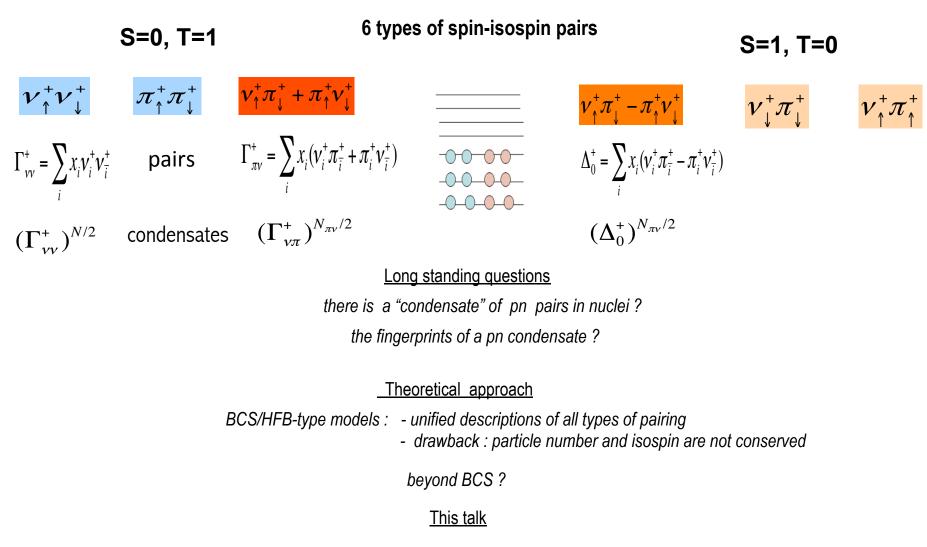
Signatures of alpha-like quartet condensation in N=Z nuclei

Nicolae Sandulescu


National Institute of Physics and Nuclear Engineering, Bucharest

<u>Outline</u>

- Pairing and alpha-like quartetting in N=Z nuclei
- Quartetting for general (shell model) interactions*
- Quartet phase transition & Penrose-Yang criterion*

*work done with Michelangelo Sambataro (INFN-Catania)

Pairing in N=Z nuclei: main issues

T=1 and T=0 pairing described by alpha-like quartets not by Cooper pairs

Isovector (T=1) proton-neutron pairing

Isovector proton-neutron pairing in BCS-like models

	<i>H</i> =	$\sum_{i} \varepsilon_i N_i + \sum_{ij} V_{J=0}^{T=1}(i,$	$(j) \sum_{t=-1,0,1} P_{it}^+ P_{jt}$	N=Z
		<u>collective Cooper p</u>	airs	
$\Gamma^{+}_{\nu\nu}$	$=\sum_{i} x_{i} v_{i} v_{\overline{i}}$	$\Gamma^+_{\pi\pi} = \sum_i x_i \pi_i \pi_{\overline{i}}$	$\Gamma_{\pi\nu}^{+} = \sum_{i} x_i (\nu_i^+ \pi_{\overline{i}}^+ + \pi_i^+ \nu_{\overline{i}}^+)$	
		"condensates of pai	<u>rs"</u>	
	exact	$(\Gamma_{_{_{V\!U}}}^{_+})^{_{N/2}}\Gamma_{_{\pi\pi}}^{_+})^{_{Z/2}}$	$(\Gamma^+_{ u\pi})^{rac{N+Z}{2}}$	
$^{44}\mathrm{Ti}$	5.973	5.487 (8.134%)	4.912~(17.763%)	
$^{48}\mathrm{Cr}$	9.593	8.799 (8.277%)	7.885~(17.805%)	
$^{52}\mathrm{Fe}$	10.768	9.815~(8.850%)	8.585~(20.273%)	

large errors & no mixing of pn with nn and pp pairing

restoration of the isospin symmetry ?

 $|PBCS(N,T)\rangle = \hat{P}_T \hat{P}_N |BCS\rangle$ still large erros !

