

# Breaking and restoration of rotational symmetry in the spectrum of $\alpha$-conjugate nuclei on the lattice 

G. Stellin, S. Elhatisari, U.-G. Meissner

Rheinische Friedrich-Wilhelms- Universität Bonn
Helmholtz Institut für Strahlen- und Kernphysik
U.-G. Meißner's Workgroup

24th May 2018

## Motivation

We investigate rotational symmetry breaking in the low－energy spectra of

$$
\text { light } \alpha \text {-conjugate nuclei: }{ }^{8} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \ldots
$$

on a cubic lattice．In particular，we aim at
\＆identifying lattice eigenstates in terms of $\mathrm{SO}(3)$ irreps
$\Longrightarrow$ Phys．Lett．B 114，147－151（1982），PRL 103， 261001 （2009）
\＆exploring the dependence of physical observables on spacing and size

$$
\Longrightarrow \text { PR D 90, } 034507 \text { (2014), PR D 92, } 014506 \text { (2015) }
$$

\＆testing techniques for the suppression of discretization artifacts $\Longrightarrow$ Symanzik improvement scheme Lect．Notes in Phys． 788 （2010）

## Applications

Nuclear Lattice EFT：ab initio nuclear structure PRL 104， 142501 （2010），PRL 106， 192501 （2011），PRL 112， 102501 （2014），PRL 117， 132501 （2016） and scattering Nature 528，111－114（2015）

## The Hamiltonian of the system

The macroscopic $\alpha$-cluster model ${ }^{1}$ of B. Lu et al. PR D 90, 034507 (2014) is adopted $\Longrightarrow$ nuclei are decomposed into $M$ structureless $\alpha$-particles

$$
\left.H=-\frac{\hbar^{2}}{2 m_{\alpha}} \sum_{i=1}^{M} \nabla_{i}^{2}+\sum_{i>j=1}^{M} V_{C}\left(\mathbf{r}_{i j}\right)+V_{A B}\left(\mathbf{r}_{i j}\right)\right]+\sum_{i>j>k=1}^{M} V_{T}\left(\mathbf{r}_{i j}, \mathbf{r}_{i k}, \mathbf{r}_{j k}\right)
$$

with $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$. The potentials are of the type

## Erf-Coulomb ${ }^{2}$

$\frac{4 e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r_{i j}} \operatorname{erf}\left(\frac{\sqrt{3} r_{i j}}{2 R_{\alpha}}\right)$
with $R_{\alpha}=1.44 \mathrm{fm}$
rms radius of the ${ }^{4} \mathrm{He}$ NB: Erf adsorbs the singularity at $r=0$

## Ali-Bodmer ${ }^{2}$

$$
V_{a} \mathrm{f} e^{-\eta_{a}^{2} r_{i j}^{2}}+V_{r} e^{-\eta_{r}^{2} r_{i j}^{2}} \quad V_{0} e^{-\lambda\left(r_{i j}^{2}+r_{i k}^{2}+r_{j k}^{2}\right)}
$$

with $\eta_{r}^{-1}=1.89036 \mathrm{fm}$, $V_{r}=353.508 \mathrm{MeV}$ and $\eta_{a}^{-1}=2.29358 \mathrm{fm}$, $V_{a}=-216.346 \mathrm{MeV}$, auxiliary param. $\mathrm{f}=1$

Gaussian

$$
\text { with } \lambda=0.00506 \mathrm{fm}^{-2} \text {, }
$$

$$
V_{0}=-4.41 \mathrm{MeV} \text { for }{ }^{12} \mathrm{C}^{\prime}{ }^{3}
$$

$$
\text { s.t. } E_{g . s .}=-\Delta E_{\text {Hoyle }}
$$

$$
\text { and } V_{0}=-11.91 \mathrm{MeV} \text { for }{ }^{16} \mathrm{O}^{4}
$$

$$
\text { s.t. } E_{\text {g.s. }}=-\Delta E_{4 \alpha}
$$

${ }^{1}$ G.S. et al. JP G 43, 8 (2016), ${ }^{2}$ NP 80, 99-112 (1966). , ${ }^{3}$ Z. Physik A 290, 93-105 (1979). , ${ }^{4}$ G.S. (201Z)

