

Nuclear clustering with and beyond the RMF framework

P. Marević^{1,2}, J.-P. Ebran¹, E. Khan², T. Nikšić³, D. Vretenar³

¹CEA, DAM, DIF, France ²IPN Orsay, France ³University of Zagreb, Croatia

Outline of the talk

Outline of the talk

Clustering in atomic nuclei

Clustering in atomic nuclei

Relativistic mean-field

Theoretical background

How atomic nuclei cluster

Outline of the talk

Clustering in atomic nuclei

Relativistic mean-field

Theoretical background

How atomic nuclei cluster

... and beyond

Symmetry restoration and configuration mixing

Cluster structures in Ne isotopes

Clustering in atomic nuclei

Relativistic mean-field

Theoretical background

How atomic nuclei cluster

... and beyond

Symmetry restoration and configuration mixing

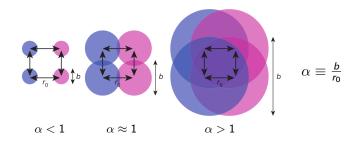
Cluster structures in Ne isotopes

Conclusion

... and beyond

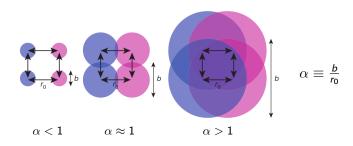
Clustering in atomic nuclei

Clustering in atomic nuclei



J.-P. Ebran et al., Nature 487, 341 (2012).

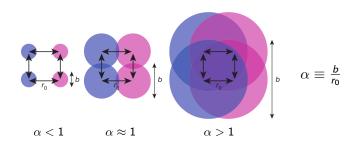
Clustering in atomic nuclei



J.-P. Ebran et al., Nature 487, 341 (2012).

■ transition phenomenon between quantum liquid and crystalline phases

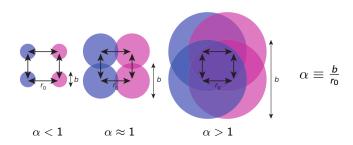
Clustering in atomic nuclei



J.-P. Ebran et al., Nature 487, 341 (2012).

- transition phenomenon between quantum liquid and crystalline phases
- rich phenomenology (molecular bonds, Hoyle state, radioactivity, ...)

Clustering in atomic nuclei



J.-P. Ebran et al., Nature 487, 341 (2012).

- transition phenomenon between quantum liquid and crystalline phases
- rich phenomenology (molecular bonds, Hoyle state, radioactivity, ...)
- various theoretical approaches (AMD, FMD, NCSM, MCSM, ...)

Relativistic mean-field

Outline

Relativistic mean-field Theoretical background

Outline

Relativistic mean-field Theoretical background

■ NEDFs as global theoretical framework

Relativistic mean-field 3 Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model

Outline

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)
 - point-coupling functionals [DD-PC1, T. Nikšić et al. PRC 78, 034318 (2008).]

$$\begin{split} \mathcal{L} &= \bar{\psi} (i\gamma \cdot \partial - \mathbf{m}) \psi - \frac{1}{2} \alpha_{S}(\hat{\rho}) (\bar{\psi}\psi) (\bar{\psi}\psi) - \frac{1}{2} \alpha_{V}(\hat{\rho}) (\bar{\psi}\gamma^{\mu}\psi) (\bar{\psi}\gamma_{\mu}\psi) \\ &- \frac{1}{2} \alpha_{TV}(\hat{\rho}) (\bar{\psi}\overrightarrow{\tau}\gamma^{\mu}\psi) (\bar{\psi}\overrightarrow{\tau}\gamma_{\mu}\psi) - \frac{1}{2} \delta_{S}(\partial_{\nu}\bar{\psi}\psi) (\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A \frac{(1-\tau_{3})}{2} \psi \end{split}$$

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)
 - point-coupling functionals [DD-PC1, T. Nikšić et al. PRC 78, 034318 (2008).]

$$\begin{split} \mathcal{L} &= \bar{\psi} (i\gamma \cdot \partial - m) \psi - \frac{1}{2} \alpha_{S}(\hat{\rho}) (\bar{\psi}\psi) (\bar{\psi}\psi) - \frac{1}{2} \alpha_{V}(\hat{\rho}) (\bar{\psi}\gamma^{\mu}\psi) (\bar{\psi}\gamma_{\mu}\psi) \\ &- \frac{1}{2} \alpha_{TV}(\hat{\rho}) (\bar{\psi}\vec{\tau}\gamma^{\mu}\psi) (\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2} \delta_{S}(\partial_{\nu}\bar{\psi}\psi) (\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A \frac{(1-\tau_{3})}{2} \psi \end{split}$$