Isovector pairing in terms of alpha-like quartets

$$H = \sum_{i} \mathcal{E}_{i} (N_{i}^{(\nu)} + N_{i}^{(\pi)}) + \sum_{ij,\tau} V(i,j) P_{i,\tau}^{+} P_{j,\tau}$$

$$P_{i1}^{+} \propto v_{i}^{+} v_{\bar{i}}^{+} \qquad P_{i-1}^{+} \propto \pi_{i}^{+} \pi_{\bar{i}}^{+} \qquad P_{i0}^{+} \propto v_{i}^{+} \pi_{\bar{i}}^{+} + \pi_{i}^{+} v_{\bar{i}}^{+}$$

collective quartet

$$Q^{+} = \sum_{ij\tau\tau'} x_{ij} [P_{i\tau}^{+} P_{j\tau'}^{+}]^{T=0} \propto \sum_{ij\tau\tau'} x_{ij} (P_{\nu\nu,i}^{+} P_{\pi\pi,j}^{+} + P_{\pi\pi,i}^{+} P_{\nu\nu,j}^{+} - P_{\nu\pi,i}^{+} P_{\nu\pi,j}^{+})$$

N=Z

quartet condensate

$$QCM >= Q^{+n_q} | - >$$
 (has T=0, J=0)

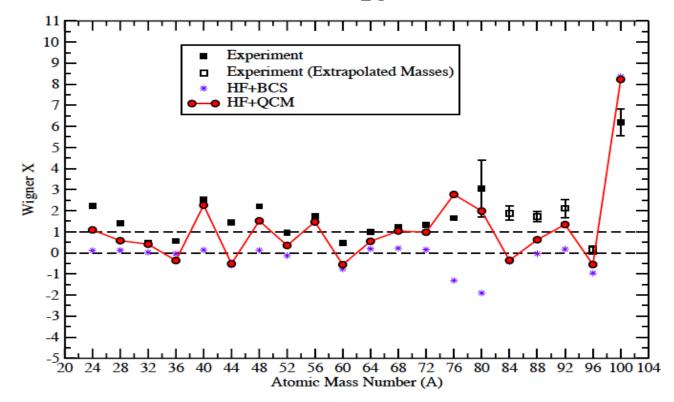
$(x_{ii} determined variationally)$

N. S, D. Negrea, J. Dukelsky, C.W. Johnson, PRC85, 061303(R) (2012)

Quartet condensation versus pair condensation

$$H = \sum_{i} \varepsilon_{i} N_{i} + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{t} P_{it}^{+} P_{jt}$$

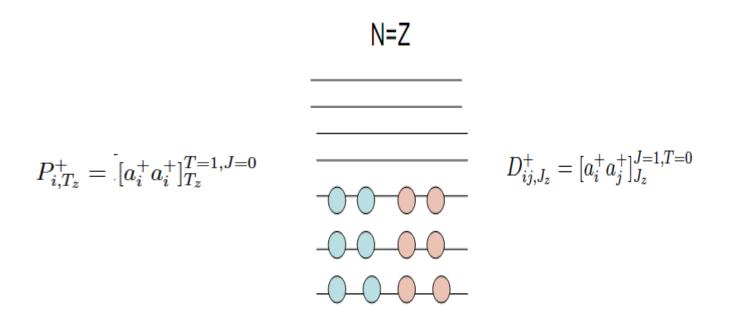
pairing forces extracted from SM interactions


		$(Q^{\scriptscriptstyle +})^{n_q}$	$\left(\Gamma_{vv}^{+}\Gamma_{\pi\pi}^{+} ight)^{n_{q}}$	$\left(\Gamma^{+2}_{ u\pi} ight)^{n_q}$
	SM	QCM	PBCS1	PBCS0
²⁰ Ne	9.173	9.170 (0.033%)	8.385 (8.590%)	7.413 (19.187%)
²⁴ Mg	14.460	14.436 (0.166%)	13.250 (8.368%)	11.801 (18.389%)
28 Si	15.787	15.728 (0.374%)	14.531 (7.956%)	13.102 (17.008%)
³² S	15.844	15.795 (0.309%)	14.908 (5.908%)	13.881 (12.389%)
⁺⁺ Ti	5.973	5.964 (0.151%)	5.487 (8.134%)	4,912 (17.763%)
48Cr	9.593	9.569 (0.250%)	8.799 (8.277%)	7.885 (17.805%)
^{su} Fe	10.768	10.710 (0.539%)	9.815 (8.850%)	8.585 (20.273%)
¹⁰⁴ Te	3.831	3.829 (0.052%)	3.607 (5.847%)	3.356 (12.399%)
108 Xe	6.752	6.696 (0.829%)	6.311 (6.531%)	5.877 (12.959%)
112Ba	8.680	8.593 (1.002%)	8.101 (6.670%)	13.064 (13.064%)

