

RHIC instabilities at transition crossing

Xiaofeng Gu, Wolfram Fischer, Michael Blaskiewicz, Michiko Minty, Christoph Montag, Vadim Ptitsyn

Thanks to the Committee for invitation!

June 03-07, 2018 ECLOUD, Italy, La Biodola Bay, Isola d'Elba

Outline

- ☐ Introduction
- Observation
- Methods
- **☐** Summary

RHIC – a High Luminosity (Polarized) Hadron Collider

Instability during Transition

- → In RHIC, all ions above 23 GeV except proton have to cross transition energy, with slow superconducting magnet ramping rate
- → **Single particle effects** -> chromatic non-linearity -> different momentum particle to cross transition at different times
- → Multi-particle effects -> bunch shape mismatch to RF bucket (induced by low frequency self fields) and microwave instability (higher frequency self fields)
- → These multi-particle effects will increase the momentum spread, enhancing the chromatic nonlinear effect and leading to particle loss
- → Electron clouds -> bunches are short at transition triggering e-cloud formation -> e-clouds lower the stability threshold given by the machine impedance and enhanced by electron clouds
- → In RHIC, instability has limited total bunch intensities in the past (not presently)

Time scales Characterize transition crossing

- → Two time scales to characterize transition crossing
- → The non-adiabatic time: not described by adiabatic Hamiltonian (longitudinal)

$$T_c = \left(\frac{AE_T}{ZeV|\cos(\emptyset_S)|} \cdot \frac{\gamma_T^3}{h\gamma'} \cdot \frac{C_0^2}{4\pi c^2}\right)^{1/3}$$

→ The non-linear time: single particle non-linearity chromatic effect (transverse)

$$T_{nl} = \left| (\alpha_1 + 1.5 \cdot \beta_T^2) \right| \cdot \delta_{max} \cdot \frac{\gamma_T}{\gamma'}$$

	FNAL	FNAL	AGS	RHIC	KEKPS	CPS
	Booster	MI				
C (m)	474.2	3319.4	807.12	3833.8	339.29	628.32
V (kV)	950	4000	300	300	90	200
h	84	588	12	360	9	6-20
$\gamma_{_{ m T}}$	5.4	20.4	8.5	22.5	6.76	6.5
$\dot{\gamma} \ (\mathrm{s}^{-1})$	200	190	70	1.6	40	60
\mathcal{A} (eVs/u)	0.04	0.04	1.	0.3	0.3	0.5
$\hat{\delta}$ (×10 ⁻³)	6.4	2.5	6.7	4.5	5.4	6.6
$\tau_{\rm ad}~({\rm ms})$	0.2	2.0	2.5	36	1.8	1.5
$\tau_{\rm nl}~({\rm ms})$	0.13	0.19	0.61	63	0.7	0.5

		Design	2004	2007	2016
Transition Lorentz Factor		22.80	22.80	22.91	23.95
Acceleration rate	/s	1.60	0.50	0.40	0.36
Maximum off-momentum parame	0.00	0.00	0.01	0.00	
C ircumference	m	3833.85	3833.85	3833.85	3833.85
Atomic Number		79.00	79.00	79.00	79.00
Atomic Weight		197.00	197.00	197.00	197.00
Transition Energy per nucleon	GeV	21.40	21.40	21.50	23.33
phase	rad	0.16	0.08	0.08	0.07
Peak rf Voltage	kV	300.00	300.00	300.00	200.00
rf Voltage during transitiion	kV	296.17	299.04	299.04	199.51
Harmonic number		342.00	360.00	360.00	360.00
Nonlinear momentum compaction	0.60	-0.54	-0.30	-2.64	
beta_T		1.00	1.00	1.00	1.00
non-adiabatic time	ms	37.02	53.45	57.95	74.00
nonlinear time	ms	128.50	187.67	356.54	306.62

S.Y. Lee, Accelerator Physics, p302

Instrumentation for Transition Crossing Instabilities in RHIC

- 1. Beam Decay and BBB beam loss
- 2. IPM for Emittance
- 3. Coherence signal
- 4. Electron cloud detector
- 5. Longitudinal Bunch length & Shape
- 6. Vacuum
- 7. 10Hz & TBT BPM
- 8. Longitudinal phase tomographic reconstruction

Button BPM for coherence measurement

3 components for fast instability

2 components for slow instability

Figure 6: Time series of the 2 strongest principle components for a slower instability. The traces are offset vertically to improve clarity.