■ TMR separable pairing [Y. Tian et al. PLB 676, 44 (2009).]

$$\langle k|V^{1_0^S}|k'\rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$$

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)
 - point-coupling functionals [DD-PC1, T. Nikšić et al. PRC 78, 034318 (2008).]

$$\begin{split} \mathcal{L} &= \bar{\psi} (i\gamma \cdot \partial - m) \psi - \frac{1}{2} \alpha_{S}(\hat{\rho}) (\bar{\psi}\psi) (\bar{\psi}\psi) - \frac{1}{2} \alpha_{V}(\hat{\rho}) (\bar{\psi}\gamma^{\mu}\psi) (\bar{\psi}\gamma_{\mu}\psi) \\ &- \frac{1}{2} \alpha_{TV}(\hat{\rho}) (\bar{\psi}\vec{\tau}\gamma^{\mu}\psi) (\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2} \delta_{S}(\partial_{\nu}\bar{\psi}\psi) (\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A \frac{(1-\tau_{3})}{2} \psi \end{split}$$

■ TMR separable pairing [Y. Tian et al. PLB 676, 44 (2009).]

$$\langle k|V^{1_0^S}|k'\rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$$

■ RHB equations solved by expanding nuclear spinors in HO basis

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)
 - point-coupling functionals [DD-PC1, T. Nikšić et al. PRC 78, 034318 (2008).]

$$\begin{split} \mathcal{L} &= \bar{\psi} (i\gamma \cdot \partial - m) \psi - \frac{1}{2} \alpha_{S}(\hat{\rho}) (\bar{\psi}\psi) (\bar{\psi}\psi) - \frac{1}{2} \alpha_{V}(\hat{\rho}) (\bar{\psi}\gamma^{\mu}\psi) (\bar{\psi}\gamma_{\mu}\psi) \\ &- \frac{1}{2} \alpha_{TV}(\hat{\rho}) (\bar{\psi}\vec{\tau}\gamma^{\mu}\psi) (\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2} \delta_{S}(\partial_{\nu}\bar{\psi}\psi) (\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A \frac{(1-\tau_{3})}{2} \psi \end{split}$$

■ TMR separable pairing [Y. Tian et al. PLB 676, 44 (2009).]

$$\langle k|V^{1_0^S}|k'\rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$$

- RHB equations solved by expanding nuclear spinors in HO basis
- dimensionless deformation parameters $\beta_{\lambda} = \frac{4\pi}{2AR\lambda}q_{\lambda 0}$

Relativistic mean-field Theoretical background

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - meson-exchange functionals (DD-ME2, ...)
 - point-coupling functionals [DD-PC1, T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{S}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{S}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

■ TMR separable pairing [Y. Tian et al. PLB 676, 44 (2009).]

$$\langle k|V^{1_0^S}|k'\rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$$

- RHB equations solved by expanding nuclear spinors in HO basis
- dimensionless deformation parameters $\beta_{\lambda} = \frac{4\pi}{2AB\lambda}q_{\lambda 0}$
- self-consistent calculation of ground-state properties

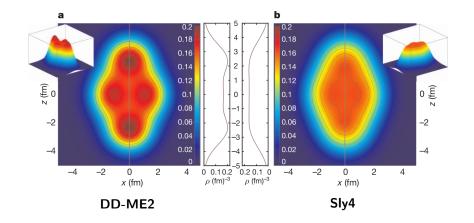
... and beyond

4

Outline

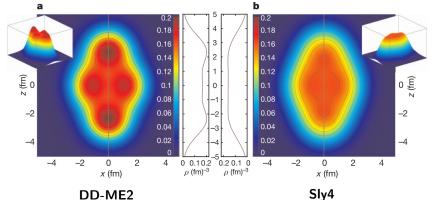
Relativistic mean-field How atomic nuclei cluster

Relativistic mean-field How atomic nuclei cluster



J.-P. Ebran et al., Nature 487, 341 (2012).

Relativistic mean-field How atomic nuclei cluster



DD-ME2

 $V_0 = -82.4 \text{ MeV}$

$$V_0 = -72.4 \text{ MeV}$$

J.-P. Ebran et al., Nature 487, 341 (2012).

