$9^{\text {th }}$ Quantum phase transitions in nuclei and many-body systems, Padova

Shape evolutions in Gd isotopes studied with 5DCH based on CDFT

Qibo Chen

Physik-Department, Technische Universität München, Germany

Outline

$>$ Introduction
$>$ Theoretical framework
$>$ Numerical details
$>$ Results and discussion
$>$ Summary

Introduction

> The rare-earth region, which possesses many transitional and well-deformed nuclei, is an ideal venue to study the origination of deformation and collective motion. One interesting and important example is the gadolinium isotopes.

A A well-known phenomenon in Gd isotopes is the presence of quantum phase transition, which has been investigated by the potential energy surfaces (PESs) within the framework of mean-field theory:

- Relativistic mean-field: ${ }^{146-160} \mathrm{Gd}$

Sheng_Guo, MPLA (2005) 20: 2711

- Relativistic Hartree-Bogoliubov: ${ }^{148-156} \mathrm{Gd}$ Fossion_Bonatsos_Lalazissis, PRC (2006) 73: 044310
- Skyrme-Hartree-Fock (1D PES): ${ }^{146-156} \mathrm{Gd}$ Rodriguez-Guzman_Sarriguren, PRC (2007) 76: 064303
- Hartree-Fock-Bogoliubov (2D PES): ${ }^{152-156} \mathrm{Gd}$ Robledo_Rodriguez-Guzman_Sarriguren, PRC (2008) 78: 034314

> The five-dimensional collective Hamiltonian based on the covariant density functional theory (5DCH-CDFT) : ${ }^{152-160} \mathrm{Gd}$, PC-F1 interaction

Introduction

In recent years, 5DCH-CDFT has been extensively applied to describe the low-lying spectra:

Recent Progress on CDFT for \mathcal{N} vuclear Low-lying Spectrum

$>$ In this work, we will investigate shape evolution in the ${ }^{148-162} \mathrm{Gd}$ isotopes with the framework of 5DCH-CDFT (with PC-PK1).

Theoretical framework

$>$ The collective Hamiltonian can be written as follows

$$
\hat{H}_{\mathrm{coll}}(\beta, \gamma)=\hat{T}_{\mathrm{vib}}(\beta, \gamma)+\hat{T}_{\mathrm{rot}}(\beta, \gamma, \Omega)+V_{\mathrm{coll}}(\beta, \gamma)
$$

\checkmark The vibrational kinetic energy:

$$
\begin{aligned}
\hat{T}_{\mathrm{vib}}= & -\frac{\hbar^{2}}{2 \sqrt{w r}}\left\{\frac{1}{\beta^{4}}\left[\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{4} B_{\gamma \gamma}-\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{3} B_{\beta \gamma} \frac{\partial}{\partial \gamma}\right]\right. \\
& \left.+\frac{1}{\beta \sin 3 \gamma}\left[-\frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \gamma} \frac{\partial}{\partial \beta}+\frac{1}{\beta} \frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \beta} \frac{\partial}{\partial \gamma}\right]\right\}
\end{aligned}
$$

\checkmark The rotational kinetic energy:

$$
\hat{T}_{\text {rot }}=\frac{1}{2} \sum_{k=1}^{3} \frac{\hat{J}_{k}^{2}}{\mathcal{I}_{k}}, \quad k=1,2,3,
$$

$\checkmark \quad V_{\text {coll }}$ is the collective potential.
$B_{\beta \beta}, B_{\beta \gamma}, B_{\gamma \gamma}, \mathcal{I}_{k}$, and $V_{\text {coll }}$ are the collective parameters determined by CDFT.

Numerical detail

$>$ Nuclei: ${ }^{148-162} \mathrm{Gd}$;
$>$ Number of harmonic oscillator shells: 14;
> Effective interaction: PC-PK1; Zhao_Li_Yao_Meng, PRC (2010) 82: 054319
$>$ Pairing force: density-independent δ-force;
$>$ Deformation range: $0 \leq \beta \leq 0.6,0^{\circ} \leq \gamma \leq 60^{\circ}$;
$>$ Grid point: $\Delta \beta=0.05, \Delta \gamma=6^{\circ}$

Potential energy surface

- A shape evolution from weakly deformed ${ }^{148,150} \mathrm{Gd}$ to soft prolate ${ }^{152,154} \mathrm{Gd}$ and to the well deformed prolate ${ }^{156-162} \mathrm{Gd}$ for the even-even ${ }^{148-162} \mathrm{Gd}$ isotopes is presented.
- Similar properties are seen in the PC-F1 calculations. Niksic2009PRC

Potential energy curve

- From the potential energy curve, it is easy to find that the ground state energy got deeper and deeper with the increase of the mass number.
- For the right panel, the energy shows as functions of γ. The energy curve in γ direction become more and more steep.

