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Basic point to discuss: how the nuclear behavior of the 
pairing degree of freedom can provide an additional and 

complementary clear-cut signature of the occurrence and on 
the nature of the phase transition in nuclear systems. 

This dynamical source of information should be 
complementary (but as important) to the one associated to 
other properties (as for example, in the case of even-even 

nuclei, the energy of the first 2+ state, the ratio E4/E2 and 
the magnitude of the electromagnetic E2 transition 

connecting ground state and the first excited 2+ state)    
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(c) B(E2) values
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and

How to single out  
phase transitions? 



The main road to use dynamics to study pairing effects along phase 
transitions is clearly provided by the study of those processes where a 
pair of particles is involved, e.g. transferred from/to another nucleus 
(two-particle transfer) or ejected into the continuum (two-particle 

break-up or 
two-particle knock-out). Clearly the probabilities for such processes 

must be influenced by the particle-particle correlations, but these will 
depend on the specific “shape phase” of the system.  So they will be 

sensitive to any change in the status of the system, for example along an 
isotope chain. 



The essential quantity to characterize the system from the 
pairing point of view is given by the “pairing response”, namely 
all the T0 values of the square of the matrix element of the 
pair creation (or removal) operator 
                          P+ =∑j [a+

ja+
j]00          (and similarly for P-) 

connecting the ground state of nucleus N with all 0+ states of 
nucleus A+2 (or A-2). It is often assumed that the cross 
section for two-particle transfer just scale with T0.  
The traditional way to define and measure the collectivity of 
pairing modes is to compare with single-particle pair 
transition densities and matrix elements to define some 
“pairing” single-particle units and therefore “pairing” 
enhancement factors. 

Obs: We discuss here monopole T=1 pairing modes, i.e. 0+ states, but similar 
arguments would apply to T=0 neutron-proton pairs. 
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The pairing response is characterized by the pairing phase  
(normal or superfluid) and by the shape phase (e.g. spherical or  
deformed).  Therefore it will be a  clear signature of phase transitions 
(in addition to the standard signatures, as E4/E2, B(E2), etc) in 
both the 

pairing degree of freedom 
shape degree of freedom 

Shape Transitions Pairing Transitions 

R(θ)=exp(-iIθ) G(φ)=exp(-iNφ)

Angular Momentum, I Particle Number, N 

θ 
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φ
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β, γ, Euler angles θ
Pair deformation, α

Gauge angle, φ

Violation of spherical  
symmetry 
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 number 

Physical space Abstract “gauge” space 
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Closed shell 

T0( Αgs→ Α+2gs)

Single 

Particle 

∼ Ω

∼ Ω2

∼ (Δ/G)2 

Superfluid phase 

(rotational-like 
behavior) 

Vibrations 

(linear behavior) 

~ (n +1 ) 

Closed shell 

Phase transition from “normal” to “superfluid” phases: 
characteristic behavior of the pair transfer matrix element     

Normal  
phase 

OBS:	Similar	behavior	as	a	func5on	of	temperature	or	angular	momentum	



Pairing  
vibrational 
behavior 

Pairing  
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smooth 
behavior 



J.H.Bjerregaard	et	al.		NPA	110	1	(1968)	

An example of  a “superfluid” nucleus (pairing rotations), 
which shows a characteristic pairing response  

excited 0+ state 

Practically   
pairing strength 
goes to the  
ground state 



In a similar way pair-transfer probabilities show characteristic 
behaviors in correspondence of shape phase transitions  

For simplicity we move within the framework of the  
Interacting Boson Model, but the results are similar within 
other microscopic models 

The IBM does not explicitly  
use the fermion degrees of  
freedom.  From mapping  
procedure the “form” of the  
two-particle addition operator  
is simply assumed as s+,  
neglecting higher-order terms, 
as s+s+s  or [d+d+]0s  or [d+s+d]0  
etc ……  

OBS: See OAI mapping 



valence pairs valence pairs spherical deformed 

pairing 
strength 

There is a clear signal at the phase transition 

(from U(5) to SU(3) in algebraic language) 

Fossion, Alonso,Arias,Fortunato and A. V. 
Cf. also Zhang and Iachello 



Obs: fragmentation of the pairing  strength in  
        correspondence to phase transitions along an isotope chain 
                                  (in this case chosen to take place at N=8) 

