Misure da fare a LHC nel 2018 e oltre...

ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY) DEC. 1 2017

Riunione Nazionale CMS Italia - Piacenza

Is LHC the new LHP?

ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY) DEC. 1 2017

Riunione Nazionale CMS Italia - Piacenza

Outline

•What the LHC was supposed to find

•What we are currently dealing with

•What we could do in 2035

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

LHC: a direct investigation of open questions on the Standard Model

EXPLORE

FUNDAMENTAL INTERACTIONS

•What is the origin of the scale of weak interactions? •Is there a dynamical origin for the parameters of the SM? •Can we explain what 95% of the Universe is made of?

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

$h = \frac{1}{2} - h \quad h = - - h$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

2012 $\mathbf{m_h} = 125 \, \mathrm{GeV}$

2012 $m_{new} = 0.1 - 10 TeV$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

2012m_125GeV

2012mnew=0.1-10 TeV

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

2012m_h=125GeV

$2012 - m_{new} = 0.1 - 10 \, \text{TeV}$

 $pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}$ $pp \rightarrow \widetilde{g} \ \widetilde{g} \ , \widetilde{g} \ \rightarrow qq \widetilde{\chi}$ $pp \rightarrow \widetilde{\mathbf{g}} \ \widetilde{\mathbf{g}} \ , \widetilde{\mathbf{g}} \ \rightarrow \mathbf{bb} \ \widetilde{\boldsymbol{\chi}}$ $pp \rightarrow \widetilde{\mathbf{g}} \ \widetilde{\mathbf{g}} \ , \widetilde{\mathbf{g}} \ \rightarrow \mathbf{bb} \ \widetilde{\boldsymbol{\chi}}$ $pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow bb \tilde{j}$ $pp \rightarrow \widetilde{g} \ \widetilde{g} \ , \widetilde{g} \ \rightarrow tt \ \widetilde{\chi}$ $pp → \tilde{g} \tilde{g}, \tilde{g} → tt \tilde{\chi}$ pp →**g̃ g̃**, **g̃** → tt χ̃ pp → ĝ̃ĝ, ĝ̃ → tt χ̃ pp → **g̃ g̃**, **g̃** → tt χ̃ $pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow tt \tilde{\chi}^{o}$ pp → **g̃ g̃**, **g̃** → tt χ̃ $pp → \tilde{g} \tilde{g}, \tilde{g} → tt \tilde{\chi}$ $pp \rightarrow \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow t t \rightarrow t c \widetilde{\chi}$ $pp \rightarrow \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow bt \widetilde{\chi}$ $pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^{\frac{1}{2}} \rightarrow qq W\tilde{\chi}$ $\begin{array}{c} pp \rightarrow t t , t \rightarrow t \tilde{\chi} \\ pp \rightarrow t t , t \rightarrow t \tilde{\chi} \end{array}$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}$ $pp \rightarrow tt, t \rightarrow t\chi$ $pp \rightarrow tt, t \rightarrow c\chi$ $pp \rightarrow tt, t \rightarrow c\chi$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow b f f \tilde{\chi}^{0}$ (4-body) $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow b f f \tilde{\chi}_{0}^{\delta} (4\text{-body})$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow b f f \tilde{\chi}_{1}^{\delta} (4\text{-body})$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow \tilde{\chi}^{\pm} b \rightarrow b W^{\pm} \tilde{\chi}^{\pm}$ $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow \tilde{\chi}^{\pm} b \rightarrow b W^{\pm}$ $pp \rightarrow \widetilde{t} \widetilde{t}, \widetilde{t} \rightarrow \widetilde{\chi}^{\pm} b \rightarrow b W^{\pm}$ $pp \rightarrow t t, t \rightarrow \chi p \rightarrow b W \chi$ $pp \rightarrow t t, t \rightarrow \chi p \rightarrow b W \chi$ $pp \rightarrow b b, b \rightarrow b W^{\pm} \chi$ $pp \rightarrow b b, b \rightarrow b \chi$ $pp \rightarrow b b, b \rightarrow b \chi$ $pp \rightarrow \tilde{b}\tilde{b}, \tilde{b} \rightarrow b \tilde{\chi}$ $pp \rightarrow bb, b \rightarrow b \tilde{\chi}$ $pp \rightarrow \tilde{q} \tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}$ $pp \rightarrow \widetilde{q} \widetilde{q}, \widetilde{q} \rightarrow q \widetilde{\chi}_{q}^{0}$ $pp \rightarrow \tilde{\chi}^{0} \tilde{\chi}^{\pm}_{\pm} \rightarrow III \nu \tilde{\chi}^{0} \tilde{\chi}^{0}_{\pm}$ $pp \rightarrow \tilde{\chi}^{0} \tilde{\chi}^{\pm}_{\pm} \rightarrow III \nu \tilde{\chi}^{0} \tilde{\chi}^{0}_{\pm}$ $pp \rightarrow \tilde{\chi}^{0} \tilde{\chi}^{\pm}_{\pm} \rightarrow III \nu \tilde{\chi}^{0} \tilde{\chi}^{0}_{\pm}$ $pp \rightarrow \tilde{\chi}^{0} \tilde{\chi}^{\pm}_{\pm} \rightarrow \tau \tau \tau \nu \tilde{\chi}^{0} \tilde{\chi}^{0}_{\pm}$ $pp \rightarrow \tilde{\chi}^{0} \tilde{\chi}^{\pm}_{\pm} \rightarrow \tau \tau \tau \nu \tilde{\chi}^{0} \tilde{\chi}^{0}_{\pm}$ $\begin{array}{c} pp \rightarrow \overset{2}{\chi} \overset{0}{0} \overset{\gamma_{\pm}}{\chi} \rightarrow W Z \, \overset{\gamma_{0}}{\chi} \overset{\gamma_{0}}{\chi} \\ pp \rightarrow \overset{\gamma_{0}}{\chi} \overset{\gamma_{\pm}}{\chi} \rightarrow W H \overset{\gamma_{0}}{\chi} \overset{\gamma_{0}}{\chi} \\ pp \rightarrow \overset{\gamma_{0}}{\chi} \overset{\gamma_{\pm}}{\chi} \overset{\gamma_{\pm}}{\chi} \rightarrow W Z \, \overset{\gamma_{0}}{\chi} \overset{\gamma_{0}}{\chi} \\ \end{array}$ ≛ → W Z γ̃

