A small section of the document is as follows:

A small section of the document is as follows:

The second section contains:

The third section contains:

The fourth section contains:
Project History and Near-term Plan

--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

KEKB operation
SuperKEKB LER & HER construction

HER & LER beam tuning
Collision tuning

Damping Ring construction

Phase 1 commissioning
w/o QCS
w/o Belle II
Renovation for Phase 2
Phase 2 commissioning
w/ QCS
w/ Belle II (no VXD)
Belle II VXD installation
Phase 3

Injector Linac upgrade
DR commissioning

K. Akai et al.
空気污染とその対策策

・多様な形態の空気汚染物質を対象とした厳格な制限法

・化学物質を非常な状況下で使用することを制限する法

・特定の産業団を対象とした特別制限法

・空気汚染防止対策のための特別措置法

・エネルギー消費最低限をめざすための制限法

・空気汚染防止対策のための特別措置法

・化学物質の使用を制限する法

・空気汚染防止対策のための特別措置法
4VQFS, ##Y# '#

$PVQMFECVODIJOTUBCJMJUJFT$#*
NEVFUP&$&

3BUIFSCSPBEFSVOTUBCMFNPEFTUIBUSFGMFDUUIFDMPVE

EJTUSJCVUJPO

r)JHIFSNPEFTOBUVSBMFMFDUSPODMPVETJOUIFESJGUTQBDFSFHJPO

- PXFSNPEFTFMFDUSPODMPVETOFBSUIFDIBNCFSTVSGBDFEVFUP

FOPVHITPMFOPJEBMGJFME

(SPXUISBUFPGUIFVOTUBCMFNPEFTIBWFSFMBUJPOUPUIF

FMFDUSPODMPVETJUVBUJPO

r *OUFSNFEJBUFBEEJUJPOBMTPMFOPJEBMGJMFEXPSTUHSPXUISBUF

r /PTPMFOPJEBMGJFMEBOEFOPVHITPMFOPJEBMGJFMETJNJMBSHSPXUISBUF"EEJOHFYUFSOBMGJFMENJHIUTVQQSFTTUIFWFSUJDBMCFBNTJ[F

CMPXVQCVUOPUTVQQSFTTJOHUIFDPVQMFECVODIJOTUBCJMJUJFT
NEG strip

SR

220

Pump channel
Screen
Beam channel
Cooling channel

Core of quadrupole magnet
1. 山谷区域的半径范围为 0.1~0.12
 Top : R0.15
 Angle : 18~18.3°

2. 图片展示了不同的模型与实验设备
SuperKEKB Transverse Bunch Feedback System
项目背景

- 项目背景
- 项目背景
- 项目背景
- 项目背景

项目目标

- 项目目标
- 项目目标
- 项目目标
- 项目目标

项目计划

- 项目计划
- 项目计划
- 项目计划
- 项目计划

项目周期

- 项目周期
- 项目周期
- 项目周期
- 项目周期

项目风险

- 项目风险
- 项目风险
- 项目风险
- 项目风险

项目总结

- 项目总结
- 项目总结
- 项目总结
- 项目总结
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
4VQFS,##Y# ' #

PEFBOBMZTJT

BLF''5 PGCBTFGPSUIFPTDJMMBUJPOEBUBPGUVSOT

CVODIFTYEBUBQPJOUT
UPPCUBJOUIFXIPMFTQFDUSVN

&YUSBDUBNQMJUVEFPGUIFTQFDUSVNUIBUDPSSFTQPOETUPUIFCFUBUSPO GSFRVFODJFT GC

XIFSFNSFQSFTFOUTUIFNPEFPGUIFPTDJMMBUJPO

MJHOUIFBNQMJUVEFCZJODSFBTJOHPSEFSPGUIFNPEFJE

3FQFBUUIFBCPWFUIFQSPDFEVSFXIJMFBEBWBODJOH UIFTUBSUJOHQPJOUPGUIFEBUBCZUVSOT

- A list of bullet points on the left side of the page.
Vertical beam size blowup

1/1576/6n
ECK on

Without permanent magnets

(a) Before attaching magnets to Al-alloy bellows chambers

Curtesy of H. Fukuma (KEK)
We believe that the data and the knowledge generated from it are essential for advancing the field of artificial intelligence. This knowledge must be shared and disseminated globally.

We propose that the following steps be taken to ensure the accessibility and dissemination of this knowledge:

1. Establishing a global platform for sharing AI research findings.
2. Implementing open access policies for AI publications.
3. Providing free access to AI educational resources.
4. Encouraging collaboration between researchers from different countries.
5. Supporting the development of local AI communities in different regions.

By taking these steps, we can ensure that the knowledge generated from AI research can be shared and utilized by all, promoting the advancement of AI for the betterment of society.
Problems - 1

- Non-linear pressure rise against the beam current in LER - 4
- As a test, we applied a magnetic field of axial direction by solenoids or permanent magnets at nine aluminum bellows chambers (~30 m section). The strength is 40 ~ 100 G near the inner wall at the center of bellows.
- As a result, the rate of pressure rise at this section relaxed!
Non linear pressure rise

Vertical beam size blowup

Vertical beam size blowup vs linear current density

Before attaching magnets to Al-alloy bellows chambers

After attaching magnets to Al-alloy bellows chambers

Before

After

Vertical beam size [a.u.]

Vertical beam size [a.u.]

Beam current / RF bucket [mA/bucket]

Beam current / RF bucket [mA/bucket]

0.12

0.2
Electron cloud

As a countermeasure against the EC problem of SEKEB, the units of permanent magnets have been attached to the drift space of the ring.

- Units with iron yokes (plates) for the space far from electromagnets (> 250 mm).
- Units with non-magnetic materials (without iron yokes) for the space near electromagnets (< 250 mm).

New permanent-magnet system using neodymium-magnet sheets was developed for narrow spaces. The performance will be checked in Phase-2 commissioning.

- Make sure your calculations are accurate and consistent in all steps of the problem.
 - Double-check your work for any errors.
- Review each step of the problem carefully to ensure accuracy.
- Consider using a calculator to verify your calculations if necessary.
KEKB

Solenoid-Off

Experiment

- **Horizontal**
 - Mode: 0 to 1400
 - Count: 10^4

- **Vertical**
 - Mode: 0 to 1400
 - Count: 10^3

Simulation

- **Horizontal**
 - Mode: 0 to 1400
 - Count: 0.4

- **Vertical**
 - Mode: 0 to 1400
 - Count: 1.2

Su Su Win et al., (EC2002)