Dynamic Pressure Related to Electron Cloud during Run 2 Machine Operation in the LHC

ECLOUD '18, Isola d'Elba Italy

Christina Yin Vallgren

C. Yin Vallgren, P. Ribes Metidieri, G. Bregliozzi, P. Chiggiato
Vacuum, Surfaces and Coatings Group (VSC), TE-department
CERN, CH-1211, Geneva, Switzerland

June 3-7 2018
Outline

1. Overview of LHC vacuum system
 - LHC Layout
 - LHC Long Straight Sections
 - LHC ARC

2. Overview of LHC beam parameters in Run 2 (up to mid 2018)

3. LHC pressure evolution during Run 2
 - LHC Long Straight Sections pressure evolution
 - LHC experimental areas dynamic pressure rise
 - LHC ARC pressure evolution
 - Dynamic pressure analysis on some selected gauges

4. LHC vacuum profile simulations v.s measurements
 - LHC vacuum pressure profile simulations
 - LHC vacuum profile simulations v.s measurements
Outline

1. Overview of LHC vacuum system
 - LHC Layout
 - LHC Long Straight Sections
 - LHC ARC

2. Overview of LHC beam parameters in Run 2 (up to mid 2018)

3. LHC pressure evolution during Run 2
 - LHC Long Straight Sections pressure evolution
 - LHC experimental areas dynamic pressure rise
 - LHC ARC pressure evolution
 - Dynamic pressure analysis on some selected gauges

4. LHC vacuum profile simulations v.s measurements
 - LHC vacuum pressure profile simulations
 - LHC vacuum profile simulations v.s measurements
Protons: Linear accelerator (LINAC2) ⇒ Proton Synchrotron Booster (PS Booster) ⇒ Proton Synchrotron (PS) ⇒ Super Proton Synchrotron (SPS) ⇒ LHC.

Few numbers about LHC

- **27** km tunnel located about 100 m underground.
- **1500** niobiumtitanium (NbTi) superconducting magnets.
- cooled down by superfluid helium to **1.9 K**.
- **4** experimental areas (ATLAS, CMS ALICE and LHCb).
CERN - Large Hadron Collider (LHC)

LHC vacuum system

- LHC beam vacuum
 - 8 Long Straight Sectors (LSSs):
 - RT beam vacuum chambers (6.5 km)
 - Stand-alone cryogenic magnets: 4.5 K
 - 8 ARCs (2x2.8 kmx8):
 - 1.9 K cold bores
 - 5-20 K beam screens
- LHC insulation vacuum
CERN - Large Hadron Collider (LHC)

LHC vacuum system

- **LHC beam vacuum**
 - **8 Long Straight Sectors** (**LSSs**):
 - RT beam vacuum chambers (6.5 km).
 - Stand-alone cryogenic magnets: 4.5 K.
 - **8 ARC**s (2x2.8 km x 8):
 - 1.9 K cold bores.
 - 5-20 K beam screens.

- **LHC insulation vacuum.**
CERN - Large Hadron Collider (LHC)

LHC Vacuum System
- LHC Run 2 Beam parameters
- LHC pressure evolution Run 2
- LHC Vacuum simulations v.s Measurements

LHC Layout
- LHC LSS
- LHC ARC

LHC vacuum system

- **LHC beam vacuum**
 - **8 Long Straight Sectors (LSSs):**
 - RT beam vacuum chambers (6.5 km).
 - Stand-alone cryogenic magnets: 4.5 K.
 - **8 ARC**s (2x2.8 kmx8):
 - 1.9 K cold bores.
 - 5-20 K beam screens.

- **LHC insulation vacuum.**
LHC Vacuum System
LHC Run 2 Beam parameters
LHC pressure evolution Run 2
LHC Vacuum simulations v.s Measurements

CERN - Large Hadron Collider (LHC)

LHC Vacuum System

LHC beam vacuum
- 8 Long Straight Sectors (LSSs):
 - RT beam vacuum chambers (6.5 km).
 - Stand-alone cryogenic magnets: 4.5 K.
- 8 ARC (2x2.8 kmx8):
 - 1.9 K cold bores.
 - 5-20 K beam screens.

