Nuclear Tetrahedral and Octahedral Symmetries:
 Research Lines after the First Identified Case*)

Jerzy DUDEK
$\mathrm{UdS} / \mathrm{IN}_{2} \mathrm{P}_{3} / \mathrm{CNRS}$, France and UMCS, Poland

${ }^{*)}$ Non-alpha-cluster - heavy 'mean-field' nucleus - ${ }^{152} \mathrm{Sm}$

COLLABORATORS:

Dominique CURIENIPHC and University of Strasbourg, France
Irene DEDESUMCS, Lublin, Poland
Kasia MAZUREK
Institute of Nuclear Physics PAN, Cracow, Poland
Shingo TAGAMI and Yoshifumi R SHIMIZU
Department of Physics, Faculty of Sciences, Kyushu University,Fukuoka 8190359, Japan
Tumpa BHATTACHARJEE
Variable Energy Cyclotron Centre,IN-700 064 Kolkata, India

Motto:

Symmetries determine the variety of islands of stability of Atomic Nuclei

Before starting - a few remarks:
The year 2018 marks the $15^{\text {th }}$ anniversary of the TetraNuc Project and Collaboration

Before starting - a few remarks:
The year 2018 marks the $15^{\text {th }}$ anniversary of the TetraNuc Project and Collaboration

TetraNuc Project opened the way for the studies of the tetrahedral and octahedral symmetries in nuclei - one of the central subjects of this presentation

TetraNuc was contributed by over 110 physicists from over 35 institutions

The year 2018 marks the $15^{\text {th }}$ anniversary of the TetraNuc Project and Collaboration

TetraNuc Project opened the way for the studies of the tetrahedral and octahedral symmetries in nuclei - one of the central subjects of this presentation

TetraNuc was contributed by over 110 physicists from over 35 institutions

A part of the following presentation is based on a recent article PHYSICAL REVIEW C 97, 021302(R) (2018)
Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

Focus on Tetrahedral and Octahedral Symmetries

 orHow to Establish Their Presence in Subatomic Physics

Tetrahedral Symmetry: General Representation

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order except 5

Three Lowest Order Solutions: \quad Rank \leftrightarrow Multipolarity λ

$$
\begin{gathered}
\lambda=3: \quad \alpha_{3, \pm 2} \equiv t_{3} \\
\lambda=5: \quad \text { no solution possible } \\
\lambda=7: \quad \alpha_{7, \pm 2} \equiv t_{7} ; \quad \alpha_{7, \pm 6} \equiv-\sqrt{\frac{11}{13}} \cdot t_{7} \\
\lambda=9: \quad \alpha_{9, \pm 2} \equiv t_{9} ; \quad \alpha_{9, \pm 6} \equiv+\sqrt{\frac{28}{198}} \cdot t_{9}
\end{gathered}
$$

- Problem presented in detail in:

JD, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck, Int. J. Mod. Phys. E16, 516 (2007) [516-532].

Nuclear Tetrahedral Shapes - 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three increasing values of rank $\lambda=3$ deformations $\alpha_{32}: 0.1,0.2$ and 0.3

$$
\alpha_{32} \equiv t_{3}=0.1
$$

$\alpha_{32} \equiv t_{3}=0.2$

$$
\alpha_{32} \equiv t_{3}=0.3
$$

Observations:

- There are infinitely many tetrahedral-symmetric surfaces
- Nuclear 'pyramids' do not resemble pyramids very much!

Nuclear Tetrahedral Shapes - Proton Spectra

Double group T_{d}^{D} has two 2-dimensional - and one 4-dimensional irreducible representations: Three distinct families of nucleon levels

Full lines \leftrightarrow 4-dimensional irreducible representations - marked with double Nilsson labels. Observe huge gaps at $\mathrm{N}=64,70,90-94,100$.

Nuclear Tetrahedral Shapes - Neutron Spectra

Double group T_{d}^{D} has two 2-dimensional - and one 4-dimensional irreducible representations: Three distinct families of nucleon levels

Full lines \leftrightarrow 4-dimensional irreducible representations - marked with double Nilsson labels. Observe huge gaps at $\mathbf{N}=112,136$.