Conclusion: *T*=1 pairing is accurately described by quartets, not by pairs

N. S, D. Negrea, J. Dukelsky, C.W. Johnson, PRC85, 061303(R) (2012)

Isovector pairing and Wigner energy


$$E(N,Z) = E(N = Z) + a_s \frac{(N - Z)^2}{A} + a_W \frac{|N - Z|}{A} + \delta E_{shell} + \delta E_P$$
$$E(N,Z) = E(N = Z) + \frac{T_z(T_z + X)}{2\Theta} \qquad T_z = 0,2,4$$

Conclusion: T=1 pairing, when treated by QCM, is able to describe well the Wigner !

D. Negrea and N. S, PRC90 (2014)

Isoscalar and isovector pairing in N=Z nuclei

Quartetting for isovector (J=0) and isoscalar (J=1) pairing

$$H = \sum \varepsilon_i N_i + \sum_{ij} V_{J=0}^{T=1}(i,j) \sum_{\tau} P_{i\tau}^+ P_{j\tau} + \sum_{ij} V_{J=1}^{T=0}(i,j) \sum_{\sigma} D_{i\sigma}^+ D_{j\sigma}$$

isovector

isoscalar

 $P_{i,T_z}^+ = [a_i^+ a_i^+]_{T_z}^{T=1,J=0}$

$$D_{ij,J_z}^+ = [a_i^+ a_j^+]_{J_z}^{J=1,T=0}$$

collective quartets

$$Q_{\nu}^{+(iv)} = \sum_{i,j} x_{ij}^{(\nu)} [P_i^+ P_j^+]^{T=0}$$

$$Q_{\nu}^{+(is)} = \sum_{ij,kl} y_{ij,kl}^{(\nu)} [D_{ij}^{+} D_{kl}^{+}]^{J=0}$$

N=Z

generalised quartet

 $Q_{\nu}^{+} = Q_{\nu}^{+(iv)} + Q_{\nu}^{+(is)}$

Quartet condensate

$$|QCM\rangle = Q^{+n_q}|-\rangle$$

superposition of T=0 and T=1 quartets

M. Sambataro and N.S, Phys. Rev C93, 054320 (2016)

Quartet condensation for isovector & isoscalar pairing

 $H = \sum \varepsilon_i N_i + \sum_{ii} V_{J=0}^{T=1}(i,j) \sum_{\tau} P_{i\tau}^{+} P_{j\tau} + \sum_{ii} V_{J=1}^{T=0}(i,j) \sum_{\sigma} D_{i\sigma}^{+} D_{j\sigma}$

 $(Q^{+})^{n_{q}} | -> \qquad (\Gamma^{+}_{vv} \Gamma^{+}_{\pi\pi})^{n_{q}} | -> \qquad (\Gamma^{+}_{v\pi})^{2n_{q}} | -> \qquad (\Delta^{+}_{0})^{2n_{q}} | 0 \rangle$

	QCM	PBC1	PBCS0 _{iv}	PBCS0 _{is}
²⁰ Ne	15.985 (-)	14.011 (12.35%)	13.664 (14.52%)	13.909 (12.99%)
²⁴ Mg	28.595 (0.24%)	21.993 (23.35%)	20.516 (28.50%)	23.179 (19.22%)
²⁸ Si	35.288 (0.57%)	27.206 (23.58%)	25.293 (28.95%)	27.740 (22.19%)
⁴⁴ Ti	7.019 (-)	5.712 (18.62%)	5.036 (28.25%)	4.196 (40.22%)
⁴⁸ Cr	11.614 (0.21%)	9.686 (16.85%)	8.624 (25.97%)	6.196 (46.81%)
⁵² Fe	13.799 (0.42%)	11.774 (15.21%)	10.591 (23.73%)	6.673 (51.95%)
¹⁰⁴ Te	3.147 (-)	2.814 (10.58%)	2.544 (19.16%)	1.473 (53.19%)
¹⁰⁸ Xe	5.489 (0.20%)	4.866 (11.61%)	4.432 (19.49%)	2.432 (55.82%)
¹¹² Ba	7.017 (0.34%)	6.154 (12.82%)	5.635 (20.17%)	3.026 (57.13%)