Outline

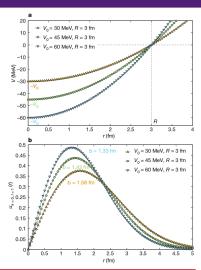
Relativistic mean-field How atomic nuclei cluster

Relativistic mean-field How atomic nuclei cluster

	-10	7-[303] 1+[440] 1-[321] 3+[202] 3-[321]		5-[312] 1+[200] 5+[202] 1+[220]	7-[303] 1+[440] 5-[312] 1-[321] 3+[202] 1+[200]	7-[303] 1+[440] 5-[312] 3+[202] 3-[321]	1-[321] 1+[200]	
	-13	1-[330] 1+[211] 3+[211]			1-[330] 1+[211] 3+[211]	5+[202]	5+[202] 1+[211]	1-[330]
s (MeV)		1-[101] 3-[101] 1-[110]			1+[220] 1-[101] 3-[101] 1-[110]	3+[211] 1+[220] 3-[101]	1-[101]	
	-45 -50 -55 -60	1+[000]			1+[000]		1+[000]	DDME2 D1S SLy4

J.-P. Ebran et al., Nature 487, 341 (2012)., PRC 90, 054329 (2014).

Relativistic mean-field How atomic nuclei cluster



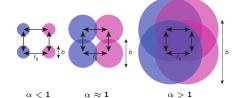
J.-P. Ebran et al., Nature 487, 341 (2012)., PRC 90, 054329 (2014).

Outline

Relativistic mean-field How atomic nuclei cluster

Relativistic mean-field How atomic nuclei cluster

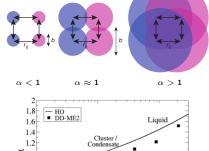
$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$

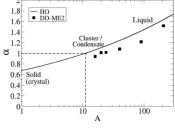


J.-P. Ebran et al., PRC 87, 044307 (2013).

Relativistic mean-field How atomic nuclei cluster

$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$

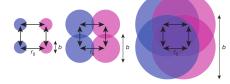




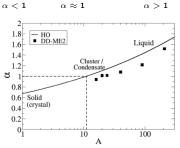
J.-P. Ebran et al., PRC 87, 044307 (2013).

Relativistic mean-field How atomic nuclei cluster

$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$

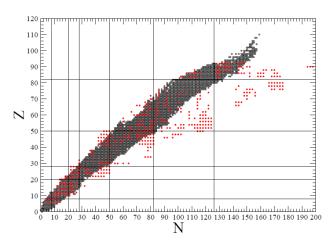


	Self-consistent		
	SLy4	DDME2	
²⁰ Ne	0.99	0.97	
²⁴ Mg	1.00	0.95	
²⁸ Si	0.99	0.96	
^{32}S	0.99	0.96	
²⁰⁸ Pb	1.28	1.31	



J.-P. Ebran et al., PRC 87, 044307 (2013).

Relativistic mean-field How atomic nuclei cluster



J.-P. Ebran et al., arXiv:1805.05099 [nth]

... and beyond

Outline

Beyond relativistic mean-field Symmetry restoration and configuration mixing

Beyond relativistic mean-field Symmetry restoration and configuration mixing

• constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$

Beyond relativistic mean-field Symmetry restoration and configuration mixing

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

$$\underbrace{|\mathit{JNZ}\pi;\alpha\rangle}_{\text{collective state}} = \sum_{j} \underbrace{f_{\alpha}^{J\pi}(q_{j})}_{\text{weight function}} \underbrace{\hat{P}_{00}^{J}\hat{P}^{\pi}\,\hat{P}^{N}\hat{P}^{Z}}_{\text{projectors}} \underbrace{|\phi(q_{j})\rangle}_{\text{RHB state}}$$

Beyond relativistic mean-field Symmetry restoration and configuration mixing

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

$$\underbrace{|\mathit{JNZ}\pi;\alpha\rangle}_{\mathsf{collective\ state}} = \sum_{j} \underbrace{f_{\alpha}^{J\pi}(q_{j})}_{\mathsf{weight\ function}} \underbrace{\hat{P}_{00}^{J}\hat{P}^{\pi}\,\hat{P}^{N}\,\hat{P}^{Z}}_{\mathsf{projectors}} \underbrace{|\phi(q_{j})\rangle}_{\mathsf{RHB\ state}}$$

variational principle yields the Hill-Wheeler-Griffin equation:

$$\sum_{j} \mathcal{H}^{J\pi}(q_{i}, q_{j}) \underbrace{g_{\alpha}^{J\pi}(q_{j})}_{\text{Hamiltonian kernel}} \underbrace{g_{\alpha}^{J\pi}(q_{j})}_{\text{exc. spectra}} = \underbrace{E_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_{i})$$