LHC insulation vacuum.
CERN - Large Hadron Collider (LHC)

LHC vacuum system

- **LHC beam vacuum**
 - **8 Long Straight Sectors (LSSs):**
 - RT beam vacuum chambers (6.5 km).
 - Stand-alone cryogenic magnets: 4.5 K.
 - **8 ARC(s) (2x2.8 kmx8):**
 - 1.9 K cold bores.
 - 5-20 K beam screens.

- **LHC insulation vacuum.**
8 Long Straight Sections

LSS1 (ATLAS) Left side:

SCADA application:

Pressure monitoring:

- A typical pressure monitoring with SCADA application.
- Dynamic pressure rise with the beams (EC and SR).
- Beam intensities and energy.
8 ARCs
Cold mass sectorization and vacuum instrumentation

- **Q7, 12*, 13*:** Passive penning with 500m long cable, TPG300, meas. limit: 10^{-11} mbar.
- **The rest:** full range penning, pirani gauge, meas. limit: 10^{-9} mbar.
- **All the pressure reading are dominated by water vapor pressure in the unbaked part of tubes @ RT,** $[10^{-10}, 10^{-9}]$ mbar.

Ex: ARC34

SCADA application
Outline

1. Overview of LHC vacuum system
 - LHC Layout
 - LHC Long Straight Sections
 - LHC ARC

2. Overview of LHC beam parameters in Run 2 (up to mid 2018)

3. LHC pressure evolution during Run 2
 - LHC Long Straight Sections pressure evolution
 - LHC experimental areas dynamic pressure rise
 - LHC ARC pressure evolution
 - Dynamic pressure analysis on some selected gauges

4. LHC vacuum profile simulations v.s measurements
 - LHC vacuum pressure profile simulations
 - LHC vacuum profile simulations v.s measurements
Overview of LHC beam operation 2015-mid 2018

- **2015**: ATLAS 4.24 fb$^{-1}$ and CMS 4.25 fb$^{-1}$.
- **2016**: ATLAS 38.49 fb$^{-1}$ and CMS 40.96 fb$^{-1}$.
- **2017**: ATLAS 50.82 fb$^{-1}$ and CMS 50.58 fb$^{-1}$.
- **15/5/2018**: ATLAS 10.11 fb$^{-1}$ and CMS 9.91 fb$^{-1}$.

<table>
<thead>
<tr>
<th>Year</th>
<th>Top achieved beam intensity [b]</th>
<th>Filling scheme</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2244 trains of 4x36b</td>
<td>Limited to 450b by radiation induced faults in QPS electronic boards until TS2. 144bpi up to 1450b, limited of the available cooling capacity on ARC BS.</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2220 trains of 96b</td>
<td>Technical issue SPS and LHC dumps</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2556 trains of 144b</td>
<td>2556b until early August, stable operation with 1900b of 8b4e due to 16L2.</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>2556 trains of 144b</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Overview of LHC vacuum system
 - LHC Layout
 - LHC Long Straight Sections
 - LHC ARC

2. Overview of LHC beam parameters in Run 2 (up to mid 2018)

3. LHC pressure evolution during Run 2
 - LHC Long Straight Sections pressure evolution
 - LHC experimental areas dynamic pressure rise
 - LHC ARC pressure evolution
 - Dynamic pressure analysis on some selected gauges

4. LHC vacuum profile simulations v.s measurements
 - LHC vacuum pressure profile simulations
 - LHC vacuum profile simulations v.s measurements
LHC Long Straight Section pressure evolution Run 2 (1)

- Average reading of Bayard Alpert gauges ± 100-120 m from IP in the combination chambers (CC) of each LSS.
- Two beams & NEG coated chambers.
- $P < 1 \times 10^{-8}$ mbar.