First Goal: Obtain Tetrahedral Magic Numbers

- After inspecting many single-particle diagrams as functions of tetrahedral deformation we read-out all magic numbers $\left(Z_{t}, N_{t}\right)$

First Goal: Obtain Tetrahedral Magic Numbers

- After inspecting many single-particle diagrams as functions of tetrahedral deformation we read-out all magic numbers $\left(Z_{t}, N_{t}\right)$
- Tetrahedral symmetric (likely) shape-coexisting configurations are predicted to appear around the tetrahedral magic closures:

$$
\left\{Z_{t}, N_{t}\right\}=\{16,20,32,40,56,64,70,90,136\}
$$

- After inspecting many single-particle diagrams as functions of tetrahedral deformation we read-out all magic numbers $\left(Z_{t}, N_{t}\right)$
- Tetrahedral symmetric (likely) shape-coexisting configurations are predicted to appear around the tetrahedral magic closures:

$$
\left\{Z_{t}, N_{t}\right\}=\{16,20,32,40,56,64,70,90,136\}
$$

- ... and more precisely around the following nuclei:

$$
\begin{array}{cclllll}
{ }_{16}^{32} \mathrm{~S}_{16}, & { }_{20}^{40} \mathrm{~S}_{20}, & { }_{32}^{64} \mathrm{Ge}_{32}, & { }_{32} \mathrm{Ge}_{40}, & { }_{32}^{88} \mathrm{Ge}_{56}, & { }_{40} \mathrm{Zr}_{40}, & { }_{40} \mathrm{Zr}_{56}, \\
110 \\
{ }_{40} \mathrm{Zr}_{70}, & { }_{56}^{126} \mathrm{Ba}_{70}, & { }_{56}^{146} \mathrm{Ba}_{90}, & { }_{54}^{134} \mathrm{Gd}_{70}, & { }_{64}{ }_{64} \mathrm{Gd}_{90}, & { }_{70} 60 \mathrm{Yb}_{90}, & { }_{90}^{226} \mathrm{Th}_{136}
\end{array}
$$

Observe that we have here only 5 spherical doubly-magic nuclei and 19 tetrahedral doubly-magic nuclei, nearly 4 times more

Tetrahedral Symmetry Can Be Present Many Nuclei

It may be instructive to think about this diagram when discussing, among others, the r-process

Symmetry Concepts Impact Our Ideas about Stability

- Consider a total energy for a super-heavy nucleus in the form of the standard (β, γ)-representation

Symmetry Concepts Impact Our Ideas about Stability

- Consider the similar standard (β, γ)-representation but now let us introduce an extra minimisation over the tetrahedral deformation

- The mechanism discussed may provide new challenges for the exotic nuclei projects: Observe a qualitative change of the landscape
- Totally different fission barriers - thus experimental search criteria
- The ground-state expected to be otherwise quadrupole deformed may obtain e.g. zero-quadrupole and non-zero-tetrahedral geometry

About criteria for the experimental data search

- Central condition followed here: Nuclear states with exact highrank symmetries produce neither dipole-, nor quadrupole moments

About criteria for the experimental data search

- Central condition followed here: Nuclear states with exact highrank symmetries produce neither dipole-, nor quadrupole moments
- Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

About criteria for the experimental data search

- Central condition followed here: Nuclear states with exact highrank symmetries produce neither dipole-, nor quadrupole moments
- Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes
- Therefore we decided to focus first on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

About criteria for the experimental data search

- Central condition followed here: Nuclear states with exact highrank symmetries produce neither dipole-, nor quadrupole moments
- Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes
- Therefore we decided to focus first on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature
- We have verified that the nucleus ${ }^{152} \mathrm{Sm}$ can be produced by about 25 nuclear reactions, whereas surrounding nuclei can be produced typically with about a dozen but usually much fewer reactions only

It will be instructive at this point to recall some elementary theorems from the group representation theory

Elementary Group-Theory Properties

- Let G be the symmetry group of the quantum rotor Hamiltonian

Elementary Group-Theory Properties

- Let G be the symmetry group of the quantum rotor Hamiltonian
- Let $\left\{D_{i}, i=1,2, \ldots M\right\}$ be the irreducible representations of G
- Let G be the symmetry group of the quantum rotor Hamiltonian
- Let $\left\{D_{i}, i=1,2, \ldots M\right\}$ be the irreducible representations of G
- The representation $D^{(I \pi)}$ of the rotor states with the definite spinparity $I \pi$, can be decomposed in terms of D_{i} with multiplicities $a_{i}^{(I \pi)}$:

$$
D^{(l \pi)}=\sum_{i=1}^{M} a_{i}^{(I \pi)} D_{i}
$$

- Multiplicities [M. Hamermesh, Group Theory, 1962] are given by:

$$
a_{i}^{(I \pi)}=\frac{1}{N_{G}} \sum_{R \in G} \chi_{I \pi}(R) \chi_{i}(R)=\frac{1}{N_{G}} \sum_{\alpha=1}^{M} g_{\alpha} \chi_{I \pi}\left(R_{\alpha}\right) \chi_{i}\left(R_{\alpha}\right) ;
$$

$N_{G}=$ order of the group $G ;\left\{\chi_{I \pi}(R), \chi_{i}(R)\right\}=$ characters of $\left\{D^{(I \pi)}, D_{i}\right\}$ $R=$ group element; $g_{\alpha}=$ the number of elements in the class α, whose representative element is R_{α}.