Conclusions

- quartet condensation wins over Cooper pair condensates
- T=1 and T=0 pairing correlations always coexist in quartets

Quartetting for general (shell model) forces

$$H = \sum_{i} \varepsilon_{i} (N_{i}^{(n)} + N_{i}^{(p)}) + \sum_{ii', jj', J', T'} V_{JT} (ii'; jj') [A_{ii'J'T'}^{+}A_{jj'J'T'}]^{J=0, T=0}$$

ansatz for the ground state

$$|QCM> = Q^{+n_q}| - > \qquad Q^{+} = \sum_{ii',jj',JT} x_{ii',jj'} [A^{+}_{ii'JT}A^{+}_{jj'JT}]^{0,0}$$

	$E_{corr}(SM)$	$E_{corr}(QCM)$	$E_{corr}(QM)$	$\langle SM QCM \rangle$
²⁰ Ne	24.77	24.77	24.77	1
²⁴ Mg	55.70	53.04~(4.77%)	$53.24 \ (4.41\%)$	0.85
²⁸ Si	88.75	86.52~(2.52%)	87.12 (1.84%)	0.86
^{32}S	122.51	122.02~(0.40%)	122.29~(0.18%)	0.98

$$E(n_q) = n_q \times E(1) + \frac{n_q(n_q - 1)}{2} \times V(n_q),$$

the interaction between the quartets is small compared to their "binding" energies

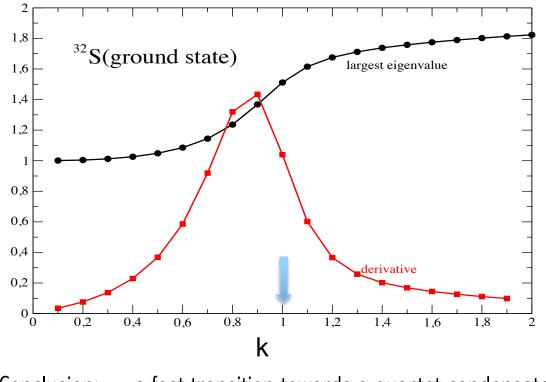
<u>Conclusion:</u> quartets acts as weakly interacting building blocks

M. Sambataro and N. S., EPJ A53 (2017) 43

How to identify the transition to a quartet condensate?

Penrose & Yang criterion:

n-body long-range correlations


a large eigenvalue of n-body density

Transition to a quartet condensate phase in ³²S

$$H(k) = \sum_{i} \varepsilon_{i} (N_{i}^{(n)} + N_{i}^{(p)}) + k \sum_{all} V_{JT} (ii'; jj') [A_{ii'J'T'}^{+}A_{jj'J'T'}]^{J=0,T=0}$$
$$H(k) = (1-k) H(0) + k H(1)$$

4-body density matrix

 $\rho_{i,j}^{(4)}(k) = <SM(k) \mid q_i^* q_j \mid SM(k) > \qquad q_i^* = (a_{i_1}^* a_{i_2}^* a_{i_3}^* a_{i_4}^*)^{T=0}$

<u>Conclusion:</u> a fast transition towards a quartet condensate ! M. Sambataro and N.S., in preparation

Summary and Conclusions

<u>Main message</u>: isovector and isoscalar pairing are accurately described by alpha-like quartets, not by Cooper pairs

- *T*=1 and *T*=0 pairing correlations <u>always coexist</u>, through the alpha-like quartets
- proton-neutron pairing correlations <u>are still significant away of N=Z line</u>
- *T*=1 proton-neutron pairing is providing a good description of Wigner energy
- alpha-like quartets are relevant degrees of freedom for general two-body forces
- a fast transition to a quartet condensate phase in ³²S

some open issues

- testing the quartet condensation by alpha transfer reactions ?
- unified microscopic treatment of quartetting and clustering ?

Thanks for your attention !