Normalized maximum dynamic pressure rise in LSS-CC chambers.

P de-conditioning in-between the operation years, but fast conditioning.

Slight increase in P for LSS1 & 5: NEG saturation? (come back later)
LHC Long Straight Section pressure evolution Run 2 (1)

- Average reading of Bayard Alpert gauges ± 100-120 m from IP in the combination chambers (CC) of each LSS.
- Two beams & NEG coated chambers.
- \(P < 1 \times 10^{-8} \) mbar.

- Normalized maximum dynamic pressure rise in LSS-CC chambers.
- \(P \) de-conditioning in-between the operation years, but fast conditioning.
- Slight increase in \(P \) for LSS1 & 5: NEG saturation? (come back later)
LHC Long Straight Section pressure evolution Run 2 (1)

- Average reading of Bayard Alpert gauges ± 100-120 m from IP in the combination chambers (CC) of each LSS.
- Two beams & NEG coated chambers.
- $P < 1 \times 10^{-8}$ mbar.

- Normalized maximum dynamic pressure rise in LSS-CC chambers.
- P de-conditioning in-between the operation years, but fast conditioning.
- Slight increase in P for LSS1 & 5: NEG saturation? (come back later)
LHC Long Straight Section pressure evolution Run 2 (2)

- NEG pilot sector
 (dedicated NEG coated sectors for studies)
- C-W transition with & without SR.
 (unbaked Cu in LSS;
 C-W with SR: max at end of ramp-up/flattop;
 C-W without SR: max at end of injection)
- $P = [10^{-11}, 10^{-10}]$ in dedicated NEG pilot sector.

- Normalized dynamic pressure rise in NEG chambers & C-W transitions.
- $P_{C-W \text{with SR}} \approx 2 \times P_{C-W \text{without SR}}$.
- Slight pressure increase in-between the operation years.

\[
\begin{align*}
\text{Pressure in the special selected locations v.s fillnumber} \\
\begin{array}{c}
\text{Fill number} \\
4000 \quad 4500 \quad 5000 \quad 5500 \quad 6000 \quad 6500 \\
\end{array}
\begin{array}{c}
\text{Pressure [mbar]} \\
10^{-7} \quad 10^{-8} \quad 10^{-9} \quad 10^{-10} \quad 10^{-11} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{Normalized Pressure [mbar/p+]} \\
\begin{array}{c}
\text{Fill number} \\
4000 \quad 4500 \quad 5000 \quad 5500 \quad 6000 \quad 6500 \\
\end{array}
\begin{array}{c}
10^{-22} \quad 10^{-23} \quad 10^{-24} \quad 10^{-25} \quad 10^{-26} \\
\end{array}
\end{align*}
\]
LHC Experiments dynamic pressure rise (1)

ATLAS pressure as a function of beam parameters

- Typical pressure rise during a physics fill: ATLAS.
- Three main pressure peaks during one typical physics fill.
- Electron Cloud @ injection \rightarrow Synchrotron Radiation from the inner-triplets @ ramp \rightarrow related to collision.

Graphs:

 - Beam Inten: B1
 - Beam Inten: B2
 - Beam Energy
- **Bottom graph:**
 - Related to collision
 - Synchrotron Radiation in IT
 - Electron Cloud
 - Pressure [mbar]
 - Time [min]
LHC Experiments dynamic pressure rise (2)

CMS pressure as a function of beam parameters

- Fill **4532** (left) with solenoid on. ⇒ No pressure rise at injection.
 - However, a huge pressure jump up after the collision.
 - Why: Heavy particles desorbing the gases from the walls or ionization of residual gas in the beam pipes?
- Fill **4536** (right) with solenoid off. ⇒ Electron Cloud @ injection.