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Selected CMS SUSY Results* - SMS Interpretation

2012 $m_h = 125 \text{ GeV}$ 2012 m_{new} =0.1-10 TeV 2014-

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

M(COLORED)>500 GeV

NO DIRECT SIGNALS

FEW BLIND-SPOTS LEFT

EW SIGNALS

SMALL CROSS-SECTIONS

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

PRECISION

PHYSICS

HIGGS COUPLINGS

10% DEVIATIONS AT MOST

IS LHC THE RIGHT MACHINE?

SEARCHES IN FINAL STATES : HARD

LHC signals

LEPTONS+PHOTONS+JETS+MET

SEARCHES IN FINAL STATES : HARD

LHC signals

LEPTONS+PHOTONS+JETS+MET

LHC signals

Ok, let's see what we can do ...

Precision Di-Bosons AtTheHi-Jumil HC

RF, Panico, Pomarol, Riva, Wulzer - in preparation

$L_{new} = \sum_{i} O_{i}(d=6)$

Large number of Operators dim-6

What is worth being studied?

What can be studied?

Operators related to SSB of EW symmetry

Indirect Effects

Indirect Effects

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Indirect Effects

V²(H, DH)⁵

(1)DKJIDW

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Indirect Searches

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Indirect Searches

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Indirect Searches

$\frac{1}{\sqrt{2}}(DH)(DH)(DH)W$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

ENERGY

HELPS ACCURACY

Some effects are overall changes in the scattering amplitudes (*e.g.* S,T)
Other effects are enhanced at high

• Other effects are enhanced at highenergy (LHC is high energy!)

