9th International Workshop on Quantum Phase Transition in Nuclei and Many-Body Systems 22-25 May 2018, Padova (Italy)

Symmetry Conserving Configuration Mixing description of odd-mass nuclei and

some comments on shape coexistence and pairing transitions

J. Luis Egido

Aim of the talk...

Aim of the talk...

... I am going to talk about the theoretical description of odd-A nuclei using the Finite Range density dependent Gogny interaction and sophisticated microscopical approaches namely the symmetry conserving configuration mixing theory

Calculations:

1.- Systematic study of bulk properties (binding energies, energy gaps, radii and electromagnetic moments, etc) in the Mg isotopic chain with particle number and angular momentum projection.

2.- As an example of full spectroscopy I will show the spectrum and the transition probabilities of the **odd nucleus** ²⁵Mg a symmetry conserving approach with triaxial shape fluctuations and alignment fluctuations.

3.- Some comments on shape coexistence and pairing phase transitions

Symmetry conserving mean field theory (SCMFT): EXACT

A good approximation to a many-body wave function is provided by HF, BCS or HFB

$$|\Phi
angle = \prod_{\mu} lpha_{\mu} |-
angle$$
 (even-even), $| ilde{\Phi}
angle = lpha_{
ho_1}^{\dagger} |\Phi
angle$ (odd-even)

with

$$\alpha_{\rho}^{\dagger} = \sum_{\mu} U_{\mu\rho} c_{\mu}^{\dagger} + V_{\mu\rho} c_{\mu}$$

To recover symmetries we perform exact projections

$$|\Psi_{M,\sigma}^{N,I,\pi}\rangle = P^N P_M^I |\tilde{\Phi}^{\pi}\rangle = \sum_K g_{K\sigma}^I P^N P_{MK}^I |\tilde{\Phi}^{\pi}\rangle,$$

with the parameters U, V and g's determined by the variational principle:

$$\delta E^{N,I,\pi} = \underbrace{\delta}_{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} P_{M}^{I} | \tilde{\Phi}^{\pi} \rangle}^{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} P_{M}^{I} | \tilde{\Phi}^{\pi} \rangle} = 0.$$

This equation provides only the energy minimum in the (β, γ) plane.

Symmetry conserving mean field theory (SCMFT): EXACT

To generate all possible configurations one has to solve

$$\delta E^{N,I,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^N P_M^I | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^N P_M^I | \tilde{\Phi}^{\pi} \rangle} = 0.$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

for a set of (q_{20}, q_{22}) values. This provides a set of wave functions $|\tilde{\Phi}^{\pi}(q_{20}, q_{22})\rangle$, or equivalently $|\tilde{\Phi}^{\pi}(\beta, \gamma)\rangle$.

In a second step we mix all (β,γ) configurations

$$\Psi_{M,\sigma}^{N,I,\pi}\rangle = \sum_{K,\beta,\gamma} f_{K\sigma}^{I}(\beta,\gamma) P^{N} P_{MK}^{I} |\tilde{\Phi}(\beta,\gamma)\rangle,$$

and determine the mixing coefficients by diagonalization of the full Hamiltonian and obtain wave functions and energies.

The determination of the wave functions $|\tilde{\Phi}_{\pi}(\beta,\gamma)\rangle$ is very time consuming, therefore

... much simpler is to solve

$$\delta E^{N,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle} = 0,$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

$$E^{N,I,\pi}(\beta,\gamma) = \frac{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{H}\hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}$$

... much simpler is to solve

$$\delta E^{N,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle} = 0,$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

$$E^{N,I,\pi}(\beta,\gamma) = \frac{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{H}\hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}$$

... much simpler is to solve

$$\delta E^{N,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle} = 0,$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

$$E^{N,I,\pi}(\beta,\gamma) = \frac{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{H}\hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}$$

... much simpler is to solve

$$\delta E^{N,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle} = 0,$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

$$E^{N,I,\pi}(\beta,\gamma) = \frac{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{H}\hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}$$

... much simpler is to solve

$$\delta E^{N,\pi} = \delta \frac{\langle \tilde{\Phi}^{\pi} | \hat{H} \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle}{\langle \tilde{\Phi}^{\pi} | \hat{P}^{N} | \tilde{\Phi}^{\pi} \rangle} = 0,$$

with the constraints

$$\langle \tilde{\Phi}^{\pi} | \hat{Q}_{20} | \tilde{\Phi}^{\pi} \rangle = q_{20}, \qquad \langle \tilde{\Phi}^{\pi} | \hat{Q}_{22} | \tilde{\Phi}^{\pi} \rangle = q_{22}$$

$$E^{N,I,\pi}(\beta,\gamma) = \frac{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{H}\hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}{\langle \tilde{\Phi}^{\pi}(\beta,\gamma) | \hat{P}^{N}P_{M}^{I} | \tilde{\Phi}^{\pi}(\beta,\gamma) \rangle}$$

Ground state properties of the Magnesium Isotopes in the Symmetry Conserving Mean Field Approximation