Quartet condensation in excited states of N=Z nuclei ?

$$H = \sum_{i} \varepsilon_{i} (N_{i}^{(n)} + N_{i}^{(p)}) + \sum_{ii',jj',J',T'} V_{JT} (ii';jj') [A_{ii'J'T'}^{+}A_{jj'J'T'}]^{J=0,T=0}$$
$$|0_{n}^{+}; QCM\rangle = (Q_{n}^{+})^{n_{q}} |-\rangle \qquad Q_{n}^{+} = \sum_{ii',jj',JT} x_{ii',jj'}^{(n)} [A_{ii'JT}^{+}A_{jj'JT}^{+}]^{0,0}$$

First excited 0⁺

	$E_{0_1^+}(SM)$	$E_{0_1^+}(QCM)$	$\langle SM QCM \rangle$	1	
²⁰ Ne	-33.77(6.7)	-33.77(6.7)	1		
^{24}Mg	-79.76(7.34)	-76.97(7.47)	0.70		
²⁸ Si	-131.00(4.84)	-126.91 (6.71)	0.65		
^{32}S	-178.98(3.46)	-178.04(3.92)	0.95	<	SM is a QCM state !?

Second excited 0⁺

	$E_{0_2^+}(SM)$	$E_{0_2^+}(QCM)$
²⁰ Ne	-28.56(11.91)	-28.56(11.91)
	-77.43(9.67)	
²⁸ Si	-128.51(7.33)	-120.64(12.99)
^{32}S	-175.04(7.4)	-170.84(11.12)

superposition of many shell-model states: cluster- type excitations ?

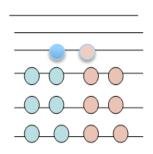
M. Sambataro and N. S., EPJ A53 (2017) 43

Isoscalar and isovector proton-neutron pairing in time-reversed states

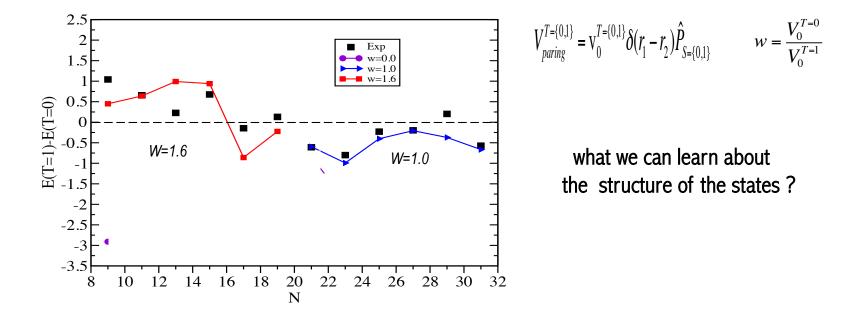
$$\begin{split} \hat{H} &= \sum_{i,\tau=\pm 1/2} \varepsilon_{i\tau} N_{i\tau} + \sum_{i,j} V^{T=1}(i,j) \sum_{t=-1,0,1} P_{i,t}^{+} P_{j,t} + \sum_{i,j} V^{T=0}(i,j) D_{i,0}^{+} D_{j,0} \\ &\text{isovector} &\text{isoscalar} \\ P_{i,0}^{+} &= (\nu_{i}^{+} \pi_{\bar{i}}^{+} + \pi_{i}^{+} \nu_{\bar{i}}^{+}) / \sqrt{2}. \qquad D_{i,0}^{+} &= (\nu_{i}^{+} \pi_{\bar{i}}^{+} - \pi_{i}^{+} \nu_{\bar{i}}^{+}) / \sqrt{2} \\ P_{i1}^{+} &= \nu_{i}^{+} \nu_{\bar{i}}^{+} \qquad P_{i-1}^{+} &= \pi_{i}^{+} \pi_{\bar{i}}^{+} \\ Q_{T=1}^{+} &= \sum_{ij} x_{i} x_{j} [P_{i\tau}^{+} P_{j\tau^{+}}^{+}]^{T=0} \qquad \Delta_{0}^{+} &= \sum y_{i} D_{i,0}^{+} : \end{split}$$