Elementary T_{d}-Group-Theory Properties

- Tetrahedral group has 5 irreducible representations and 5 classes
- The representative elements $\{R\}$ are: $E, C_{2}\left(=S_{4}^{2}\right), C_{3}, \sigma_{d}, S_{4}$
- The characters of irreducible representation of T_{d} are listed below

T_{d}	E	$C_{3}(8)$	$C_{2}(3)$	$\sigma_{d}(2)$	$S_{4}(6)$
A_{1}	1	1	1	1	1
A_{2}	1	1	1	-1	-1
E	2	-1	2	0	0
$F_{1}\left(T_{1}\right)$	3	0	-1	-1	1
$F_{2}\left(T_{2}\right)$	3	0	-1	1	-1

- The characters $\chi_{I \pi}\left(R_{\alpha}\right)$ for the rotor representations are as follows:
$\chi_{I \pi}(E)=2 I+1, \chi_{I \pi}\left(C_{n}\right)=\sum_{K=-I}^{I} e^{\frac{2 \pi K}{n} i}, \chi_{I \pi}\left(\sigma_{d}\right)=\pi \times \chi_{I \pi}\left(C_{2}\right), \chi_{I \pi}\left(S_{4}\right)=\pi \times \chi_{I \pi}\left(C_{4}\right)$
- From these relations we obtain 'employing the pocket calculator':

$$
a_{i}^{(I \pi)}=\frac{1}{N_{G}} \sum_{\alpha=1}^{M} g_{\alpha} \chi_{I \pi}\left(R_{\alpha}\right) \chi_{i}\left(R_{\alpha}\right) \leftrightarrow a_{A_{1}}^{(I \pm)}=a_{A_{2}}^{(I \mp)}, a_{E}^{(I+)}=a_{E}^{(I-)}, a_{F_{1}}^{(I \pm)}=a_{F_{2}}^{(I \mp)}
$$

- The number of states $a_{i}^{(I \pi)}$ within five irreducible representations. If $a_{i}^{(I \pi)}=0 \rightarrow$ states not allowed; $a_{i}^{(I \pi)}=2 \rightarrow$ doubly degenerate

I^{+}	0^{+}	1^{+}	2^{+}	3^{+}	4^{+}	5^{+}	6^{+}	7^{+}	8^{+}	9^{+}	10^{+}
A_{1}	1	0	0	0	1	0	1	0	1	1	1
A_{2}	0	0	0	1	0	0	1	1	0	1	1
E	0	0	1	0	1	1	1	1	2	1	2
$F_{1}\left(T_{1}\right)$	0	1	0	1	1	2	1	2	2	3	2
$F_{2}\left(T_{2}\right)$	0	0	1	1	1	1	2	2	2	2	3

I^{-}	0^{-}	1^{-}	2^{-}	3^{-}	4^{-}	5^{-}	6^{-}	7^{-}	8^{-}	9^{-}	10^{-}
A_{1}	0	0	0	1	0	0	1	1	0	1	1
A_{2}	1	0	0	0	1	0	1	0	1	1	1
E	0	0	1	0	1	1	1	1	2	1	2
$F_{1}\left(T_{1}\right)$	0	0	1	1	1	1	2	2	2	2	3
$F_{2}\left(T_{2}\right)$	0	1	0	1	1	2	1	2	2	3	2

- In this way we find the spin-parity sequence for A_{1}-representation

$$
\mathrm{A}_{1}: \quad 0^{+}, 3^{-}, 4^{+}, 6^{+}, 6^{-}, 7^{-}, 8^{+}, 9^{+}, 9^{-}, 10^{+}, 10^{-}, 11^{-}, 2 \times 12^{+}, 12^{-}, \ldots
$$

Tetrahedral Symmetry Effect

Observe the presence of well defined tetrahedral minima at $\alpha_{32} \approx \pm 0.12$

Octahedral/Tetrahedral Symmetry Competition ${ }_{62}^{152} \mathrm{Sm}_{90}$

Combined Octahedral and Tetrahedral Symmetry Effect

Allowing for octahedral deformation lowers the tetrahedral minimum by 2 MeV

Group -Theory Criteria Need Extension: T_{d} and O_{h}

- Energy-maps suggest that tetrahedral symmetry is perturbed by the octahedral one: We have to 'deal with both' at the same time