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

 $\left(\partial_{\mu} \mathcal{W}^{\mu\nu} \right)^{2}$ $\left(\partial_{\mu} \mathcal{W}^{\mu\nu} \right)^{2}$ $\left(\partial_{\mu} \mathcal{W}^$

DRELL-YAN

ENERGY

HELPS ACCURACY

Are there EWSB effects enhanced • at high-energy?

ENERGY

HELPS ACCURACY

Are there EWSB effects enhanced • at high-energy?

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

ENERGY

HELPS ACCURACY

• Are there EWSB effects enhanced at high-energy?

ENERGY

HELPS ACCURACY

Are there EWSB effects enhanced • at high-energy?

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Can LHC compete with LEP?

ENERGY

HELPS ACCURACY

• Are there **observable** EWSB effects enhanced at high-energy from weakly coupled SSB?

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

DIBOSON PRODUCTION

Bounds on...

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Bounds on...

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Strong, Weak, and Loop

Interference

• Interference must be the dominant BSM effect

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

10% at 1 TeV~ 0.1% at 100 GeV

ANOMALOUS COUPLINGS

Amplitude	High-energy primaries	Deviations from SM couplings
$\bar{u}_L d_L \to W_L Z_L, W_L h$	$\sqrt{2}a_q^{(3)}$	$\int \sqrt{2} \frac{g^2 \Lambda^2}{4m_W^2} \left[c_{\theta_W} (\boldsymbol{\delta g_{uL}^Z} - \boldsymbol{\delta g_{dL}^Z}) / g - c_{\theta_W}^2 \boldsymbol{\delta g} \right]$
$\bar{u}_L u_L \to W_L W_L$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{u_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{dL}^Z} \right]$
$\bar{d}_L d_L \to Z_L h$		
$\bar{d}_L d_L \to W_L W_L$	$a_q^{(1)} - a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_L t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{d_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{uL}^Z} \right]$
$\bar{u}_L u_L \to Z_L h$		
$\bar{f}_R f_R \to W_L W_L, Z_L h$	a_f	$-\frac{g^2\Lambda^2}{2m_W^2} \left[Y_{f_R} t_{\theta_W}^2 \boldsymbol{\delta \kappa_{\gamma}} + T_Z^{f_R} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{fI}^Z} \right]$

- 4 high energy primary effects
- physics interpretation is transparent (BSM origin)
- 1-to-1 with Warsaw basis operators

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

High energy "primary" effects

"WARSAW BASIS"

"SILH" BASIS

$$\frac{\overline{q_{1}^{T}}}{\overline{q_{2}^{T}}} = (\overline{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L})(iH^{\dagger}\sigma^{a}\overrightarrow{D}_{\mu}H) \\ \mathcal{O}_{L}^{J} = (\overline{Q}_{L}\gamma^{\mu}Q_{L})(iH^{\dagger}\overrightarrow{D}_{\mu}H) \\ \mathcal{O}_{L}^{J} = (\overline{Q}_{L}\gamma^{\mu}Q_{L})(iH^{\dagger}\overrightarrow{D}_{\mu}H) \\ \mathcal{O}_{R}^{u} = (\overline{u}_{R}\gamma^{\mu}u_{R})(iH^{\dagger}\overrightarrow{D}_{\mu}H) \\ \mathcal{O}_{R}^{d} = (\overline{d}_{R}\gamma^{\mu}d_{R})(iH^{\dagger}\overrightarrow{D}_{\mu}H) \\ \mathcal{O}_{R}^{d} = (\overline{d}_{R}\gamma^{\mu}d_{R})($$

for instance:

$$L_{new} J_Y J_Y + J_W J_W \Rightarrow a_u = -2a_d = 4a_d$$

"UNIVERSAL" THEORY

$pp \rightarrow \phi\phi$ GOLDSTONE **BOSONS PRODUCTION AT THE LHC**

$\phi \simeq V_L \subset V$ because $V = \{V_L, V_{\pm}\}$ $pp \rightarrow ZZ$ has no E^2 enhancement $pp \rightarrow VH$ has large QCD background (Z+jets) $pp \rightarrow WW$ has large QCD background (tt,W+jets, mET=v+v) pp→ ZW→ 3ℓ has no QCD background, mET $\approx v$, dσ(W_±Z_±) ≈ 0 at $\theta^* \approx 90$ deg