## The lattice environment

The configuration space in relative d.o.f. of an $M$ - body physical system into a cubic lattice reduces to

$$
\mathbb{R}^{3 M-3} \longrightarrow L^{3 M-3}
$$

where: $\quad L \Longrightarrow$ number of points per dimension ( $\equiv$ lattice size) $a \Longrightarrow$ lattice spacing

## Consequences: discretization effects

(1) the action of differential operators is represented via finite differences: $\Longrightarrow$ Symanzik improvement scheme
(2) breaking of Galiean invariance
(3) breaking of continuous translational invariance (free-particle case)


## The lattice environment

The configuration space in relative d.o.f. of an $M$ - body physical system into a cubic lattice reduces to

$$
\mathbb{R}^{3 M-3} \longrightarrow L^{3 M-3}
$$

where:
$L \Longrightarrow$ number of points per dimension ( $\equiv$ lattice size) $a \Longrightarrow$ lattice spacing

## and finite-volume effects

 on physical observablesWith periodic boundary conditions:
(1) configuration space becomes isomorphic to a torus in $3 M$ - 3-dimensions
(2) lattice momenta become $\mathbf{p}=\hbar \frac{2 \pi \mathrm{n}}{L a}$ where $\mathbf{n}$ is a vector of integers


## Symmetries

On the lattice $\mathrm{SO}(3)$ symmetry reduces to the invariance under the cubic group $\mathcal{O}$.

## Accordingly

«Only eight [five: $A_{1}, A_{2}, E, T_{1}, T_{2}$ ] different possibilities exist for rotational classification of states on a cubic lattice. So, the question arises: how do these correspond to the angular momentum states in the continuum? [...] To be sure of higher spin assigments and mass predictions it seems necessary to follow all the relevant irreps simultaneously to the continuum limit. »
R.C. Johnson, Phys. Lett. B 114, 147-151, (1982).
$\mathrm{SO}(3)$ to $\mathcal{O}$ irreps decomposition

$$
\begin{gathered}
D^{0}=A_{1}, D^{1}=T_{1} \\
D^{2}=E \oplus T_{2} \\
D^{3}=A_{2} \oplus T_{1} \oplus T_{2} \\
D^{4}=A_{1} \oplus E \oplus T_{1} \oplus T_{2} \\
D^{5}=E \oplus T_{1} \oplus T_{1} \oplus T_{2} \\
D^{6}=A_{1} \oplus A_{2} \oplus E \oplus T_{1} \oplus T_{2} \oplus T_{2}
\end{gathered}
$$

## Symmetries

Degenerate states belonging to the same $\mathscr{O}$ irrep can be labeled with the irreps $I_{z}$ of the cyclic group $\mathscr{C}_{4}$, generated by an order-three element of $\mathscr{O}\left(\right.$ e.g. $\left.\mathcal{R}_{z}^{\pi / 2}\right)$ :


Conversely, the discrete symmetries of the Hamiltonian are preserved:
time reversal, parity, exchange symmetry

## Applications

Within an iterative approach for the diagonalization of $\mathcal{H}$, the states belonging to an irrep $\Gamma$ of a point group $\mathcal{G}$ can be extracted applying the projector

$$
P_{\Gamma}=\sum_{g \in \mathcal{G}} \chi_{\Gamma}(g) D(g)
$$

where $D(g)$ is a representation of dimension $3 M-3$ for the operation $g \in \mathcal{G}$