The Gogny Interaction J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

In the calculations we use large configuration spaces (8 or 9 Oscillator shells. Therefore no effective charges are needed. We use the D1S parametrisation of the Gogny force:

$$\begin{split} V(1,2) = & \sum_{i=1}^{2} e^{-(\vec{r}_{1}-\vec{r}_{2})^{2}/\mu_{i}^{2}} \left(W_{i}+B_{i}P^{\sigma}-H_{i}P^{\tau}-M_{i}P^{\sigma}P^{\tau}\right) \text{ central term} \\ & +iW_{0}(\sigma_{1}+\sigma_{2})\vec{k}\times\delta(\vec{r}_{1}-\vec{r}_{2})\vec{k} \qquad \text{Spin-orbit term} \\ & +t_{3}(1+x_{0}P^{\sigma})\delta(\vec{r}_{1}-\vec{r}_{2})\rho^{\alpha}((\vec{r}_{1}+\vec{r}_{2})/2) \qquad \text{density-dependent term} \\ & +V_{\text{Coulomb}}(\vec{r}_{1},\vec{r}_{2}) \qquad \text{Coulomb term} \end{split}$$

DIS Parametrization (Berger et al. 1984)

i	$\mu ({ m fm})^2$	W	В	H	М
I	0,7	-1720,3	1300	-1813,53	1397,6
2	1,2	103,638	-163,48	162,81	-223,93

Particle Number and Angular Momentum Projected Potential Energy Surfaces of Mg isotopes

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

M. Borrajo, J.L. E., Phys. Lett. B 764 (2017)328-334

The Symmetry Conserving Configuration Mixing Approach

We now mix all (β,γ) configurations

$$|\Psi_{M,\sigma}^{N,I,\pi}\rangle = \sum_{K,\beta,\gamma} f_{K\sigma}^{I}(\beta,\gamma) P^{N} P_{MK}^{I} \left[\tilde{\Phi}(\beta,\gamma) \right],$$

and diagonalize the Hamiltonian. The mixing coefficients are provided by the Hill-Wheeler-Griffin equation

$$\sum_{\beta'\gamma'K'} \left(\mathcal{H}_{KK'}^{IN}(\beta\gamma,\beta'\gamma') - E^{\sigma I} \mathcal{N}_{KK'}^{IN}(\beta\gamma,\beta'\gamma') \right) f_{\sigma K'}^{I}(\beta'\gamma') = 0$$

The collective wave functions are given by

$$\mathcal{P}^{\sigma I}(\beta,\gamma) = \sum_{K} |p_{K}^{\sigma I}(\beta,\gamma)|^{2},$$

where

$$p_{K}^{\sigma I}(\beta,\gamma) = \sum_{\kappa} g_{\kappa}^{\sigma I} u_{\kappa}^{IK}(\beta,\gamma) \quad \text{ and } \quad$$

 $\sum_{\beta\gamma K} |p_K^{\sigma I}(\beta,\gamma)|^2 = 1, \quad \forall \sigma$

Potential Energy Surfaces Positive Parity

Potential Energy Surfaces Negative Parity

The nucleus ²⁵Mg in the triaxial GCM

M. Borrajo, J.L. E., to be published

Positive Parity bands in ²⁵Mg in the triaxial GCM

The nucleus ²⁵Mg in the triaxial GCM

rot. band on [202 5/2]

Nilsson neutron s.p.e. levels in ²⁵Mg

The nucleus ²⁵Mg in the triaxial GCM

Nilsson neutron s.p.e. levels in ²⁵Mg

The nucleus ²⁵Mg in the triaxial GCM

M. Borrajo, J.L. E., to be published

Nilsson neutron s.p.e. levels in ²⁵Mg

The nucleus ²⁵Mg in the triaxial GCM

The nucleus ²⁵Mg in the triaxial GCM

K=1/2 rot. band on [330 1/2]

Nilsson neutron s.p.e. levels in ²⁵Mg

Transition Probabilities: Theory vs. Experiment

Transition Probabilities: Theory vs. Experiment

Collective wave functions of band III

Some comments about shape coexistence

Shape coexistence in ³¹Mg

A few words about pairing transitions

Pairing energies (MeV) in the HFB and in the Particle Number Projected approaches (VAP)

Pairing energies (MeV) in the HFB and in the Particle Number Projected approaches (VAP)

\5

-1

-2 -2.5¹⁵

-3

Neutron Pairing energies for ²⁷Mg and ²⁸Mg

Schematic odd-even effect on the pairing correlations

Conclusions

- As with even-even nuclei, state-of-the-art symmetry conserving configuration mixing calculations provide high quality nuclear spectroscopy of odd-even nuclei, both energies and transition probabilities.
- We have to add the bonus of providing at the same time a good description of the global properties, like masses, radii, etc.
- Furthermore, the predicting power of the Finite Range Density dependent Gogny force will be of valuable help to the experimentalists. Notice that there is not adjustable parameters nor effective charges.
- One goal is to perform calculations in odd-odd and heavier nuclei.
- To improve the description of excited states one could consider additional one quasiparticle states in the description of odd nuclei.