![Graph showing beam energy and intensity over time](image)

Fill 4532: 2015−10−24 15:00:09 − 2015−10−24 21:04:08

![Graph showing pressure and time](image)

Interference due to solenoid
LHC Experiments dynamic pressure rise (2)

CMS pressure as a function of beam parameters

- Fill 4532 (left) with solenoid on. ⇒ No pressure rise at injection.
 - However, a huge pressure jump up after the collision.
 - Why: Heavy particles desorbing the gases from the walls or ionization of residual gas in the beam pipes?

- Fill 4536 (right) with solenoid off. ⇒ Electron Cloud @ injection.
LHC Experiments dynamic pressure rise (2)
CMS pressure as a function of beam parameters

- Fill 4532 (left) with solenoid on. ⇒ No pressure rise at injection.
 - However, a huge pressure jump up after the collision.
 - Why: Heavy particles desorbing the gases from the walls or ionization of residual gas in the beam pipes?
- Fill 4536 (right) with solenoid off. ⇒ Electron Cloud @ injection.
LHC Experiments dynamic pressure rise (2)

CMS pressure as a function of beam parameters

- **Fill 4532** (left) with solenoid on. ⇒ No pressure rise at injection.
- **However**, a huge pressure jump up after the collision.
- **Why**: Heavy particles desorbing the gases from the walls or ionization of residual gas in the beam pipes?
- **Fill 4536** (right) with solenoid off. ⇒ Electron Cloud @ injection.
LHC Experiments dynamic pressure rise (3)
Possible NEG saturation explanation in LSS1 & 5

Collision rate (ALICE & LHCb) is comparably small, less beam induced outgassing in LSS2 & 8 than in LSS1 & 5.

No visible pressure rise after the collision.

Compare to LSS1 &5, no visible NEG saturation.
LHC Experiments dynamic pressure rise (3)
Possible NEG saturation explanation in LSS1 & 5

Collision rate (ALICE & LHCb) is comparably small, less beam induced outgassing in LSS2 & 8 than in LSS1 & 5.

No visible pressure rise after the collision.

Compare to LSS1 & 5, no visible NEG saturation.
LHC ARC dynamic pressure rise (1)

ARC pressure conditioning

- 25 ns scrubbing validation.
- Clear conditioning in pressure with similar beam parameters.

Before 25 ns scrubbing run.

After 25 ns scrubbing run.
LHC ARC dynamic pressure rise (2)

After Technical Stop 2 (5 days no beams) in 2015.
Clear increase in pressure with the same beam parameters.

After 25 ns scrubbing run.

After TS2.
Increase of dynamic pressure rise after period without high intensity beams.

LHC ARC pressure de-conditioning in 2015
Electron Stimulated Desorption (ESD): Baked Cu fully scrubbed and stored in the UHV.

Electron Stimulated Desorption (ESD):
- H2 unscrubbed
- H2 12 hours in UHV
- H2 24 hours in UHV
- H2 1 week in UHV

Secondary Electron Yield (SEY): Unbaked Cu fully scrubbed and stored in the UHV.

No de-conditioning in ESD or SEY observed in the lab.

Where does the pressure rise come from? Different vacuum in the LHC?

Thanks to S. Callegari

Thanks to V. Petit
Electron Stimulated Desorption (ESD): Baked Cu fully scrubbed and stored in the UHV.

Secondary Electron Yield (SEY): Unbaked Cu fully scrubbed and stored in the UHV.

- No de-conditioning in ESD or SEY observed in the lab.
- Where does the pressure rise come from? Different vacuum in the LHC?

Thanks to S. Callegari

Thanks to V. Petit
Selected analyzed pressure gauges (1)

Selected gauges at the extremities of ARCs:
to study the beam induced effect on surface in the LHC

- Unbaked Cu.
- Influenced both by EC and SR from the ARCs.
- One side RT vacuum and the other side 1.9 K vacuum.

- **VGPB.235.7R1.R:**
 B2 (ARC12 → IP1) on the right side of LSS1.

- **VGPB.229.7R5.B:**
 B1 (ARC56 → IP5) on the right side of LSS5.