## Finite-volume energy corrections

LO finite-volume energy corrections for relative two-body states with angular momentum $\ell$ and belonging to the $\Gamma$ irrep of $\mathcal{O} \quad$ PRL 107, 112011 (2011)

$$
\Delta E_{B}^{(\ell, \Gamma)}=\alpha\left(\frac{1}{\kappa L}\right)|\gamma|^{2} \frac{e^{-\kappa L}}{\mu L}+\mathcal{O}\left(e^{-\sqrt{2} \kappa L}\right)
$$

with $\gamma$ the asymptotic normalization, $\kappa$ the binding momentum and $\alpha(x)$ a polynomial:

| $\ell$ | $\Gamma$ | $\alpha(x)$ |
| :---: | :---: | :---: |
| 0 | $A_{1}^{+}$ | -3 |
| 1 | $T_{1}^{-}$ | +3 |
|  | $T_{2}^{+}$ | $30 x+135 x^{2}+315 x^{3}+315 x^{4}$ |
| 2 | $E^{+}$ | $-\frac{1}{2}\left(15+90 x+405 x^{2}+945 x^{3}+945 x^{4}\right)$ |
|  | $A_{2}^{-}$ | $315 x^{2}+2835 x^{3}+122285 x^{4}+28350 x^{5}+28350 x^{6}$ |
| 3 | $T_{2}^{-}$ | $-\frac{1}{2}\left(105 x+945 x^{2}+5355 x^{3}+19530 x^{4}+42525 x^{5}+42525 x^{6}\right)$ |
|  | $T_{1}^{-}$ | $-\frac{1}{2}\left(14+105 x+735 x^{2}+3465 x^{3}+11340 x^{4}+23625 x^{5}+23625 x^{6}\right)$ |

Although no analythic LO FVEC formula for the three-body case exists, results for zerorange potentials PRL 114, 091602 (2015) and the asymptotic ( $\equiv$ large $L$ ) behaviour are available Phys. Lett. B 779, 9-15 (2018).

## The low-energy ${ }^{8}$ Be spectrum

Increasing the parameter $V_{a}$ of $V_{A B}$, a set of bosonic bound states can be analyzed.

$$
\mathrm{f}=2.5, a=0.25 \mathrm{fm}
$$



## The low-energy ${ }^{12} \mathrm{C}$ spectrum

## $\mathrm{f}=1.0, a=0.50 \mathrm{fm}$ (in progress)



## The low-energy ${ }^{8}$ Be spectrum: the $4_{2}^{+}$multiplet



Remark: for $L \gtrsim 25 \quad\left|\Delta \mathcal{L}^{2}\right| \propto \exp \left(m_{\kappa} L\right)$ with $m_{\kappa}<0$

## The low-energy ${ }^{8}$ Be spectrum: the $6_{1}^{+}$multiplet

## $\mathrm{f}=2.5, a=0.25 \mathrm{fm}$



Remark: for $L \gtrsim 25 \quad\left|\Delta \mathcal{L}^{2}\right| \propto \exp \left(m_{\kappa} L\right)$ with $m_{\kappa}<0$

## The low-energy ${ }^{12} \mathrm{C}$ spectrum

As a consequence of the isotropy of the potentials, the nucleus has an equilateral triangular equilibrium configuration, i.e. $\left\langle r_{12}\right\rangle=\left\langle r_{23}\right\rangle=\left\langle r_{13}\right\rangle \equiv \mathcal{R}$.
$\mathrm{f}=1.0, a=0.50 \mathrm{fm}$ (in progress)



## Discretization effects on energy

Unlike finite-volume effects, the dominant behaviour of dicretization corrections on energy, $\Delta E_{B}(a)$, is unknown.




Nevertheless: some extrema of $E_{B}(a)$ can be associated to the maxima of the probability density function corresponding to the given energy eigenstate.

NB: If the primary maxima of the pdf lie at distance $d^{*}$ w.r.t. the origin, the most probable $\alpha-\alpha$ separation $\mathcal{R}^{*}$ is given by $d^{*}$

## Discretization effects on energy

If the all pdf maxima are absolute and lie along the coordinate axes, $\exists$ a value of $a$ s.t. all the maxima of the pdf are included in the cubic lattice.