$pp \rightarrow \phi \phi$

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

		$p_{T,V}$ range (GeV)						
	Channel	[200, 400]	[400, 600]	[600, 1000]	[1000, 2000]			
	$W_L^{\pm}h$	$23300 + 42500 a_q^{(3)}$	$1950 + 9750 a_q^{(3)}$	$420 + 4680 a_q^{(3)}$				
$W^{\pm}h$	$W_L h$ substr. [44]	$2230 + 4070 a_q^{(3)}$	$368 + 1840 a_q^{(3)}$	$108 + 1200 a_q^{(3)}$		Channel	Bound without bkg.	Bound wit
	background [44]	11400	1720	700		Wh	[-0.0096, 0.0096]	[-0.036, 0
Zh	$Z_L h$	$3760 + 5330 a_q^{(3)}$	$294 + 1350 a_q^{(3)}$	$58 + 600 a_q^{(3)}$		Zh	[-0.030, 0.028]	
	$Z_L h$ substr. [44]	$600 + 850 a_q^{(3)}$	$84 + 390 a_q^{(3)}$	$17 + 178 a_q^{(3)}$		WW	[-0.012, 0.011]	[-0.044.0]
W^+W^-	$W_L W_L$	$5080 + 7450 a_q^{(3)}$	$380 + 1730 a_q^{(3)}$	$74 + 780 a_q^{(3)}$	$5.8 + 160 a_q^{(3)}$	TT7/7		
	other helicities	89500	5500	990	69	VV Z	[-0.013, 0.012]	[-0.023, 0
$W^{\pm}Z$	$W_L Z_L$	$2970 + 5050 a_q^{(3)}$	$226 + 1200 a_q^{(3)}$	$46 + 540 a_q^{(3)}$	$3.7 + 123 a_q^{(3)}$			
	other helicities	10800	600	100	6.0			

ch bkg.).031]).037]).021]

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

 $A(u\bar{d} \to W^+_{(\pm)} Z_{(\mp)}) \propto \cos \theta_{WZ} - \frac{1}{3} \tan \theta_{W}$

$$A(u\bar{d} \to W^+_{(0)}Z_{(0)}) \propto \sin\theta_{WZ}$$

 $p_{T,\ell} > 30 \,\text{GeV} \quad |\eta_{\ell}| < 2.4$

 $|\cos\Theta| < 0.5, \quad \frac{p_{T,VV}}{p_{T,V}} < 0.5$

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

$q\bar{q} \rightarrow ZW$ is $2 \times 2 \rightarrow 3 \times 3$ under SU(2) $q\bar{q} \rightarrow \phi \phi$ is $2 \times 2 \rightarrow 2 \times 2$ under SU(2)

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

 $[TeV^{-2}]$

 $a_q^{(3)}$

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

$p_{T,V}$ range	Expected Events
$[100-150] \mathrm{GeV}$	$3100 + 1040 \ a_q^{(3)} + 260 \ a_q^{(3) 2}$
$[150-220] \mathrm{GeV}$	$2620 + 1030 a_q^{(3)} + 140 a_q^{(3) 2}$
$[220-300] \mathrm{GeV}$	$937 + 600 \ a_q^{(3)} + 230 \ a_q^{(3) 2}$
$[300-500] \mathrm{GeV}$	$544 + 700 \ a_q^{(3)} + 560 \ a_q^{(3) 2}$
$[500-750] \mathrm{GeV}$	$86.5 + 260 a_q^{(3)} + 490 a_q^{(3) 2}$
$[750-1200] \mathrm{GeV}$	$16.1 + 120 \ a_q^{(3)} + 640 \ a_q^{(3) 2}$