- **VGPB.514.7L3.B:**
 B1 (ARC23 → IP3) on the left side of LSS3.
Selected analyzed pressure gauges (1)

Selected gauges at the extremities of ARCs: to study the beam induced effect on surface in the LHC

- Unbaked Cu.
- Influenced both by EC and SR from the ARCs.
- One side RT vacuum and the other side 1.9 K vacuum.

- **VGPB.235.7R1.R:** B2 (ARC12 → IP1) on the right side of LSS1.
- **VGPB.229.7R5.B:** B1 (ARC56 → IP5) on the right side of LSS5.
- **VGPB.514.7L3.B:** B1 (ARC23 → IP3) on the left side of LSS3.
Selected analyzed pressure gauges (2)

- Dynamic pressure rise = pressure rise due to electron cloud + pressure rise due to synchrotron radiation.

- Electron Stimulated Desorption (ESD): η_{el}.
- Photon Stimulated Desorption (PSD): η_{ph}

$$P = P_{EC} + P_{SR}$$

- $P_{@450\ GeV} = P \sim ESD$
- $P_{@6.5\ TeV} = P \sim ESD + P \sim PSD$
Selected analyzed pressure gauges (3)

Divide the pressure into EC and SR, as a function of integrated photon dose [ph/m].

- Normalized P at 450 GeV: ESD
- Normalized P at 6.5 TeV: ESD+PSD
- Normalized ∆P at 6.5 TeV: PSD
Selected analyzed pressure gauges (4)

- PSD (η_{ph}) as a function of Photon Dose.
 - Beam energy in 2010-2012 (Run 1): 3.5 TeV.
 - Beam energy in 2015-2016 (Run 2): 6.5 TeV (a factor 1.86 for comparison).
 - Assuming de-conditioning of photon desorption, reset photon dose after LS1.

- 2 trends for the curves: $\eta \propto \Gamma^{-\alpha} \Theta$.
 - Room Temperature ($\alpha = [0.6, 0.8]$).
 - Cryogenic Temperature ($\alpha \approx 0.4$).

Normalized ΔP @ high E [mbar/p+].

Vincent Baglin, Vacuum 138 (2017) 112-119
Outline

1. Overview of LHC vacuum system
 - LHC Layout
 - LHC Long Straight Sections
 - LHC ARC

2. Overview of LHC beam parameters in Run 2 (up to mid 2018)

3. LHC pressure evolution during Run 2
 - LHC Long Straight Sections pressure evolution
 - LHC experimental areas dynamic pressure rise
 - LHC ARC pressure evolution
 - Dynamic pressure analysis on some selected gauges

4. LHC vacuum profile simulations v.s measurements
 - LHC vacuum pressure profile simulations
 - LHC vacuum profile simulations v.s measurements
Simulations for static and dynamic pressure profile

VASCO (VAcuum Stability COde) is a code for the simulation of the LHC static and dynamic pressure profiles.

In order to optimize the performance of code for large geometries, VASCO was rewritten in Python ⇒ **PyVASCO**

\[
\frac{V \frac{\partial n}{\partial t}}{c_{\text{spec}}} = c_{\text{spec}} \frac{\partial^2 n}{\partial x^2} + \left(\eta_n + \eta'_n(\Theta) \right) \sigma_{\text{ion}} \frac{I}{e} n - \sigma_{\text{beampumping}} \frac{I}{e} n - S_{\text{wall}}(\Theta) n - S_{\text{NEG}}(n - n_e(\Theta, T)) \\
+ \left(\eta_\text{ph} + \eta'_\text{ph}(\Theta) \right) I_{\text{ph}} + \left(\eta_e + \eta'_e(\Theta) \right) \dot{N}_e + a \cdot q
\]

(1)

\[
\frac{a}{c_{\text{spec}}} \frac{\partial n}{\partial t} = S_{\text{wall}}(\Theta) n + \sigma_{\text{beampumping}} \frac{I}{e} n
\]