> In particular: for $a=d^{*} \Longrightarrow E_{B}(a)$ is minimized and
> if $\left|\Psi_{B}^{\mathrm{Max}}\right|^{2} \gg\left|\Psi_{B}(\mathbf{r})\right|^{2}$ where $|\mathbf{r}|=n d^{*}$ and $n \geq 2 \Longrightarrow\langle\mathcal{R}\rangle \approx d^{*}$ and $\langle V\rangle$ is approximately minimized

$$
2_{1}^{+} \mathrm{E}\left(\mathrm{I}_{\mathrm{z}}=0\right)
$$


$\checkmark$ conditions fulfilled

$X$ secondary maxima

$$
6_{1}^{+} \mathrm{T}_{2} \mathrm{II}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$


$X$ maxima off the axes


## Discretization on ${ }^{8}$ Be: the $2_{1}^{+} E$ states

$I_{z}=0 \mathrm{Pdf}$ : two principal maxima along the z axis, located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.83,1.42,0.94, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.36$ and 2.85 fm are observed

$2_{1}^{+} \mathrm{E}\left(\mathrm{I}_{\mathrm{z}}=0\right)$

y


## Discretization on ${ }^{8}$ Be: the $2_{1}^{+} E$ states

$I_{z}=0 \mathrm{Pdf}:$ two principal maxima along the z axis, located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.83,1.42,0.94, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.36$ and 2.85 fm are observed


## Discretization on ${ }^{8}$ Be: the $2_{1}^{+} E$ states

$I_{z}=2 \mathrm{Pdf}: 4$ principal maxima on the $x$ and $y$ axes,
located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.83,1.42,0.94, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.36$ and 2.85 fm are observed


$$
2_{1}^{+} \mathrm{E}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$

## Discretization on ${ }^{8}$ Be: the $2_{1}^{+} E$ states

$I_{z}=2 \mathrm{Pdf}: 4$ principal maxima on the $x$ and $y$ axes, located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.83,1.42,0.94, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.36$ and 2.85 fm are observed


$$
2_{1}^{+} \mathrm{E}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$



Still:

$$
\mathcal{V} \approx-21.21 \mathrm{MeV} @ a=d^{*}
$$

$$
\mathcal{V}^{\min } \approx-21.40 \mathrm{MeV} @ a \approx 2.70 \mathrm{fm}
$$

## Other low-energy ${ }^{8}$ Be wavefunctions


$J=2 . T 2, J z=3$ (pdf)

$J=4, A 1, J z=0(p d f)$


$J=2, T 2, J z=3$ ( $x s$ pdf)


$J=4, T 1, J z=1$ (pdf)

$J=6, T 1, J z=1$ (pdf)


$$
J=4, T 1, J z=0(x s p d f)
$$



## Conclusions \& Outlook

The macroscopic $\alpha$-cluster model in PR D 90, 034507 (2014) has been applied to the ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ on the lattice. A fully-parallel method based on the power iteration has been adopted for the diagonalization of the Hamiltonian, allowing for
(1) the reconstruction of a larger part of the low-energy spectrum of the two nuclei, made possible by the application of projectors;

## Conclusions \& Outlook

The macroscopic $\alpha$-cluster model in PR D 90, 034507 (2014) has been applied to the ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ on the lattice. A fully-parallel method based on the power iteration has been adopted for the diagonalization of the Hamiltonian, allowing for
(1) the reconstruction of a larger part of the low-energy spectrum of the two nuclei, made possible by the application of projectors;
(2) the exploration of $\mathrm{SO}(3)$ breaking effects on a sample of bound eigenstates: $0^{+}, 2^{+}, 4^{+}$and $6^{+}$for the ${ }^{8} \mathrm{Be}$ and $0^{+}, 2^{+}$and $3^{-}$for the ${ }^{12} \mathrm{C}$;