Energy spectra

- The energy spectra of the ground-state, γ and β bands in ${ }^{148-162} \mathrm{Gd}$ are reproduced by the 5DCH-CDFT calculations.

Energy spectra

- The energy spectra of the ground-state, γ and β bands in ${ }^{148-162} \mathrm{Gd}$ are reproduced by the $5 \mathrm{DCH}-\mathrm{CDFT}$ calculations.

R_{42} and $\mathrm{B}(E 2)$

- The overall trend of the R 42 ratio for the Gd isotopes is reproduced.
- With the increasing neutron numbers, the rotational behavior become more and more obvious. For ${ }^{158-162} \mathrm{Gd}$, the R42 ratio arrive at the rotational limit 3.33.
- The results obtained from PC-F1 are smaller than those from PC-PK1 due to the softer PESs of PC-F1.
- The 5DCH calculations reproduce the data well;
- The $\mathrm{B}(\mathrm{E} 2)$ values increase with increasing neutron number, and are consistent with the increasing quadrupole deformation;
- The results obtained from PC-F1 are smaller than those from PC-PK1.

Energy contribution: g.s. band

$$
\hat{H}_{\text {coll }}(\beta, \gamma)=\hat{T}_{\text {rot }}(\beta, \gamma, \Omega)+\hat{T}_{\text {vib }}(\beta, \gamma)+V_{\text {coll }}(\beta, \gamma)
$$

- In ${ }^{148-154} \mathrm{Gd}$, with the increase of neutron number, the changes of $\mathrm{E}_{\mathrm{pot}}$ with the spin becomes smaller, and $\mathrm{E}_{\text {tot }}$ get closer to $\mathrm{I}(\mathrm{I}+1)$.
- In ${ }^{156-162} \mathrm{Gd}, \mathrm{E}_{\text {vib }}+\mathrm{E}_{\mathrm{pot}} \sim 0$ and $\mathrm{E}_{\text {tot }} / \mathrm{E}_{\mathrm{rot}} \sim \mathrm{I}(\mathrm{I}+1)$.

Staggering parameter: γ band

Zamfir_Casten, PLB (1991) 260: 265
$S(I)=\frac{[E(I)-E(I-1)]-[E(I-1)-E(I-2)]}{E\left(2_{1}^{+}\right)}$

- For a vibration, $\mathrm{S}(\mathrm{I})$ oscillates between negative values for even-spin states and positive values for odd-spin states, with |S(I) $=1 \mid:{ }^{148} \mathrm{Gd}$
- For a γ-soft nucleus, $\mathrm{S}(\mathrm{I})$ are negative for even-spin states and positive for odd-spin states: ${ }^{150,152,154} \mathrm{Gd}$.
- For a axial rotor, $\mathrm{S}(\mathrm{I})$ parameters are close to a constant value of $0.33:{ }^{156-162} \mathrm{Gd}$.
- For a γ-rigid nucleus, $S(I)$ are positive for even-spin states and negative for odd-spin states.

B(E2)

- For ${ }^{148} \mathrm{Gd}$, the 5 DCH calculation overestimates the data significantly. This may be because that the excitation mode in ${ }^{148} \mathrm{Gd}$ does not belong to the collective excitation.
- The available experimental data in ${ }^{152-162} \mathrm{Gd}$ are well reproduced by the 5 DCH calculations. It is also found that in ${ }^{154-162} \mathrm{Gd}$, the $\mathrm{B}(\mathrm{E} 2)$ transitions of the g.s. and β bands are similar, and the $B(E 2)$ values in the γ bands are smaller than those of the g.s. and β bands.
- The increasing behaviors for the $\mathrm{B}(\mathrm{E} 2)$ of each band in ${ }^{156-162} \mathrm{Gd}$ are very similar, indicating similar structures in these four nuclei.