(2)

\[
\frac{a}{c_{\text{spec}}} \frac{\partial n}{\partial t} = S_{\text{cryo}}(n - n_e(\Theta, T)) - \eta'_e(\Theta) \sigma_{\text{beampumping}} \frac{I}{e} n - \eta'_\text{ph}(\Theta) \Gamma_{\text{ph}} - \eta'_\text{desorption}(\Theta) \dot{N}_e
\]

(3)

In a room temperature system, the physisorption can be neglected and the equation (1) reads:

\[
\frac{V \frac{\partial n}{\partial t}}{c_{\text{spec}}} = c_{\text{spec}} \frac{\partial^2 n}{\partial x^2} + (\eta_n - 1) \sigma_{\text{ion}} \frac{I}{e} n - S_{\text{wall}}(n - C_{\text{spec}}) n + \eta_\text{ph} \Gamma_{\text{ph}} + \eta_e \dot{N}_e + a \cdot q
\]

(4)

A. Rossi, LHC Project Note 341, CERN
Simulations for static and dynamic pressure profile

- VASCO (VAcuum Stability COde) is a code for the simulation of the LHC static and dynamic pressure profiles.

- In order to optimize the performance of code for large geometries, VASCO was rewritten in Python ⇒ PyVASCO

⊕: A. Rossi, LHC Project Note 341, CERN
Simulations for static and dynamic pressure profile

- Based on CERN LHC Layout Database
- Elliptic/rectangular profiles
- 3D model automatically generated in Python
 ⇒ LHC Geometry
Simulations for static and dynamic pressure profile

- Based on CERN LHC Layout Database
- Elliptic/rectangular profiles
- 3D model automatically generated in Python ⇒ LHC Geometry
Simulations for static and dynamic pressure profile

- TWISS table: contains the linear lattice functions for a given element configuration.
- Real position of a particle of the beam and magnet strengths.
LHC vacuum pressure profile simulations (4)

Simulations for static and dynamic pressure profile

- Create a database for material specifications used as input for simulations
- Outgassing rates measured in the lab
- ESD (Electron Stimulated Desorption), SEY (Secondary Electron Yield) etc measurement data

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Carbon coating</td>
</tr>
<tr>
<td>S</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>N</td>
<td>NEG coating</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Future development (2/2)
- Include a new column in Layout database?
- Materials specifications should be also stored elsewhere
LHC vacuum pressure profile simulations (5)

Simulations for static and dynamic pressure profile

- Using **Timber** to extract the beam parameters for specific physics fill
- Using **Timber** to extract the measured pressure in the LHC for specific physics fill

![Diagram showing experimental data flow to simulations and measurements]
Simulations for static and dynamic pressure profile

- **SynRad+**: Monte Carlo simulations to calculate flux and power distribution on a surface caused by synchrotron radiation.

 - Combine LHC Geometry, Beam parameters and LHC optics.

 - Experimental data: Materials, Desorption coefficients, etc.

 - LHC Optical setups

 - LHC Layout Database

 - Python

 - Syn

 - Timber

◊: R. Kersevan and M. Ady https://molflow.web.cern.ch/
Simulations for static and dynamic pressure profile

- **SynRad+**: Monte Carlo simulations to calculate flux and power distribution on a surface caused by synchrotron radiation.

- **Combine** LHC Geometry, Beam parameters and LHC optics.

◊: R. Kersevan and M. Ady https://molflow.web.cern.ch/
Simulations for static and dynamic pressure profile

- **PyECLoUD**: simulate the electron cloud build-up.
- Combine **LHC Geometry**, **Experimental SEY data**, **LHC optics and Beam parameters**.

* G. Iadarola https://github.com/PyCOMPLETE/PyECLoUD
LHC vacuum pressure profile simulations (7)

Simulations for static and dynamic pressure profile

- PyEClouD*: simulate the electron cloud build-up.
- Combine LHC Geometry, Experimental SEY data, LHC optics and Beam parameters.