## Conclusions \& Outlook

The macroscopic $\alpha$-cluster model in PR D 90, 034507 (2014) has been applied to the ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ on the lattice. A fully-parallel method based on the power iteration has been adopted for the diagonalization of the Hamiltonian, allowing for
(1) the reconstruction of a larger part of the low-energy spectrum of the two nuclei, made possible by the application of projectors;
(2) the exploration of $\mathrm{SO}(3)$ breaking effects on a sample of bound eigenstates: $0^{+}, 2^{+}, 4^{+}$and $6^{+}$for the ${ }^{8} \mathrm{Be}$ and $0^{+}, 2^{+}$and $3^{-}$for the ${ }^{12} \mathrm{C}$;
(3) a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of $\mathrm{SO}(3)$ irreps;

## Conclusions \& Outlook

The macroscopic $\alpha$-cluster model in PR D 90, 034507 (2014) has been applied to the ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ on the lattice. A fully-parallel method based on the power iteration has been adopted for the diagonalization of the Hamiltonian, allowing for
(1) the reconstruction of a larger part of the low-energy spectrum of the two nuclei, made possible by the application of projectors;
(2) the exploration of $\mathrm{SO}(3)$ breaking effects on a sample of bound eigenstates: $0^{+}, 2^{+}, 4^{+}$and $6^{+}$for the ${ }^{8} \mathrm{Be}$ and $0^{+}, 2^{+}$and $3^{-}$for the ${ }^{12} \mathrm{C}$;
(3) a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of $\mathrm{SO}(3)$ irreps;
(9) an empirical derivation of the asymptotic behaviour of the corrections for the average values of $\mathcal{L}^{2}$ due to FV and discretization effects.

## Conclusions \& Outlook

The macroscopic $\alpha$-cluster model in PR D 90, 034507 (2014) has been applied to the ${ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ on the lattice. A fully-parallel method based on the power iteration has been adopted for the diagonalization of the Hamiltonian, allowing for
(1) the reconstruction of a larger part of the low-energy spectrum of the two nuclei, made possible by the application of projectors;
(2) the exploration of $\mathrm{SO}(3)$ breaking effects on a sample of bound eigenstates: $0^{+}, 2^{+}, 4^{+}$and $6^{+}$for the ${ }^{8} \mathrm{Be}$ and $0^{+}, 2^{+}$and $3^{-}$for the ${ }^{12} \mathrm{C}$;
(3) a test for the capability of the squared total angular momentum operator of identifying the lattice eigenstates in terms of the label of $\mathrm{SO}(3)$ irreps;
(9) an empirical derivation of the asymptotic behaviour of the corrections for the average values of $\mathcal{L}^{2}$ due to FV and discretization effects.

## Perspectives and hints

4. Extension of the analysis to the ${ }^{16} \mathrm{O} \Rightarrow$ adaption of the present MPI diagonalization code to GPU calculations;
A Derivation of an analytical formula for the leading order FV energy corrections for bound states in presence of a Coulomb-type potential.


## Rotational Symmetry

On the lattice 3-dim rotational symmetry reduces to a subgroup of $\mathrm{SO}(3)$, the cubic group $\mathscr{O}$. A process of descent in symmetry takes place: $\alpha=\mathrm{x} ; \mathrm{y} ; \mathrm{z}$ continuum, $\infty$ - volume : $S O(3) \Longrightarrow\left[H, L^{2}\right]=0,\left[H, L_{\alpha}\right]=0$ $\Downarrow$
continuum, finite volume : $\mathscr{O} \subset S O(3) \Longrightarrow\left[H, L^{2}\right]=0,\left[H, L_{\alpha}\right] \neq 0$ $\Downarrow$
discrete, finite volume : $\mathscr{O} \subset S O(3) \Longrightarrow\left[\mathcal{H}, \mathcal{L}^{2}\right] \neq 0,\left[\mathcal{H}, \mathcal{L}_{\alpha}\right] \neq 0$