LHC, 300 fb⁻¹: $a_q^{(3)} \in [-1.4, 0.9] \, 10^{-1} \, \text{TeV}^{-2} \, \delta_{\text{syst}} = 5\%$ HL-LHC, 3 ab^{-1} : $a_q^{(3)} \in [-4.9, 3.9] \, 10^{-2} \text{ TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$ HE-LHC, 10 ab^{-1} : $a_q^{(3)} \in [-1.6, 1.3] \, 10^{-2} \text{ TeV}^{-2} \quad \delta_{\text{syst}} = 5\%$ FCC-hh, 20 ab⁻¹: $a_q^{(3)} \in [-7.3, 5.7] \, 10^{-3} \, \text{TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

 $[TeV^{-2}]$

 $a_q^{(3)}$

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

$p_{T,V}$ range	Expected Events
$[100-150] \mathrm{GeV}$	$3100 + 1040 \ a_q^{(3)} + 260 \ a_q^{(3) 2}$
$[150-220] \mathrm{GeV}$	$2620 + 1030 a_q^{(3)} + 140 a_q^{(3) 2}$
$[220-300] \mathrm{GeV}$	$937 + 600 \ a_q^{(3)} + 230 \ a_q^{(3) 2}$
$[300-500] \mathrm{GeV}$	$544 + 700 \ a_q^{(3)} + 560 \ a_q^{(3) 2}$
$[500-750] \mathrm{GeV}$	$86.5 + 260 a_q^{(3)} + 490 a_q^{(3) 2}$
$[750-1200] \mathrm{GeV}$	$16.1 + 120 \ a_q^{(3)} + 640 \ a_q^{(3) 2}$

LHC, 300 fb⁻¹: $a_q^{(3)} \in [-1.4, 0.9] \, 10^{-1} \, \text{TeV}^{-2} \, \delta_{\text{syst}} = 5\%$ HL-LHC, 3 ab^{-1} : $a_q^{(3)} \in [-4.9, 3.9] \, 10^{-2} \text{ TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$ HE-LHC, 10 ab^{-1} : $a_q^{(3)} \in [-1.6, 1.3] \, 10^{-2} \text{ TeV}^{-2} \quad \delta_{\text{syst}} = 5\%$ FCC-hh, 20 ab⁻¹: $a_q^{(3)} \in [-7.3, 5.7] \, 10^{-3} \, \text{TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

 $pp \rightarrow ZW \rightarrow 3\ell$

GOLDSTONE

BOSONS PRODUCTION AT THE LHC

$p_{T,V}$ range	Expected Events		
$[100-150] {\rm GeV}$	$3100 + 1040 \ a_q^{(3)} + 260 \ a_q^{(3) 2}$		
$[150-220] \mathrm{GeV}$	$2620 + 1030 \ a_q^{(3)} + 140 \ a_q^{(3) 2}$		
$[220-300] \mathrm{GeV}$	$937 + 600 \ a_q^{(3)} + 230 \ a_q^{(3) 2}$		
$[300-500] \mathrm{GeV}$	$544 + 700 \ a_q^{(3)} + 560 \ a_q^{(3) 2}$		
$[500-750] { m GeV}$	$86.5 + 260 \ a_q^{(3)} + 490 \ a_q^{(3) 2}$		
$[750-1200] \mathrm{GeV}$	$16.1 + 120 \ a_q^{(3)} + 640 \ a_q^{(3) 2}$		

 $[TeV^{-2}]$ 0.050

 $a_q^{(3)}$

LHC, 300 fb⁻¹: $a_q^{(3)} \in [-1.4, 0.9] \, 10^{-1} \, \text{TeV}^{-2} \, \delta_{\text{syst}} = 5\%$ HL-LHC, 3 ab^{-1} : $a_q^{(3)} \in [-4.9, 3.9] \, 10^{-2} \text{ TeV}^{-2} \quad \delta_{\text{syst}} = 5\%$ HE-LHC, 10 ab^{-1} : $a_q^{(3)} \in [-1.6, 1.3] \ 10^{-2} \text{ TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$ FCC-hh, 20 ab⁻¹: $a_q^{(3)} \in [-7.3, 5.7] \, 10^{-3} \, \text{TeV}^{-2}$ $\delta_{\text{syst}} = 5\%$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Conclusions

- Interesting scenarios probed through "precision"
- EWSB
- •

• LHC can still do interesting new physics searches (not just new particles!)