* G. Iadarola https://github.com/PyCOMPLETE/PyEClouD
Simulations for static and dynamic pressure profile

- VASCO algorithm implemented in Python ⇒ PyVASCO
- Simulate complete pressure profile in a complex machine
- Static pressure profile, considering the effect of degassing rates and pumping speed.
- Dynamic pressure profile, considering the effect of beams: electron cloud, synchrotron radiation, ion induced desorption etc.
LHC vacuum pressure profile simulations v.s measurements

Example: Dynamic pressure profile for B1 in ATLAS LSS
2244 b, 25 ns, 6.5 TeV at collision
Many thanks to all the members of the TE-VSC group, especially M. Ady, R. Kersevan and J. Sopousek.

Thanks for your attention ! and Questions
Backup Slide (1)

ALICE pressure as a function of beam parameters

- Typical pressure rise during a physics fill: ALICE.
- Collision rate is comparably small, no visible pressure rise after the collision.
- No visible Electron Cloud @ injection due to solenoid. → Synchrotron Radiation from the inner-triplets @ ramp.
Backup Slide (2)

LHCb pressure as a function of beam parameters

- Typical pressure rise during a physics fill: LHCb.
- Collision rate is comparably small, no visible pressure rise after the collision.
- Electron Cloud @ injection → Synchrotron Radiation from the inner-triplets @ ramp.
LHC ARC dynamic pressure rise evolution Run 2

- ARC B1 Pressure.
- ARC B2 Pressure.
- ARC heat load.
- ARC normalized B1 pressure.
- ARC normalized B2 pressure.
- ARC normalized heat load.
Actual P in the beam screen \approx the measured P at RT/4.

Length of pipe: ~3.5m
Thermal transpiration:

$$\frac{P_{RT}}{P_{BS}} = \frac{T_{RT}}{T_{BS}} = \sqrt{\frac{300K}{20K}}$$

Pressure from 1.9K to RT: ~3.5m
3D modeling of LSS1 in present of SR

ATLAS:
Orbit correctors
2808b, 6.5 TeV, Flat Top

100× zoom in radial direction

Q6

Q5

Q4

Q3

Q2

5.5 mW
(0.01%)

Power Distribution of S.R.

E_c = 0.5–6.1 eV

E (eV)
3D modeling of LSS1 in present of SR

ATLAS: Quadrupoles
2808b, 6.5 TeV, Flat Top

100x zoom in radial direction

Q6
1 Wm⁻²
10⁻⁷ Wm⁻²
10⁻⁵ Wm⁻²
10⁻³ Wm⁻²

Q5

Q4

E₀ = up to 8.2 eV

Power Distribution of S.R.

Arc

IT+Q4

Q5, Q6, Q7

0.27 W
(0.5%)
Backup Slide(5)
3D modeling of LSS1 in present of SR

ATLAS: Matching Dipoles
2808b, 6.5 TeV, Flat Top
100× zoom in radial direction

0.54 W (1.0%)

Power Distribution of S.R.
Backup Slide(5)
3D modeling of LSS1 in present of SR

ATLAS:
Main Dipoles
2808b, 6.5 TeV, Flat Top
100× zoom in radial direction

50.8 W
(98%)

Power Distribution of S.R.

\(E_c = 40.7 \text{ eV} \)
ATLAS: Dipoles & Quadrupoles
2808b, 6.5 TeV, Flat Top

100x zoom in radial direction

<table>
<thead>
<tr>
<th>Components</th>
<th>Power 0-500m</th>
<th>Crit. Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main dipoles</td>
<td>50.8 W</td>
<td>40.7 eV</td>
</tr>
<tr>
<td>Matching dipoles</td>
<td>0.54 W</td>
<td>6.3, 13.6 eV</td>
</tr>
<tr>
<td>Quadrupoles</td>
<td>0.27 W</td>
<td>up to 8.2 eV</td>
</tr>
<tr>
<td>Orbit correctors</td>
<td>5.5 mW</td>
<td>0.5–6.1 eV</td>
</tr>
</tbody>
</table>

50.8 W from IP up to 500 m