## Accordingly

«Only eight [five: $A_{1}, A_{2}, E, T_{1}, T_{2}$ ] different possibilities exist for rotational classification of states on a cubic lattice. So, the question arises: how do these correspond to the angular momentum states in the continuum? [...] To be sure of higher spin assigments and mass predictions it seems necessary to follow all the relevant irreps simultaneously to the continuum limit. "

## Discretization on ${ }^{8} \mathrm{Be}$ : the $2_{1}^{+} T_{2}$ states

$I_{z}=2 \mathrm{Pdf}$ : four principal maxima in the intersection
betw. the $z=0$ plane and the $x= \pm y$ planes, s.t. $d^{*}=$ 2.83 fm .
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{\sqrt{2}}{2} \frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.02,1.01,0.67, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.05$ and 2.02 fm are observed

$$
2_{1}^{+} \mathrm{T}_{2}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$


y



## Discretization on ${ }^{8} \mathrm{Be}$ : the $2_{1}^{+} T_{2}$ states

$$
2_{1}^{+} \mathrm{T}_{2}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$

## $I_{z}=2$ Pdf: four principal maxima in the intersection

 betw. the $z=0$ plane and the $x= \pm y$ planes, s.t. $d^{*}=$$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{\sqrt{2}}{2} \frac{d^{*}}{n} \text { with } n \geq 1 \text {, i.e. } a \approx 2.02,1.01,0.67, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.05$ and 2.02 fm are observed

> betw. the 2.83 fm .

y
x


## Discretization on ${ }^{8} \mathrm{Be}$ : the $2_{1}^{+} T_{2}$ states

$I_{z}=2 \mathrm{Pdf}$ : four principal maxima in the intersection betw. the $z=0$ plane and the $x= \pm y$ planes, s.t. $d^{*}=$ 2.83 fm .
$\Longrightarrow E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{\sqrt{2}}{2} \frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.02,1.01,0.67, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.05$ and 2.02 fm are observed


In addition:

$$
\begin{gathered}
\mathcal{V} \approx-5.43 \mathrm{MeV} @ a=d^{*} \\
\mathcal{V}^{\text {min }} \approx-18.05 \mathrm{MeV} @ a \approx 1.15 \mathrm{fm} \\
\text { and } \\
\mathcal{R} \approx 4.86 \mathrm{fm} @ a=d^{*} \\
\mathcal{R}^{\text {min }} \approx 3.11 \mathrm{fm} @ a \approx 1.78 \mathrm{fm}
\end{gathered}
$$

## Discretization on ${ }^{8} \mathrm{Be}$ : the $2_{1}^{+} T_{2}$ states

$I_{z}=1,3 \mathrm{Pdf}: 2$ circles of principal maxima about the z axis,
located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow \quad E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{\sqrt{2}}{2} \frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.02,1.01,0.67, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.05$ and 2.02 fm are observed


Still:

$$
\begin{aligned}
& \mathcal{V} \underset{\mathcal{V}^{\text {min }}}{ } \approx-5.43 \mathrm{MeV} @ a=d^{*} \\
& \approx-18.05 \mathrm{MeV} @ a \approx 1.15 \mathrm{fm}
\end{aligned}
$$

## Discretization on ${ }^{8} \mathrm{Be}$ : the $2_{1}^{+} T_{2}$ states

$I_{z}=1,3 \mathrm{Pdf}: 2$ circles of principal maxima about the z axis,
located at a distance $d^{*}=2.83 \mathrm{fm}$ from the origin.
$\Longrightarrow \quad E_{B}(a)$ minima are, then, predicted to lie at

$$
a=\frac{\sqrt{2}}{2} \frac{d^{*}}{n} \text { with } n \geq 1, \text { i.e. } a \approx 2.02,1.01,0.67, \ldots
$$

