Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load

G. Guillermoa,d D. Saganb F. Zimmermanna
G.H.I Mauryc E. Ortizc

aCERN (BE)
bCornell University (CLASSE)
cUniversidad de Guanajuato
dCinvestav del IPN

Section 1

Synrad3D
Key parameters

- Vacuum chamber
 - Material - 10 nm C over Cu
 - Surface roughness - $\sigma = 50$ nm
- Lattice - Taken from http://lhc-optics.web.cern.ch/
- Geometry
Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load
Green is a beam seeing a correct orientation. Red is a beam seeing an inverted orientation.
Normalized photon absorption functions
Normalized absorption at top and bottom of the chamber

Smooth Inverted Sawtooth

top
bottom

Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load
Section 2

PyECLOUD
Key parameters

- SEY values from 1.0 to 1.7 in 0.1 steps.
- Proton Beam Energy of 6.5 TeV
- Vacuum chamber used is rectellipse
- Filling pattern, repeated 4 times
 - 72 particle-filled bunches
 - 8 empty bunches
- Bunch spacing of 25 ns
Linear Density

Electron linear density for a SEY = 1.3

- Correct Sawtooth Pattern
- Inverted Sawtooth Pattern
- Smooth Surface

Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load
Linear Density

Electron linear density for a $SEY = 1.4$
Linear Density

Average linear density as a function of SEY
Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load
Future Work

Effect of synchrotron radiation and chamber properties on LHC electron-cloud heat load

G. Guillermo

Ecloud Workshop, Elba, It. 04/06/18
Future Work

- Use a more realistic model of the sawtooth pattern
- Use different values of the surface aspect ratio and surface roughness to determine the importance of these values.
- Use filling patterns from 2017 and 2018
- Work on the quadrupoles
Acknowledgements

Big thanks to E. La Francesca, M. Angelucci, R. Cimino, A. Liedl, L. Gonzalez, I. Bellafont; M. Giovannozzi, G. Iadarola, L. Metter; S. Poprocki, J. Crittenden and D. Rubin.