Increasing 
number of 
valence pairs 

R. Fossion Workshop Nuclear Physics into the 21st Century

Fragmentation of the transfer strength
in the transition region

R. Fossion, C.E. Alonso, J.M. Arias, L. Fortunato and A. Vitturi, Phys. Rev. C76 (2007) 014316.

U(5) -> O(6)
2nd order

U(5) -> SU(3)
1st order

Ex Ex Ex Ex 

fragmentation of the pairing strength 
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N particle  
  pairs 
0 hole  
  pairs 

U(5) hamiltonian 
(spherical) 

N+1 particle  
  pairs,  
1 hole pair 
(2p-2h exc): 
total N+2 
pairs 

SU(3) 
hamiltonian 
(deformed) 

|N>U(5) 

Another scenario of phase transition: 
shape co-existence, for example of a spherical  
and a deformed state within the same nucleus 

|0+
gs,N> = α |N>U(5) + β |N+2>SU(3)   

|0+
exc,N> = - β |N>U(5) + α |N+2>SU(3)   

Mixing of two configurations, 
with mixture changing along 
the isotope chain 

|N+2>SU(3) 



A simple model: along the isotope chain a sharp inversion of the structure  
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As in the previous situation a clear discontinuity appears 
at the critical point. However, at variance with the 
previous case, the pair strength is always practically 
concentrated in a single state, without the fragmentation 
illustrated in the previous case 
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So far we have considered matrix elements of the pair operator: but 
what about pair transfer cross sections? 

Unfortunately, at variance, for example, from low-energy one-step 
Coulomb excitation, where the excitation probability is directly 

proportional to the B(Eλ) values, the reaction mechanism associated with 
pair transfer is rather complicated and the possibility of extracting 

spectroscopic information on the pairing field is not obvious. The 
situation is actually more complicated even with respect to other 

processes (as inelastic nuclear excitation) that may need to be treated 
microscopically, but where the reaction mechanism is somehow well 

established. 



We expect an correlation between cross sections and square of 
the pair operator. But if the qualitative behavior may be clear, 
the quantitative aspects require a proper treatment of the 
reaction mechanism. All approaches, ranging from macroscopic 
to semi-microscopic and to fully microscopic, try to reduce the 
actual complexity of the problem, which is a four-body 
scattering (the two cores plus the two transferred particles), 
to more tractable frameworks. 

Two models are most popular: 
A, Successive single-particle transfer 
B. Cluster transfer 



Sequential two-step process: each step transfers one particle 

Pairing enhancement comes from the coherent interference  of the 
different paths through the different intermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions 

Basic idea: dominance of mean field, which provides the framework for 
defining the single-particle content of the correlated wave functions 

Expansion to second-order in the transfer potential 

Simultaneus       +                 Sequential             +        not-orthogonality 

(first-order)                      (second-order)                   (second-order) 

these two terms may  
approximately cancel 
each other 

this is not the 
cluster 
contribution 

A 
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FIG. 1: Angular distributions obtained in DWBA for 110Sn(t,p)112Sn reaction at E=** MeV. Each curve corresponds to the
transfer of the two neutrons in the single particle obital indicated in the inset. Optical parameters are taken from ***.

0h11/2,2s1/2,1d3/2) (cf. first column in Table 1). The corresponding single-particle energies and two-particle am-

plitudes (Bj =
⇥
j + 1/2 uA

i vA+2
j ) are given in second and third columns in Table 1, with a total pairing gap

� =
�

j uA
i vAj equal to ** MeV . For the heavy-ion induced reactions, we have simply assumed that in the

(14C,12C) case the two neutrons are both trasferred in the 0p1/2, while for 18O we have assumed a simple wave
function of the form 0.8 (0d5/2)

2 + 0.6 (1s1/2)
2 with respect to the 16O core. This will imply that in the interme-

diate one-neutron trasfer partition we will consider, respectively, five channels for 13C �111Sn and ten channels for
17O�111Sn.

The cross section for the (t,p) reaction to 112Sng.s. is given in Fig. 2 for a bombarding energy of E=** MeV. The
di⇥erent curves give the cross sections obtained for pure configurations, i.e. assuming that the transferred neutrons
are deposited just in one orbital with two-neutron amplitude equal to unity. As clear from the figure, all cross sections
are similar in shape, but drastically di⇥er in magnitude, with favored transfer to the (0d25/2) and (1s1/2)

2 orbits. The

constructive interference in the case of correlated wave function gives, as expected, an enhanced cross section (thick
black curve in the figure).

