <2 GeV rejected in real-time

tracks (>2 GeV). Big data transfer

reduction O(10)

Tilted geometry benefits

0.6

0.4

0.2

L1 track trigger

L1 Track Trigger approaches:

- Fully FPGA Time multiplexing+Hough transform
- Fully FPGA Trackless
- FPGA+AM ASIC

L1 trigger

J. Brooke

L1 track trigger performance

- L1 Track Trigger:
- Improved lepton ID
- Track isolation
- Vertex determination
- Rate reduction **Caveats: flat geometry studies, p**T >3 GeV

0

0.90%

68%

1.2 1.4 1.6

1.8 2

0.5

1

1.5

2

Particle n

2.5

2.2 2.4

Particle n

Offline tracking performance

- 10 GeV muon efficiency ~100%
- Improved two-track separation in high-p_T jets
- High track efficiency
- Low track fake rate (performance @200PU in HL-LHC ~ @70PU now)
- Better momentum resolution

Physics objects

• т-tagging • т р_Т >22 GeV

- Jets
- CHF=Charge hadron energy fraction (fraction of energy within a jet that is reconstructed as charged hadrons)

jet id. efficiency

0.8

0.6

0.4

0.2

c jet:

30

no PU

PU=140

PU=200

100 200

Tau Effor

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

CHF_{reco}/CHF_{gen}

INFN

Effects on physics

Showing some case studies

Increased statistics 3000 fb⁻¹ and HL-LHC:

- Exploration of multi-TeV physics (discovery)
 - Testing of BSM models
 - Discovery of rare processes
- Access to rare process (looking for deviations)
 - BR measurements
 - Precision measurements

Effect of the Phase-2 tracker on physics

- The tracker detector was designed to maintain (at least) the same performance at Phase-1 conditions in the Phase-2 high-pileup environment
- Evaluating just the effect of the tracker (no full detector simulation yet available)

Higgs decays (1/2)

$\textbf{VBF}~\textbf{H} \rightarrow \textbf{TT}$

- Motivation: Yukawa coupling between the Higgs boson and fermions, sensitivity reached in HL-LHC at the same level of deviations due to some BSM models
- Benefits: increased tracker acceptance
 - +10.5% in hadronic tau acceptance
 - increased VBF jets acceptance (Higher signal ID x1.5, higher S/N ratio)

$H \rightarrow ZZ^* \rightarrow 4I$

- Motivation: golden decay channel, fully reco → measurement of CP quantum numbers and diff xsection, anomalies in couplings
- Benefits:
 - Triggering on low p_T leptons
 - Increased acceptance (from η <2.4| to <|3.0| \rightarrow +15% 4l acceptance)
 - Increased p_T resolution improves the S/N ratio

Higgs decays (2/2)

$H \to \mu \mu$

- Motivation: measurement of H coupling to muons
- Benefits: increase tracking performance increases the signal sensitivity over a large Drell-Yan di-muon production
- 65% better mass resolution
- Sensitivity: 5% uncertainty on Higgs-muon coupling

$HH \rightarrow b\overline{b}b\overline{b}$

- Motivation: study the nature of electroweak symmetry breaking, extremely rare process
- Benefits: increase momentum resolution, excellent b-tagging capabilities
- Fraction of generated b jets from signal as function of p_T and η

Exotic and top

Exotic

- Motivation: search for BSM particles, e.g. Split SUSY particles stau and gluino
- ~Benefits: inner tracker will keep on providing dE/dx presence of extra bit in the outer tracker output enabling a programmable over the threshold flag (HIP flag)
- Sensitivity: Phase-1 sensitivity will be reached in 4 times the int lumy of Phase-2 with dE/dx+HIP flag

J/ψ in top events

- Motivation: measurement of top mass, based on its partial reconstruction from final states containing J/ ψ→μμ decays from b fragmentation reconstructing J/ψ +(I from W decay)
- Benefits: mainly on the J/ψ mass resolution ~50% improvement, better S/N discrimination
- Expectations @3ab⁻¹: 6e5 signal events against 2e5 BG events, no PU dependence
- Caveats: muons limited in the η<|2.4| region

B-physics

$B_{0,s} \to \mu \mu$

- Motivation: FCNC forbidden at tree level in the SM. Deviations in BR measurement can be hint of NP such as leptoquarks or extra Higgs doublets
- Benefits: L1 tracking capability and momentum resolution
- Expectations: 40% improvements in the mass resolution, improved B_s vs B₀ separation

$B_s\!\to\phi\phi\to 4K$

- Motivation: measurement of CP violation phase in the CKM matrix, FCNC suppressed (possible enhancement due to NP particles)
- Benefits: accessible thanks to the L1 tracking capabilities
- Expectations: 30-35% efficiency @L1

- Main goal of the Phase-2 tracker is to maintain the same performance of the current tracker in a harsh environment (PU200)
- Various improvements are expected:
 - Increased η acceptance from <|2.5| to <|4.0|
 - Less material budged
 - L1 tracking capabilities
 - Increased track parameter precision
- The expected final integrated luminosity (3000 fb⁻¹) and the good performance of the tracker allow us to access new physics channels and to improve precision measurements
- The physics decay channels which has been analyzed consider mainly the improved tracker performance and not the overall detector improvements.

- Tracking iterations targeting physics objects: e.g. tracks inside jets
- Multiple algorithms: This exploits the concept of using different algorithms specialized for certain tasks in different iterations
- Tracking in the Outer Tracker: profit from the L1 track finder information at the offline tracking level
- Tracking at HLT using GPUs

Readout electronics

Pixel modules

Figure 4.3: Sketch of the 1×2 (left) and 2×2 (right) pixel modules. The dimensions are roughly 1.8×4.4 cm² and 3.7×4.4 cm² for the 1×2 and 2×2 modules, respectively. The yellow elements symbolize passive electrical components.

Muon chambers

Efficiency vs pT: 2-8 GeV, 8-100 GeV

System perf. - Single pions

System perf. - Single electrons

Efficiency vs pT: 2-8 GeV, 8-100 GeV

Physics objects at L1

Motivation for Track Jet Finding

- For L1 Tracks, we already have good enough resolution in z to separate the prompt tracks from the PU
 - Use the tracks with a consistent z and cluster in $\eta\text{-}\varphi$ to build L1 track jets
 - This gives some rejection for fake tracks from stub combinatorics which don't have a consistent z with other tracks and tend to be isolated in η-φ
 - L1 Jet pT from clustered tracks gives a strong discriminant from the softer pileup jets. Can optimize the algorithm so that it also preserves the efficiency for low pT jets
 - Jets further away in z from the prompt candidates can give a measure of the average track multiplicity and energy density from PU
- From the L1 tracks as input, we can already make L1 trigger objects like HT, MHT, Number of jets
- Further downstream, track jets can be combined with the ECAL clusters to calibrate for the neutrals further refining the L1 Jet object
- Finally, with a simple algorithm the jet clustering will not result in overconsumption of resources and a large latency

Rishi Patel

Improved $\mu\mu$ mass resolution => 25% gain in separation significance

26

$D_{s} \rightarrow \tau v, \tau \rightarrow \mu \mu \mu$

Extended muon coverage => improved signal acceptance e.g. in LFV $D_s \rightarrow \tau v, \tau \rightarrow \mu \mu \mu$ search