Signal used in MCR

Electron Cloud Detector

FIG. 10. (Color) Pressure increase vs time-averaged electron current density into the wall. Red dots are measured values, the black line is a linear fit [21,22].

U. Iriso and W. Fischer, PRST-AB 8, 113201 (2005).

EC signal used in MCR

U. Iriso-Arizo, et al, 2003, PAC

Outline

- ☐ Introduction
- ☐ Observation
- Methods
- **☐** Summary

BBB Beam Loss During Transition (Fill18176, 4/6/2014)

Figure 2: Bunch intensity transmission through the transition in dependence on bunch position in the train.

BBB Beam Loss with Gap (Fill9628, 01/23/2008) V. Ptitsyn, et al, HB 2008 WGA04,

Total Beam Loss (Fill18176, 4/6/2014)

Coherence Signal (Fill18176, 4/6/2014)

Electron Cloud Signal (Fill18176, 4/6/2014)

Vacuum (Fill19704, 3/17/2016)

10Hz BPM and Mean Orbit (Fill19704, 3/17/2016)

Minty Michiko 2016-03-17elog

WCM and Landau Damping (Fill 19807)

Outline

- ☐ Introduction
- Observation
- Methods
- **☐** Summary

Used Methods in RHIC for Transition Crossing Control

- 1. gt-jump implemented
- 2. Octupoles control
- 3. Chromaticity control
- 4. Lower Accelerator RF voltage
- 5. Landau Cavity for shape Oscillations after

Transition

- 6. Split transition lattice
- 7. Feedback of quadrupole oscillations

- 1.In-situ baking
- 2.NEG
- 3.Scrubbing
- 4. Solenoid, anti-grazing rings

GammaT Jump and Transition Crossing

Chromaticity --- Sextuple (Fill19765~19766, 4/13/2016)

Octupole for tune spread (2002, Fill9450~9650,2008 and 19751-19754, 2016)

C. Montag, J. Kewisch, D. Trbojevic and F. Schmidt, PRST-AB 084401 (2002)

Accelerator Cavity Voltage (Fill 19679)

Figure 4: Average beam loss at transition as a function of the RF voltage with $b_{oct} = -3$ unit.

E-cloud: NEG coating in RHIC

NEG coating started from 2005, increased the total stored charge in operation

Notes: charge also limited by effects other than total charge (injectors, transition), dynamic pressure can be limited by single location (experiment).

Ecloud: scrubbing with Au and Proton

Scrubbing used in 2007 Au-Au operation:

7 high intensity fills in about 2 h, Reduced dynamic pressure in worst location by more than 1 order of magnitude

Au Bunch Intensity Evolution

Outline

- ☐ Introduction
- Observation
- Methods
- ☐ Summary

Summary

- all ions excepts protons cross transition in RHIC, a relatively slow ramping sc machine
- observed transition instabilities with rise time as fast ~15 ms in the past
- clearly driven by electron clouds
- presently not limiting operations after implementation of a number of mitigation measures
- Used methods include gamma-t jump, octuples, fast chromaticity change, RF voltage, tune and orbit control, NEG coating of warm pipes, scrubbing over several years

More Methods for Transition Crossing Control

- 1. Reactive loading for less impedance
- 2. Rf system feedback
- 3. Avoiding phase jump by continuously varying phase and voltage
- 4. Artificial blow up longitudinal emittance
- 5. Using flattened rf (9MHz and 28MHz)
- 6. Temporarily changing the orbit circumference using programmed V and phase
- 7. Rf manipulation to eliminate bunch length oscillation.
- 8. Reduce rf voltage
- 9. Simulation?