To better show the sensitivity of the transfer processes to the detailed microscopic components we have repeated
our BCS calculation, altering the sequence and the spacing of the single particle levels (cf. fourth and sixth columns
in Table 1), but rescaling the pairing coupling strength to obtain the same pairing gap �. With the new two-particle
spectroscopic amplitudes (cf. fifth and seventh columns in Table 1) the total cross section has now changed (thick red
and blue curves in the figure). This confirms the fact that the e⇥ect of pairing correlations on the reaction mechanism
involved in the two-particle transfer reaction cannot be simply taken in account just in terms of the ”collective”
parameter �, but needs to involve the detailed microscopic structure of the correlated pair.

We consider now the same transfer process, but induced by a heavy ion (either 18O or 14C projectiles). The process
will be described within the two-particle sequential transfer model, as illustrated above. The corresponding total cross
sections for the ground-to-ground transition from 110Sn to 112Sn are given in table II. 12C and 16O are assumed as
cores in the two-cases. Therefore the wave function of 14Cgs will be taken as two-particles moving in one of the obitals
1p1/2 ........ and similarly for 18O corresponding to (0d5/2)2 or (1s1/2)2 (or mixing of them). The di⇥erent cases of
pure configurations in the projectile are given in the di⇥erent columns, while the di⇥erent pure configuration in the Sn
target correspond to the di⇥erent rows. The results for the (t,p) reaction are also reported. For a better comparison,
some of the results are also shown in Fig. **. As one can see, also in the case of heavy-ion induced reactions there
is a strong sensitivity the the specific microscopic components. But because of the di⇥erent reaction mechanism (??)

The transfer probabilities  with the involved orbital. 
In addition whether the final wave function only involves a “pure” 
orbital, or whether it is correlated 

pure orbitals 

correlated BCS  
wave function 

OBS: The shape of the angular distribution is the same,  
being associated with the L=0 transfer 

Effect of kinematical conditions 



4

�i(MeV) Bi �i(MeV) Bi �i(MeV) Bi

0g7/2 -0.027 0.75 -0.027 1.15 -2.027 0.64

1d5/2 0.882 1.13 -0.118 0.57 0.882 1.02

2s1/2 1.330 0.53 -0.670 0.33 1.330 0.59

0h11/2 2.507 0.79 4.507 0.61 5.507 0.46

2d3/2 2.905 0.39 2.905 0.26 2.905 0.27

TABLE I: bla bla bla

(t,p) (14C,12C) (18O,16O)

(0p1/2)
2 (1s1/2)

2 (0p3/2)
2 (0d5/2)

2 (0d5/2)
2 (1s1/2)

2 Conf1
112Sn

(0g7/2)
2 2.80E-5 1.73E-5 1.19E-4 7.09E-4 9.00E-4 1.19E-3 2.01E-4 1.24E-3

(1d5/2)
2 1.13E-3 3.00E-2 4.71E-3 5.54E-3 1.18E-3 3.55E-3 1.13E-2 1.19E-2

(2s1/2)
2 1.08E-3 1.53E-2 5.38E-3 7.05E-3 1.16E-3 5.02E-3 1.42E-2 1.59E-2

(1d3/2)
2 4.73E-4 1.34E-3 2.79E-3 9.87E-3 4.14E-3 1.26E-2 6.62E-3 1.83E-2

(0h11/2)
2 7.50E-5 7.77E-4 5.29E-5 1.05E-4 7.65E-5 1.10E-4 9.06E-5 1.88E-4

ConfA 2.54E-3 8.77E-2 2.26E-2 3.77E-2 1.21E-2 8.60E-3 1.95E-2 7.53E-2

TABLE II: Two-neutron transfer cross-sections (in mb) for selected initial and final single-particle configurations. The notation
Conf1 for 18O refers to the standard 0.8(1d5/2)

2 + 0.6(2s1/2)
2 configuration, while ConfA in 112Sn refers to the configuration

with the Bi coe⇥cients as in the first column of table I. Notice that this configuration has
P

B2
i ⇠ 2.9.

the dependence is not the same as in the (t,p) reaction. In addition, as expected from semi-classical considerations,
there is a dependence on the spin-orbit coupling, favouring a change of orientation going from projectile to target.
So, starting from two-particles in the 0p1/2 orbit (spin-down) in 14C we will favor transfer to spin-up states (hence
more to 1d5/2 than 1d3/2) , while the opposite is obtained starting from two particles in the 0d5/2 orbit in 18O
(spin-up). The transfer probabilities will therefore depend strongly on the chosen projectile, more e�ectively than
in other reactions as Coulomb or nuclear inelastic excitations. It is clear, at this point, that for the extraction of
spectroscopic information it would be extremely useful to perform not a single reaction but a series of reactions with
di�erent projectiles.

