

9th international workshop: Quantum Phase Transitions in Nuclei and Many-body Systems

May 22-25, 2018, Padova

Nuclear multiple chirality in Rh-106: a manifestation of triaxial shape coexistence

Pengwei Zhao (赵鹏巍)

Peking University

Outline

- Chirality and multiple chirality in nuclei
- Tilted axis cranking covariant DFT
- Multiple chirality in Rh-106
- Summary

Nuclear spin-chirality

The aplanar (3D-) rotation of a triaxial nucleus could present chiral geometry.

Frauendorf and Meng NPA 1997

Lab. frame:

Chiral Symmetry restoration

$$|I+\rangle = \frac{1}{\sqrt{2}}(|\mathcal{L}\rangle) + |\mathcal{R}\rangle)$$
$$|I-\rangle = \frac{i}{\sqrt{2}}(|\mathcal{L}\rangle) - |\mathcal{R}\rangle)$$

Exp. signal: Two near degenerate $\Delta I = 1$ bands, called chiral doublet bands

Nuclear spin-chirality

The aplanar (3D-) rotation of a triaxial nucleus could present chiral geometry.

Frauendorf and Meng NPA 1997

Intrinsic frame:

Chiral Symmetry breaking

 $\hat{\chi} = \hat{T}\hat{R}_y(\pi)$

$$\hat{\chi} | \mathcal{L} \rangle = | \mathcal{R} \rangle \qquad \hat{\chi} | \mathcal{R} \rangle = | \mathcal{L} \rangle$$

Lab. frame:

Chiral Symmetry restoration

$$|I+\rangle = \frac{1}{\sqrt{2}}(|\mathcal{L}\rangle) + |\mathcal{R}\rangle)$$
$$|I-\rangle = \frac{i}{\sqrt{2}}(|\mathcal{L}\rangle) - |\mathcal{R}\rangle)$$

Exp. signal: Two near degenerate $\Delta I = 1$ bands, called chiral doublet bands

Observed chiral nuclei

More than 45 candidate chiral nuclei have been reported in the A~80, 100, 130, and 190 mass regions, so far.

Multiple spin-chirality? <u>a manifestation of Triaxial Shape Coexistence</u>

having more than one pair of chiral bands in a single nucleus ?

Predictions of multiple spin-chirality

Covariant DFT on a static mean field: no cranking

Meng, Peng, Zhang, Zhou PRC 2006

Config. A	$\pi g_{9/2}^{-1} \otimes u h_{11/2}^1$
Config. B	$\pi g_{9/2}^{-1} \otimes u h_{11/2}^2 (gd)^1$

Two requirements of chirality:1. strong triaxial deformation2. high-j particle(s) and hole(s)

A possible multi-chirality candidate

The investigation followed by:

- Prediction for other odd-odd Rh isotopes: Peng et al., PRC 2008
- Confirmed with time-odd fields included: Yao et al., PRC 2009

Possible candidates in ¹⁰⁵Rh

Possible candidates in ¹⁰⁵Rh

Multiple chiral doublet bands in ¹³³Ce

Two distinct sets of chiral-partner bands have been identified.

Ayangeakaa et al., PRL 2013

Triaxiality can be robust against different configurations

Multiple chiral doublet bands in ¹³⁶Nd

Five candidates for chiral bands are identified

Octupole Correlations in Multiple Chiral Doublet Bands

Chiral bands in octupole soft nuclei

Liu et al, PRL 2016

Theoretical tools for nuclear chirality

Particle Core Coupling

(lab frame, phenomenological, quantal, with quantum tunneling)

Triaxial Particle Rotor Model (TPRM)

Frauendorf and Meng NPA(1997); Peng et al PRC(2003); Koike et al PRL(2004), Zhang et al PRC(2007); Lawrie et al PRC (2008); Qi et al PLB(2009)

- Core-quasiparticle coupling model
 Starosta et al PRC(2002); Koike et al PRC(2003)
- Interacting Boson Fermion Fermion Model S. Brant et al PRC (2004), PRC (2008), Tonev et al PRL(2006)

Tilted axis cranking mean-field

(intrinsic frame, microscopic, semi-classical, no quantum tunneling)

- Single-j model Frauendorf and Meng NPA(1997)
- Hybird Woods-Saxon and Nilsson model Dimitrov et al PRL(2000)
- Non-relativistic Skyrme DFT Olbratowski et al PRL(2004), PRC(2006)
- Covariant DFT Madokoro et al PRC(2000); PWZ PLB (2017)

Shell-model

- Pair Truncated Shell Model K. Higashiyama et al, PRC(2005)
- Projected Shell Model
 F. Q. Chen et al., PRC (2017)
- Shell-model N. Shimizu' talk

TPRM for multi-chirality

Calculations based on a combination of the triaxial CDFT and the PRM

Ayangeakaa et al., PRL 2013

TAC for multi-chirality

Calculations based on the tilted axis cranking CDFT and beyond...

An on going project ...

TAC-CDFT

Deformations Configurations Energy Spectra EM transitions

Beyond the rotating mean-field

2D Collective Hamiltonian

Self-consistent

Quantum fluctuations

TAC for multi-chirality

Calculations based on the tilted axis cranking CDFT and beyond...

An on going project ...