E²-enhanced processes are a target for LHC to extend knowledge of 10% at 1 TeV ~ 0.1% at 100 GeV

Theory and Experiment systematics target at 10% in TeV p_T region

Conclusions

• $pp \rightarrow ZH, WW, WH$

• and pp→VH

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Constraints on weakly coupled EWSB models from the dim-6 SM Lagrangian at LHC from pp \rightarrow WZ, possibly

General parametrization of BSM effects for pp→ VV

Conclusions Prospects for High-Lumi LHC on weakly coupled EWSB dim-6 effects •

Roberto Franceschini - "Is LHC the new LEP? " - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Thank You!

NewPhysicsInThe "TopQuarkSample"

RF - in preparation

Why Top Quarks?

Motivated in many BSM scenarios (hierarchy problem)

- differential distributions *

NLO+PS and NNLO precision recently achieved for

Blindspots of SUSY due to top quark background

Search Approach

Search Approach

x°e-5

x°e-5

NEW PHYSICS IS SM-LIKE

BETTER PRECISION

The $\{\tilde{t}, \tilde{\chi}^+, \tilde{\chi}^0\} = \{200, 150, 100\}$ GeV blindspot

Tag the Top, Search the Stop $\{\tilde{t}, \tilde{\chi}^+, \tilde{\chi}^0\} = \{200, 140, 30\}$ GeV

					Threshold
		m _{bl} >0 GeV	m _{bl} >20 GeV	m _{bl} >40 GeV	m _{bl} >60 (
	0.	Θ	Θ	Θ	0.03
$\epsilon_{mispair}$	0.2	Θ	Θ	Θ	Θ
$\epsilon_{correct}$	0.4	Θ	Θ	Θ	Θ
	0.6	Θ	Θ	Θ	Θ
	0.8	Θ	Θ	Θ	Θ
	1.	Θ	Θ	Θ	Θ

Tag the Top, Search the Stop

PRECISION AT THE LHC

- NLO and NNLO precision top quark physics is a reality
- SM precision predictions for many observables
- Useful per se
- Can show deviations from SM in subtle features

m(bl) and other observables used in precision top quark physics can probe still uncovered new physics scenarios

1=1

High energy "primary" effects

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

High energy "primary" effects

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

Thank You!

$$a_q^{(1)} = \frac{g'^2}{3M^2} (c_B + c_{HB} - c_{2B}),$$

$$a_q^{(3)} = \frac{g^2}{M^2} (c_W + c_{HW} - c_{2W})$$

$$c_W = c_B = \frac{27\pi^2}{256} \simeq 1.0$$
, $c_{HW,HB} = 0$, $c_{2B,2W} \simeq \frac{g^2}{g_*^2} \ll 1$

Roberto Franceschini - "Is LHC the new LEP?" - Dec. 1st 2017 - Riunione Nazionale CMS Italia - Piacenza - https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=13352

a 82 CHM 8/3

CHM~UNIVERSAL

$$c_W \simeq c_B \simeq 1$$
, $c_{HW,HB} \simeq 0$, $c_{2B,2W} \simeq \frac{g^2}{g_*^2}$

$$a_q^{(3)} = \frac{3g^2}{g'^2} a_q^{(1)} = \frac{g^2}{M^2} , \quad a_q^{(3)} m_W^2 = -g^2 c_{\theta_W}^2 \delta g_1^Z$$

Low energy primary effects

 $a_q^{(1)} = \frac{g'^2}{3m_W^2} \left(\hat{S} - \delta\kappa_\gamma + c_{\theta_W}^2 \delta g_1^Z - Y \right) \,,$

 $a_q^{(3)} = -\frac{g^2}{m_W^2} \left(c_{\theta_W}^2 \delta g_1^Z + W \right)$