Similar arguments apply to the global pairing ”enhancement” factor. If one looks at the last row in table II,
that refers to the use of correlated (BCS) wave functions in Sn isotopes, one can see that the cross section in the
”correlated” case is enhanced with respect to the largest individual component (1d5/2) by a factor 2.2 in the case of
(t,p), a factor 2.92 in the case of (14C,12C) and a factor 2.42 in the case of (18O,16O).

(b) The 32Mg case
As a second example, we consider the two-neutron transfer reaction from 30Mg to the ground and the excited 0+

states in 32Mg. We will follow a description on the line investigated by H.T. Fortune [6]. We are in the so-called
inversion region, where the large neutron excess is consider responsible for a change in the ”standard” sequence of
single-particle energy levels. Such a variation will clearly show up in the spectrum of the odd Mg nuclei and the values
of the EM multipole transitions (for example the B(E2) value connecting the gs and the first 2+ state in 32Mg), but
a clue on the microscopic structure of the di�erent states will come from the pair-transfer data. In fact, according
to the ”standard” sequence, transition the the ground state should involve the transfer of the two neutrons on the
0d3/2 shell (closing the N=20 shell), while the transition to the excited 0+ state on the subsequent 0f7/2. In reality
we expect that the pairing interaction will create around the ”closed” shell N=20 a correlated ”hole” pair (⇥) in the
(sd) orbitals and a correlated ”particle” pair (�) in the (pf) orbitals, and that gs and excited 0+ states in 32Mg will
correspond to di�erent (and orthogonal) mixtures of (0p-0h) (| 0 >) and (2p-2h) states (⇥�) (thus opening the N=20
shell). More explicitely we can assume in a simple model for the addition and removal pairs the wave functions

⇥ = c(0d3/2)
�2 + d(1s1/2)

�2 (0.3)

� = a(0f7/2)
2 + b(1p3/2)

2 (0.4)

If we consider the same case as before, i.e. the transfer of two neutrons 
from 110Sn to 112Sn (0+; gs), but using different reactions, e.g. 
 (14C,12C)  or  (18O,16O)  the ranking of the cross sections associated to the 
different orbitals changes. 
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But the dependence on the microscopy also arises from the reaction  
mechanism associated with each specific two-particle transfer process 



B 

Cluster-transfer model (suggested by the close radial correlation of the pairs) 

0s 0s 
R 

R 

Initial and final cluster wave  
functions are obtained by 
taking the overlap between 
the two-particle wave functions 
and a 0s wave function for 
the relative motion 

Also in this case the resulting cross section depends on the specific single-particle 
orbitals (via the Talmi-Moshinsky brackets), but the dependence is different 
from the one associated with the sequential transfer (!!!) 



The preference to either model may depend on the colliding systems and on  
kinematical conditions.  

The proper approach will depend on the competition between the two colliding  
single-particle mean fields and the residual two-body interaction (for relatively  
weak interaction the mean fields will prevail, while in the other extreme of  
infinite pairing correlation the cluster structure will take over). 



One case in more details (with full microscopic wave functions): 

Shape phase transition in Zr isotopes 

Other examples: Mg isotopes, Ni isotopes 



First example: Shape phase transition in Zr isotopes 
 between N=58 and 60 
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and
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B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4
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1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and

3

FIG. 2. (Color online) T-plots for 0+1,2 states of
98,100,110Zr isotopes.

Q2 with its importance by the area of the circle. Note that
the PES in Fig. 2 is obtained by constrained HF calculation
for the same SM Hamiltonian, and is used for the sake of
an intuitive understanding of MCSM results. This method,
called a T-plot [40], enables us to analyze SM eigenstates
from the viewpoint of intrinsic shape. Figure 2(a) shows
that the MCSM basis vectors of the 0+1 state of

98Zr are
concentrated in a tiny region of the spherical shape, while
its 0+2 state is composed of basis vectors of prolate shape
with Q0 ∼350 fm2 (see Fig. 2(b)). A similar prolate shape
dominates the 0+1 state of

100Zr with slightly larger Q0, as
shown in Fig.2(c). We point out the abrupt change of the
ground-state property from Fig. 2(a) to (c), and will come
back to this point later. The T-plot shows stable prolate
shape for the 0+1 state from