In practice: two $E_{B}$ minima at $a \approx 1.05$ and 2.02 fm are observed


Still:

$$
\begin{aligned}
& \mathcal{V} \underset{\mathcal{V}^{\text {min }}}{ } \approx-5.43 \mathrm{MeV} @ a=d^{*} \\
& \approx-18.05 \mathrm{MeV} @ a \approx 1.15 \mathrm{fm}
\end{aligned}
$$

## Discretization on ${ }^{8} \mathrm{Be}$ : the $6_{1}^{+} A_{2}$ state

$I_{z}=2 \mathrm{Pdf}$ : four equidistant couples of principal maxima separated by an angle $\gamma \approx 34.2^{\circ}$ and located at a distance $d^{*} \approx 2.31 \mathrm{fm}$ from the origin in the $x, y$ and $z=0$ planes.


The 24 maxima cannot be included on the lattice


$$
6^{+} \mathrm{A}_{2}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$


y
X


## Discretization on ${ }^{8}$ Be: the $6_{1}^{+} A_{2}$ state

Considering the inclusion conditions of a couple of maxima in the $1^{\text {st }}$ quadrant of the $x y$ plane ( $n \geq 1$ ):

$$
\begin{aligned}
& a_{x}=\frac{d^{*}}{n} \cos \left(\frac{\pi}{4}-\frac{\gamma}{2}\right), \text { i.e } a_{y} \approx 2.04,1.02,0.68 \ldots \\
& a_{y}=\frac{d^{*}}{n} \sin \left(\frac{\pi}{4}-\frac{\gamma}{2}\right), \text { i.e } a_{y} \approx 1.08,0.54,0.36 \ldots
\end{aligned}
$$

In practice: an $E_{B}$ minimum at $a \approx 1.03 \mathrm{fm}$ is observed!

$$
6^{+} \mathrm{A}_{2}\left(\mathrm{I}_{\mathrm{z}}=2\right)
$$




## Discretization on ${ }^{8} \mathrm{Be}$ : the $6_{1}^{+} A_{2}$ state

Considering the inclusion conditions of a couple of maxima in the $1^{\text {st }}$ quadrant of the $x y$ plane ( $n \geq 1$ ):

$$
\begin{aligned}
& a_{x}=\frac{d^{*}}{n} \cos \left(\frac{\pi}{4}-\frac{\gamma}{2}\right), \text { i.e } a_{y} \approx 2.04,1.02,0.68 \ldots \\
& a_{y}=\frac{d^{*}}{n} \sin \left(\frac{\pi}{4}-\frac{\gamma}{2}\right), \text { i.e } a_{y} \approx 1.08,0.54,0.36 \ldots
\end{aligned}
$$

In practice: an $E_{B}$ minimum at $a \approx 1.03 \mathrm{fm}$ is observed!


In addition:
$\mathcal{V} \approx 0.0 \mathrm{MeV} @ a=d^{*}$ (unbound)
$\mathcal{V}^{\text {min }} \approx-125.85 \mathrm{MeV} @ a \approx 0.85 \mathrm{fm}$ and
$\mathcal{R} \gg \mathcal{R}^{\text {min }}$ @ $a=d^{*}$ $\mathcal{R}^{\text {min }} \approx 2.13 \mathrm{fm} @ a \approx 0.85 \mathrm{fm}$

## The low-energy ${ }^{8}$ Be spectrum: the $4_{2}^{+}$multiplet

$$
\mathrm{f}=2.5, a=0.25 \mathrm{fm}
$$



Remark: for $a \lesssim 0.80 \mathrm{fm} \quad\left|\Delta \mathcal{L}^{2}\right| \propto \exp \left(c_{\kappa} a\right)$ with $c_{\kappa}>0$

## The low-energy ${ }^{8}$ Be spectrum: the $6_{1}^{+}$multiplet

$$
\mathrm{f}=2.5, a=0.25 \mathrm{fm}
$$



Remark: for $a \lesssim 0.80 \mathrm{fm} \quad\left|\Delta \mathcal{L}^{2}\right| \propto \exp \left(c_{\kappa} a\right) \quad$ with $c_{\kappa}>0$