Beyond relativistic mean-field Symmetry restoration and configuration mixing

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

$$\underbrace{|\mathit{JNZ}\pi;\alpha\rangle}_{\mathsf{collective\ state}} = \sum_{j} \underbrace{f_{\alpha}^{J\pi}(q_j)}_{\mathsf{weight\ function}} \underbrace{\hat{P}_{00}^{J}\hat{P}^{\pi}\,\hat{P}^{N}\hat{P}^{Z}}_{\mathsf{projectors}} \underbrace{|\phi(q_j)\rangle}_{\mathsf{RHB\ state}}$$

variational principle yields the Hill-Wheeler-Griffin equation:

$$\sum_{j} \underbrace{\mathcal{H}^{J\pi}(q_i,q_j)}_{\text{Hamiltonian kernel}} \underbrace{g_{\alpha}^{J\pi}(q_j)}_{\text{exc. spectra}} = \underbrace{E_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_i)$$

solving the HWG equation gives collective spectra and wave functions

Beyond relativistic mean-field Symmetry restoration and configuration mixing

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

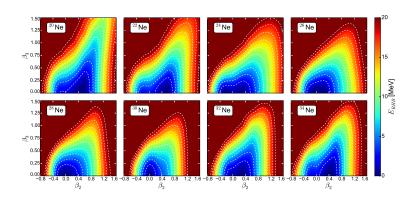
$$\underbrace{|\mathit{JNZ}\pi;\alpha\rangle}_{\mathsf{collective\ state}} = \sum_{j} \underbrace{f_{\alpha}^{J\pi}(q_{j})}_{\mathsf{weight\ function}} \underbrace{\hat{P}_{00}^{J}\hat{P}^{\pi}\,\hat{P}^{N}\,\hat{P}^{Z}}_{\mathsf{projectors}} \underbrace{|\phi(q_{j})\rangle}_{\mathsf{RHB\ state}}$$

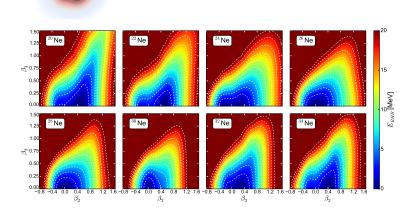
variational principle yields the Hill-Wheeler-Griffin equation:

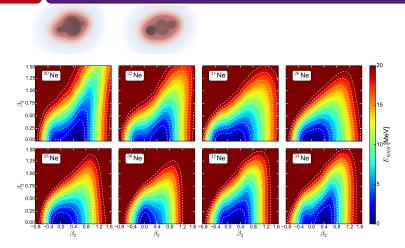
$$\sum_{j} \mathcal{H}^{J\pi}(q_i, q_j) \underbrace{g_{\alpha}^{J\pi}(q_j)}_{\text{Hamiltonian kernel}} \underbrace{g_{\alpha}^{J\pi}(q_j)}_{\text{exc. spectra}} = \underbrace{E_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_i)$$

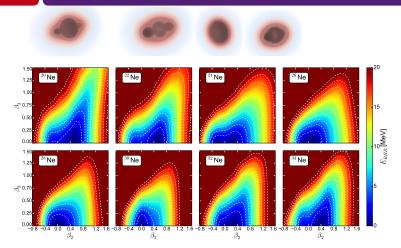
- solving the HWG equation gives collective spectra and wave functions
- calculation of various observables $(Q_{\lambda}^{\text{spec}}, B(E\lambda), F_L(q), ...)$