100Zr to 110Zr (see Fig. 2(d)).
Figure 1(c) displays B(E2; 2+1 → 0+1 ) values, with small

values up to N=58 and a sharp increase at N=60, consis-
tent with experiment [13, 41–44]. The effective charges,
(ep, en) = (1.3e, 0.6e), are used. Because the B(E2; 2+1 →
0+1 ) value is a sensitive probe of the quadrupole deforma-
tion, the salient agreement here implies that the present
MCSM calculation produces quite well the shape evolu-
tion as N changes. In addition, theoretical and experimen-
tal B(E2; 2+2 → 0+2 ) values are shown for N=54 [45] and
56. The value for N=56 has been measured by experiment,
discussed in the subsequent paper [46], as an evidence of
the shape coexistence in 96Zr. The overall agreement be-
tween theory and experiment appears to be remarkable. It
is clear that the 2+2 → 0+2 transitions at N=54 and 56 are
linked to the 2+1 → 0+1 transitions in heavier isotopes, via
2+1 → 0+2 transition at N=58.
Figure 1(d) shows the deformation parameter β2 [1]. The

results of IBM [24], HFB [28] and FRDM [32] calculations
are included, exhibiting much more gradual changes. The
MCSM values are obtained from B(E2; 2+1 → 0+1 ).
The systematic trends indicated by the 2+1 level, the ra-

tio R4/2, the B(E2; 2+1 → 0+1 ) value (or β2), and the T-plot
analysis are all consistent among themselves and in agree-
ment with relevant experiments. We can, thus, identify the
change between N=58 and 60 as a QPT, where in general
an abrupt change should occur in the quantum structure of
the ground state for a certain parameter [17, 18]. The pa-
rameter here is nothing but the neutron number N, and the
transition occurs from a “spherical phase” to a “deformed
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FIG. 3. (Color online) (a) Occupation numbers of protons and
(b) effective single-particle energies of neutrons for selected Zr
isotopes. Neutron 0g9/2 is around -12 MeV, and is not shown.

phase”. Figure 1(b) demonstrates that the 0+1 state is spher-
ical up to N=58, but the spherical 0+ state is pushed up
to the 0+4 state at N=60, where the prolate-deformed 0

+

state comes down to the ground state from the 0+2 state at
N=58. This sharp crossing causes the present QPT. The
discontinuities of various quantities, one of which can be
assigned the order parameter, at the crossing point imply
the first-order phase transition. The shape transition has
been noticed in many chains of isotopes and isotones, but
appears to be rather gradual in most cases, for instance,
from 148Sm to 154Sm. The abrupt change in the Zr isotopes
is exceptional.
We comment on the relation between the QPT and the

modifications of the interaction mentioned above. With-
out them, the 2+1 level is still ∼0.2 MeV at N=60 close
to Fig. 1(a), while at N=58 it is higher than the value in
Fig. 1(a). Thus, the present QPT occurs rather insensitively
to the modifications, whereas experimental data can be bet-
ter reproduced by them.
We now discuss the origin of such abrupt changes. Fig-

ure 3(a) displays the occupation numbers of proton orbits

02 in 98Zr 0gs in 100Zr 

similar shape 

ar
X

iv
:1

60
6.

09
05

6v
2 

 [n
uc

l-t
h]

  5
 A

ug
 2

01
6

Quantum Phase Transition in the Shape of Zr isotopes
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The rapid shape change in Zr isotopes near neutron number N=60 is identified to be caused by type II
shell evolution associated with massive proton excitations to its 0g9/2 orbit, and is shown to be a quantum
phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N=50-70 with
many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2)
values are obtained within a single framework in a good agreement with experiments, depicting various
shapes in going from N=50 to 70. Novel coexistence of prolate and triaxial shapes is suggested.

PACS numbers: 21.60.Cs, 21.10.-k,27.60.+j,64.70.Tg

The shape of the atomic nucleus has been one of the pri-
mary subjects of nuclear structure physics [1], and con-
tinues to provide intriguing and challenging questions in
going to exotic nuclei. One such question is the transition
from spherical to deformed shapes as a function of the neu-
tron (proton) number N (Z), referred to as shape transition.
The shape transition is visible in the systematics of the ex-
citation energies of low-lying states, for instance, the first
2+ levels of even-even nuclei: it turns out to be high (low)
for spherical (deformed) shapes [1–3]. A shell model (SM)
calculation is suited, in principle, for its description, be-
cause of the high capability of calculating those energies
precisely. On the other hand, since the nuclear shape is
a consequence of the collective motion of many nucleons,
the actual application of the SM encountered some limits
in the size of the calculation.