TAC-CDFT	Deformations Configurations Energy Spectra EM transitions	Beyond the rotating mean-field 2D Collective Hamiltonian
Self-co	onsistent	Quantum fluctuations
In the present talk		
PWZ, PLB 773, 1 (2017)		

TAC for multi-chirality

Calculations based on the tilted axis cranking CDFT and beyond...

An on going project ...

TAC-CDFT	Deformations Configurations Energy Spectra EM transitions	Beyond the rotating mean-field 2D Collective Hamiltonian
Self-co	onsistent	Quantum fluctuations
In the present talk		available based on a single j model
	PWZ, PLB 773, 1 (2017)	Chen, Zhang, PWZ, Jolos, Meng, PRC 87, 024314 (2013)

Outline

- Chirality and multiple chirality in nuclei
- Tilted axis cranking covariant DFT
- Multiple chirality in Rh-106
- Summary

Tilted axis cranking CDFT

The cranking mean-field model has been very successful for rotations

Meson exchange version:

3-D Cranking: Madokoro, Meng, Matsuzaki, Yamaji, PRC 62, 061301 (2000) 2-D Cranking: Peng, Meng, Ring, Zhang, PRC 78, 024313 (2008)

Point-coupling version:

Simple and more suitable for systematic investigations
2-D Cranking: PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)
2-D Cranking + Pairing: PWZ, Zhang, Meng, PRC 92, 034319 (2015)
3-D Cranking: PWZ, PLB 773, 1 (2017)
3-D Cranking + Pairing: PWZ, in preparation

Self-consistent and microscopic investigations

- ➢ full account of polarization effects
- Self-consistent treatment of the nuclear currents
- no additional parameter beyond a well-determined functional

Cranking Relativistic Kohn-Sham Equation

Dirac Equation $\int \left(\begin{matrix} m + \mathbf{V} + \mathbf{S} - \boldsymbol{\omega} \cdot \mathbf{J} & \boldsymbol{\sigma} \cdot \mathbf{p} - \boldsymbol{\sigma} \cdot \mathbf{V} \\ \boldsymbol{\sigma} \cdot \mathbf{p} - \boldsymbol{\sigma} \cdot \mathbf{V} & -m + \mathbf{V} - \mathbf{S} - \boldsymbol{\omega} \cdot \mathbf{J} \end{matrix} \right) \begin{pmatrix} f \\ g \end{pmatrix} = \varepsilon \begin{pmatrix} f \\ g \end{pmatrix},$ $S(\mathbf{r}) = \alpha_S \rho_S + \beta_V \rho_S^2 + \gamma_V \rho_S^3 + \delta_S \Delta \rho_S$ $V(\mathbf{r}) = \alpha_V \rho_V + \gamma_V \rho_V^3 + \delta_V \Delta \rho_V + \tau_3 \alpha_{TV} \rho_{TV} + \tau_3 \delta_{TV} \Delta \rho_{TV} + e \frac{1 - \tau_3}{2} A$ $\boldsymbol{V}(\boldsymbol{r}) = \alpha_V \boldsymbol{j}_V + \gamma_V \boldsymbol{j}_V^3 + \delta_V \Delta \boldsymbol{j}_V + \tau_3 \alpha_{TV} \boldsymbol{j}_{TV} + \tau_3 \delta_{TV} \Delta \boldsymbol{j}_{TV} + e \frac{1 - \tau_3}{2} \boldsymbol{A}$

Consistent treatment for time-odd fields from nuclear currents

Cranking Relativistic Kohn-Sham Equation

Consistent treatment for time-odd fields from nuclear currents

Cranking Relativistic Kohn-Sham Equation

Consistent treatment for time-odd fields from nuclear currents

Magnetic Rotation in ⁶⁰Ni

Outline

- Chirality and multiple chirality in nuclei
- Tilted axis cranking covariant DFT
- Multiple chirality in Rh-106
- Summary

Configurations

Config. A $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}^1$ Config. B $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}^2 (gd)^1$

Meng, Peng, Zhang, Zhou PRC 2006

PWZ PLB 773 (2017) 1-5

Aplanar rotation in Rh-106

PWZ PLB 773 (2017) 1-5

Rotational Angles (Theta, Phi)

Critical frequency in nuclear chiral rotation

Olbratowski PRL 2004

The 1st pair of chiral bands

PWZ PLB 773 (2017) 1-5

Good agreement with the data !

Data from Joshi et al., PLB 595 (2004) 135

The 2nd pair of chiral bands?

PWZ PLB 773 (2017) 1-5

The tunneling between the left and the right-handed sectors could be substantial.

A strong degeneracy of the chiral twin bands is not expected.

Outline

- Chirality and multiple chirality in nuclei
- Tilted axis cranking covariant DFT
- Multiple chirality in Rh-106
- Summary

Summary

Covariant density functional theory has been <u>extended</u> for describing nuclear multiple chirality.

- > The first DFT description of the multiple chiral bands has been presented.
- Two distinct sets of chiral solutions have been uncovered in the nucleus ¹⁰⁶Rh, and a transition between planar and chiral rotation has been found for both configurations.
- The calculated energy spectrum and B(M1)/B(E2) ratios for the negativeparity band are in good agreement with the corresponding experimental data.
- Experiments on the other predicted positive-parity chiral bands are welcome, and a strong degeneracy is not expected due to the soft Routhians.

Collaborations

Beijing Qibo Chen Jie Meng Shuangquan Zhang

Notre Dame Umesh Garg

and many other experimentalists...

Thank you for your attention!