Handbook of Accelerator Physics and Engineering, 2nd print. J. Wei, p286

References

- 1. Intensity Dependent Effects in RHIC, Jie Wei, BNL-66781
- 2. Transition Crossing in the RHIC, Jie Wei, BNL 45923
- 3. A First order Matched Transition Jump at RHIC, S. Peggs et al, PAC1993 p168
- 4. Overcoming a fast transverse instability by means of octupole-induced tune spread in the Relativistic Heavy Ion Collider C. Montag, J. Kewisch, D. Trbojevic and F. Schmidt, PRST-AB 084401 (2002)
- 5. Electron cloud measurements and simulations for the Brookhaven Relativistic Heavy Ion Collider, W. Fischer, et al, PRST AB 2002
- 6. Transverse Instabilities in RHIC. M. Blaskiewicz et al. PAC 2003
- 7. RHIC Electron Detector Signal Processing Design, J. Gullotta, et al, PAC03
- 8. Electron Cloud and Pressure Rise Simulations for RHIC, U. Iriso, et al, PAC03
- 9. Electron Detectors for Vacuum Pressure Rise Diagnostics at RHIC, U. Iriso, et al, PAC03
- 10. Calibration of RHIC Electron Detectors, P. He, et al. PAC03
- 11. Transition Pressure Rise in RHIC Run-4, W. Fischer, et al, C-A/AP-#184
- 12. Commissioning of a first-order transition jump in RHIC, J. Kewisch and C. Montag, PAC2003, p1694
- 13. Design of a fast Chromaticity Jump in RHIC, C. Montag et al, PAC2003
- 14. Commissioning of a first-order matched transition jump at the Brookhaven Relativistic Heavy Ion Collider, C. Montag and J. Kewisch, PRST AB 2004
- 15. Electron Cloud Phase Transition, U. Iriso, et al, 2004, C-A/AP/#147
- 16. Electron Cloud Observations at RHIC in Run-3, U. Iriso, et al, Jan. 29, 2004
- 17. Analysis of Electron Cloud at RHIC, U. Iriso, et al, EPAC04
- 18. Preliminary Estimation of the Electron Cloud in RHIC, L. Wang, et al, EPAC04
- 19. Maps for Fast Electron Cloud Simulations at RHIC, U. Iriso, et al, EPAC04
- 20. Observation of electron-ion effects at RHIC transition, J. Wei et al, PAC2005, p4087
- 21. Estimates for secondary electron emission and desorption yields in grazing collisions of gold ions with beam pipes in the BNL Relativistic Heavy Ion Collider: Proposed mitigation, P. Thieberger et al, PRST-AB 7, 119901 (2005)
- 22. Electron induced molecular desorption from electron clouds at the Relativistic Heavy Ion Collider, U. Iriso and W. Fischer, PRST-AB 8, 113201 (2005)
- 23. Electron Induced Molecular Desorption of the RHIC Beam Pipes, U. Iriso, et al, AP note #191
- 24. Benchmarking Electron Cloud Data with Computer Simulation Codes, U. Iriso, et al, EPAC06
- 25. Electron-Impact Desorption of the RHIC Beam Pipes, U. Iriso, et al, EPAC06
- 26. Electron Clouds in the Relativistic Heavy Ion Collider, U. Iriso , Thesis 2006
- 27. Electron Cloud Observations and Cures in RHIC, W. Fischer, et al, PAC07
- 28. A Diagnostic for Improving Transmission Through Transition in RHIC, P. Cameron, 2007
- 29. Analysis of intensity instability threshold at transition at RHIC, W. Fischer, et al. BNL-79903-2008-CP
- 30. Electron Cloud Observations and Cures in RHIC, W. Fischer, et al, PRST-AB 041002 (2008)
- 31. Crossing Transition at RHIC, V. Ptitsyn et al, HB2008
- 32. FEEDBACK DAMPER SYSTEM FOR QUADRUPOLE OSCILLATIONS AFTER TRANSITION AT RHIC, N. P. Abreu et al, EPAC02, p3242
- 33. Simulation of Electron Cloud Density Distributions in RHIC Dipoles at Injection and Transition and Estimates for Scrubbing Times, P. He, et al, PAC09
- 34. Measurements of fast transition instability in RHIC, V. Pitisyn et al. BNL-90793-2010-CP, IPAC10 p1638
- 35. Experience with split transition lattices at RHIC, C. Montag et al, IPAC10
- 36. Longitudinal Dynamics simulation at Transition crossing in RHIC with new Landau Cavity, C. Liu et al, HB2014
- 37. More....
- 38. Review of single bunch instabilities driven by an electron cloud, F. Zimmermann PRST-AB 124801 (2004)

Thank you.