In this Letter, we present results of large-scale Monte
Carlo Shell Model (MCSM) calculations [4] on even-even
Zr isotopes with a focus on the shape transition from N =
50 to N = 70, e.g. [5]. Figure 1(a) shows that the ob-
served 2+1 level moves up and down within the 1-2 MeV
region for N=50-58, whereas it is quite low (∼0.2 MeV)
for N ≥ 60 [6–16]. Namely, a sharp drop by a factor of
∼6 occurs at N=60, which is consistent with the corre-
sponding B(E2) values shown in Fig. 1(c). These features
have attracted much attention, also because no theoretical
approach seems to have reproduced those rapid changes
covering both sides. More importantly, an abrupt change
seems to occur in the structure of the ground state as a
function of N, which can be viewed as an example of the
quantum phase transition (QPT) satisfying its general def-
inition to be discussed [17, 18]. This is quite remarkable,
as the shape transition is in general rather gradual. In ad-
dition, there is much interest in those Zr isotopes from the
viewpoint of the shape coexistence [19].

The advanced version of MCSM [20, 21] can cover all
Zr isotopes in this range of N with a fixed Hamiltonian,
when taking a large model space, as shown in Table I. The
MCSM, thus, resolves the difficulties of conventional SM

TABLE I. Model space for the shell model calculation.

proton orbit magic number neutron orbit
- 1 f7/2, 2p3/2

82
- 0h11/2

0g7/2, 1d5/2,3/2, 2s1/2 0g7/2, 1d5/2,3/2, 2s1/2

50
0g9/2 0g9/2

0 f5/2, 1p3/2,1/2 -

calculation, where the largest dimension reaches 3.7×1023,
much beyond its current limit. Note that no truncation
on the occupation numbers of these orbits is made in the
MCSM. The structure of Zr isotopes has been studied by
many different models and theories. For instance, a recent
large-scale conventional SM calculation showed a rather
accurate reproduction of experimental data up to N=58,
whereas it was not extended beyond N=60 [22]. The 2+1
levels have been calculated in a wider range in Interact-
ing Boson Model (IBM) calculations, although the afore-
mentioned rapid change is absent [23, 24]. Some other
works were restricted to deformed states [5, 25, 26], or in-
dicated gradual shape-changes [27–34].

It is, thus, very timely and needed to apply the MCSM to
Zr isotopes, particularly heavy exotic ones. The Hamil-
tonian of the present work is constructed from existing
ones, so as to reduce ambiguities. The JUN45 Hamilto-
nian is used for the orbits, 0g9/2 and below it [35]. The
SNBG3 Hamiltonian [36] is used for the T=1 interaction
for 0g7/2, 1d5/2,3/2, 2s1/2 and 0h11/2. Note that the JUN45
and SNBG3 interactions were obtained by adding empir-
ical fits to microscopically derived effective interactions
[35, 36]. The VMU interaction [37] is taken for the rest
of the effective interaction. The VMU interaction consists
of the central part given by a Gaussian function in addi-

0gs in 98Zr 



90>92gs	 92>94gs	 94>96gs	 96>98gs	 98>100gs	 98>100	(0+4)	 100>102gs	

d5/2	 0.74	 0.86	 0.86	 0.13	 0.0	 0.16	 0.08	

S1/2	 0.10	 0.08	 0.10	 0.90	 0.0	 0.16	 0.05	

d3/2	 0.13	 0.18	 0.16	 0.07	 0.0	 0.90	 0.04	

h11/2	 0.22	 0.20	 0.19	 0.08	 0.0	 0.14	 0.55	

relevant 2-particle spectroscopic amplitudes 

d5/2 s1/2 d3/2 h11/2 
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Calculation of two-particle transfer reactions using:  
sequential model for the reaction mechanism 
one- and two-particle spectroscopic amplitudes from the Tokyo group 

gs->gs 

gs->0+
exc 

experimental data needed 



Conclusions: 

Pairing response (tested in two-particle transfer reactions but also in other 
dynamical processes involving pairs of particles) gives strong constrains  on 
nuclear wave functions.  The effect is amplified in correspondence of critical 
situations associated with shape phase transitions, with “abnormal” population 
of excited 0+ states and weakening of the ground state transition. 

Further data on two-particle transfer reactions are definitely needed 
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