ansatz for ground state

$$|\Psi > = (Q_{T=1}^{+} + \Delta_{0}^{+2})^{n_{q}} | - >$$

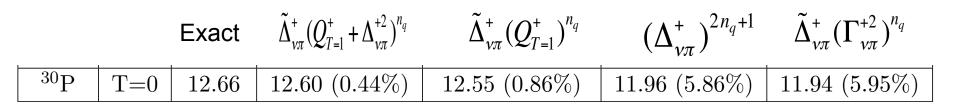

superposition of T=1 quartet condensates and T=0 pair condensates

N.S, D.Negrea, D. Gambacurta, Phys. Lett. B751 (2015) 348


Isovector and isoscalar pairing in odd-odd N=Z

$$\hat{H} = \sum_{i,\tau=\pm 1/2} \varepsilon_{i\tau} N_{i\tau} + \sum_{i,j} V^{T=1}(i,j) \sum_{t=-1,0,1} P^+_{i,t} P_{j,t} + \sum_{i,j} V^{T=0}(i,j) D^+_{i,0} D_{j,0}$$

T=1 state
$$|iv;QCM > = \tilde{\Gamma}^{+}_{\nu\pi} (Q^{+}_{T=1} + \Delta^{+2}_{\nu\pi})^{n_q} | - >$$

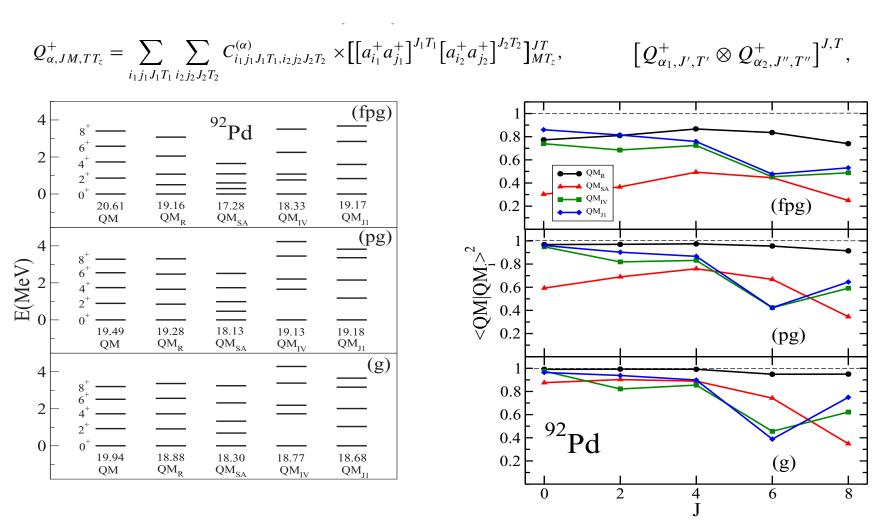

T=0 state $|is;QCM > = \tilde{\Delta}^{+}_{\nu\pi} (Q^{+}_{T=1} + \Delta^{+2}_{\nu\pi})^{n_q} | - >$

D. Negrea, N.S. and D. Gambacurta, Prog. Theor. Exp. Phys. 073D05 (2017)

The structure of lowest T=0 and T=1 states

T=0 ground state

T=1 ground state


Exact $\tilde{\Gamma}_{\nu\pi}^{+}(Q_{T=1}^{+}+\Delta_{\nu\pi}^{+2})^{n_q}$ $\tilde{\Gamma}_{\nu\pi}^{+}(Q_{T=1}^{+})^{n_q}$ $\tilde{\Gamma}_{\nu\pi}^{+}(\Delta_{\nu\pi}^{+2})^{n_q}$ $(\Gamma_{\nu\pi}^{+})^{2n_q+1}$ ⁵⁴Co T=1 16.14 16.12 (0.14%) 16.09 (0.28%) 15.67 (3.01%) 15.86 (1.78%)

conclusion

isovector correlations are stronger in both T=0 and T=1 low-lying states

D. Negrea, N.S. and D. Gambacurta, Prog. Theor. Exp. Phys. 073D05 (2017)

Role of spin-aligned pairs in ⁹²Pd

the structure of ⁹²Pd **is not** dominated by J=9 pairs ground state is mainly built by J=0 and J=1 pairs

M. Sambataro and N. S, PRC91 (2015)

Conclusions