Quadrupole deformation

- With increasing mass number, the $\langle\beta\rangle$ becomes larger and larger. The trend of $\langle\gamma\rangle$ is opposite to that of $\langle\beta\rangle$, i.e., decreases with mass number.
- The trends of $\Delta \beta$ and $\Delta \gamma$ for Gd isotopes are similar. The shape fluctuations indicate that ${ }^{152} \mathrm{Gd}$ locates at a critical point in the eveneven ${ }^{148-162} \mathrm{Gd}$ isotopes.

- The strong dependence on the spin of the deformations in ${ }^{148,152} \mathrm{Gd}$ is associated with the soft behavior in the PESs.
- For ${ }^{156,160} \mathrm{Gd}$, all of the four quantities $\langle\beta\rangle,\langle\gamma\rangle$, $\Delta \beta$, and $\Delta \gamma$ are almost independent of spin. This indicates that the shapes of ${ }^{156,160} \mathrm{Gd}$ are so stable that their deformations do not change with spin.

Single particle levels

- The occupied $i_{13 / 2}$ levels in the ground states of Gd isotopes make the deformations so stable that they even do not change with the increase of angular momentum.

Summary

- The low-lying states for the even-even ${ }^{148-162} \mathrm{Gd}$ isotopes have been investigated in the framework of 5DCH-CDFT.
- A clear shape evolution from weakly deformed ${ }^{148,150} \mathrm{Gd}$ to γ-soft ${ }^{152,154} \mathrm{Gd}$ to well deformed prolate ${ }^{156-162} \mathrm{Gd}$ has been presented. The shapes of ${ }^{156-162} \mathrm{Gd}$ are all well-deformed prolate with the minima located at $\beta \sim 0.35$, and these deformations are almost independent on the angular momentum.
- The available experimental data are reproduced by the calculations, including the energy spectra, γ band staggering and intraband $\mathrm{B}(\mathrm{E} 2)$ transition
- The occupations of neutron $i_{13 / 2}$ orbitals, which lead to the stable PESs of ${ }^{156}$ ${ }^{162} \mathrm{Gd}$, are essential for these isotopes.

Relative $\mathrm{B}(\mathrm{E} 2)$ ratio

IBM: Casten_Cakirli_Blaum_Couture, PRL (2014) 113: 112501

Q: How can we discuss the PDS/QDS in the framework of collective Hamiltonian?

Theoretical framework

> Wave function
The eigenvalue problem of the collective Hamiltonian is solved using an expansion of eigenfunctions in terms of a complete set of basis functions. The obtained collective wave functions is

$$
\Psi_{\alpha}^{I M}(\beta, \gamma, \Omega)=\sum_{K \in \Delta I} \psi_{\alpha K}^{I}(\beta, \gamma) \Phi_{M K}^{I}(\Omega) .
$$

$>$ Observables and expectation values

- Reduced E2 transition

$$
B\left(E 2 ; \alpha I \rightarrow \alpha^{\prime} I^{\prime}\right)=\frac{1}{2 I+1}\left|\left\langle\alpha^{\prime} I^{\prime}\|\hat{M}(E 2)\| \alpha I\right\rangle\right|^{2}
$$

- The average and fluctuation of β and γ

$$
\begin{array}{ll}
\langle\beta\rangle=\sqrt{\left\langle\beta^{2}\right\rangle}, & \Delta \beta=\frac{\sqrt{\left\langle\beta^{4}\right\rangle-\left\langle\beta^{2}\right\rangle^{2}}}{2\langle\beta\rangle}, \\
\langle\gamma\rangle=\arccos \left(\left\langle\beta^{3} \cos 3 \gamma\right\rangle / \sqrt{\left\langle\beta^{4}\right\rangle\left\langle\beta^{2}\right\rangle}\right) / 3, & \Delta \gamma=\frac{1}{3 \sin 3\langle\gamma\rangle} \sqrt{\frac{\left\langle\beta^{6} \cos ^{2} 3 \gamma\right\rangle}{\left\langle\beta^{6}\right\rangle}-\frac{\left\langle\beta^{3} \cos 3 \gamma\right\rangle^{2}}{\left\langle\beta^{4}\right\rangle\left\langle\beta^{2}\right\rangle} .}
\end{array}
$$

Energy spectra

Energy spectra