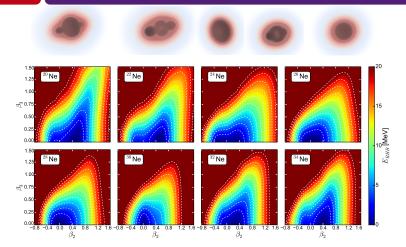
Cluster structures in Ne isotopes

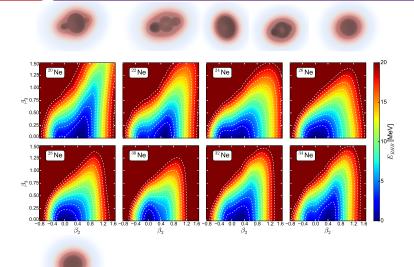


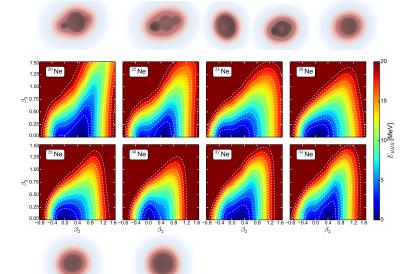


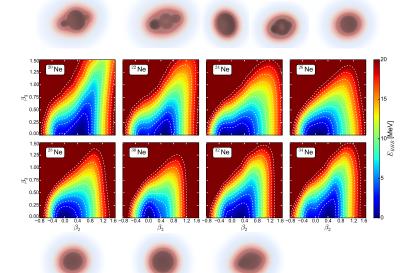


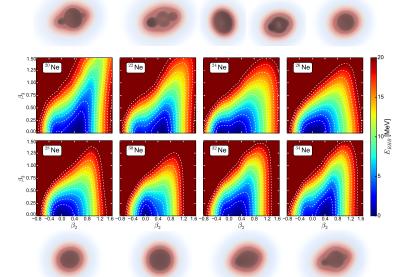


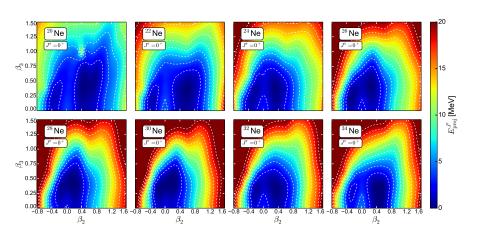






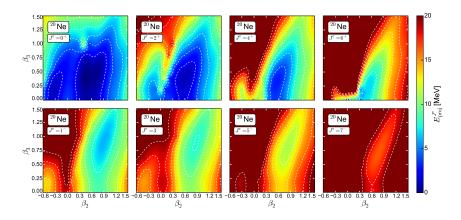




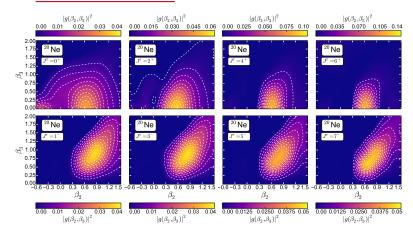


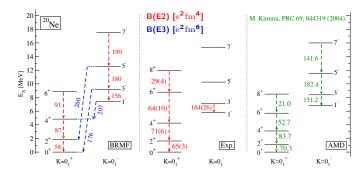
P. Marević et al., PRC 97, 024334 (2018).

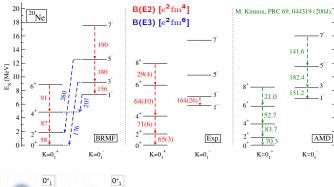
Projected energy surfaces:

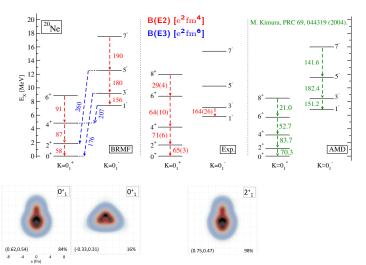


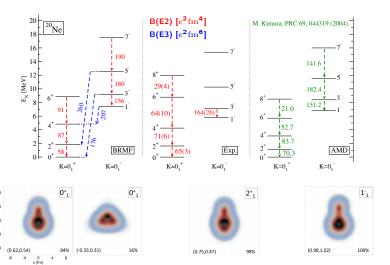
Collective wave functions:











Conclusion

Conclusion

• formation of clusters as transitional phenomenon

- formation of clusters as transitional phenomenon
- RMF description of ground-state properties
 - clustering due to the depth of confining potential
 - lacktriangleright relativistic functionals: deeper potentials and smaller lpha values
 - systematic prediction for nucleon localization over nuclide chart

Outline

- formation of clusters as transitional phenomenon
- RMF description of ground-state properties
 - clustering due to the depth of confining potential
 - lacktriangleright relativistic functionals: deeper potentials and smaller lpha values
 - systematic prediction for nucleon localization over nuclide chart
- beyond RMF description
 - systematics of neon isotopic chain
 - collective properties and cluster structures in ²⁰Ne
 - applicable over the entire nuclide chart

Outline

Thank you for your attention!