Group-Theory Criteria Need Extension: T_{d} and O_{h}

- Energy-maps suggest that tetrahedral symmetry is perturbed by the octahedral one: We have to 'deal with both' at the same time
- Tetrahedral symmetry breaks the inversion (parity). This implies

$$
\mathrm{T}_{\mathrm{d}}-\text { g.s. band : } 0^{+}, 3^{-}, 4^{+}, 6^{+}, 6^{-}, 7^{-}, \mathbf{8}^{+}, 9^{+}, 9^{-}, 10^{+}, 10^{-}, 11^{-}, \ldots
$$

Group-Theory Criteria Need Extension: T_{d} and O_{h}

- Energy-maps suggest that tetrahedral symmetry is perturbed by the octahedral one: We have to 'deal with both' at the same time
- Tetrahedral symmetry breaks the inversion (parity). This implies

$$
\mathrm{T}_{\mathrm{d}}-\text { g.s. band : } 0^{+}, 3^{-}, 4^{+}, 6^{+}, 6^{-}, 7^{-}, 8^{+}, 9^{+}, 9^{-}, 10^{+}, 10^{-}, 11^{-}, \cdots
$$

- Coexistence with the octahedral symmetry component implies that the positive-parity \& negative-parity sequences form two bands

Group-Theory Criteria Need Extension: T_{d} and O_{h}

- Energy-maps suggest that tetrahedral symmetry is perturbed by the octahedral one: We have to 'deal with both' at the same time
- Tetrahedral symmetry breaks the inversion (parity). This implies

$$
\mathrm{T}_{\mathrm{d}}-\text { g.s. band : } 0^{+}, 3^{-}, 4^{+}, 6^{+}, 6^{-}, 7^{-}, 8^{+}, 9^{+}, 9^{-}, 10^{+}, 10^{-}, 11^{-}, \cdots
$$

- Coexistence with the octahedral symmetry component implies that the positive-parity \& negative-parity sequences form two bands
- We will revisit the group-theory criteria and compare T_{d} and O_{h}

Quantum Rotors: Tetrahedral vs. Octahedral

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $\mathrm{I}^{\pi}=0^{+}$belongs to A_{1} representation given by:

Forming a common parabola

- There are no states with spins $I=1,2$ and 5 . We have parity doublets: $I=6,9,10 \ldots$, at energies: $E_{6^{-}}=E_{6^{+}}, E_{9^{-}}=E_{9^{+}}$, etc.

Consequently we should expect two independent parabolic structures

Quantum Rotors: Tetrahedral vs. Octahedral

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $\mathrm{I}^{\pi}=0^{+}$belongs to A_{1} representation given by:

Forming a common parabola

- There are no states with spins $I=1,2$ and 5 . We have parity doublets: $I=6,9,10 \ldots$, at energies: $E_{6^{-}}=E_{6^{+}}, E_{9^{-}}=E_{9^{+}}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$
\begin{aligned}
& \underbrace{A_{1 g}: 0^{+}, 4^{+}, 6^{+}, 8^{+}, 9^{+}, 10^{+}, \ldots, I^{\pi}=I^{+}}_{\text {Forming a common parabola }} \\
& \underbrace{A_{2 u}: 3^{-}, 6^{-}, 7^{-}, 9^{-}, 10^{-}, 11^{-}, \ldots, I^{\pi}=I^{-}}_{\text {Forming another (common) parabola }}
\end{aligned}
$$

Consequently we should expect two independent parabolic structures

How to start looking for rotational bands without rotational transitions?

How to start looking for rotational bands without rotational transitions?

What To Start With?

How to start finding specific levels satisfying very specific criteria?

We begin by looking for experimental candidates for the 'reference seed band'

How to start finding specific levels satisfying very specific criteria?

We propose proceeding like this:

We begin by looking for experimental candidates for the 'reference seed band'

How to start finding specific levels satisfying very specific criteria?

We propose proceeding like this:

- We must try to find the sequence

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

which is parabolic, no E2 transitions

We begin by looking for experimental candidates for the 'reference seed band'

How to start finding specific levels satisfying very specific criteria?

We propose proceeding like this:

- We must try to find the sequence

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

which is parabolic, no E2 transitions

- If successful, we will fit coefficients of the reference 'seed-band' parabola

We begin by looking for experimental candidates for the 'reference seed band'

How to start finding specific levels satisfying very specific criteria?

We propose proceeding like this:

- We must try to find the sequence

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

which is parabolic, no E2 transitions

- If successful, we will fit coefficients of the reference 'seed-band' parabola
- Once this parabola is known - we select other experimental candidate states close to reference seed-band

We begin by looking for experimental candidates for the 'reference seed band'

Start Looking for the Reference Band with no E2's

- We must try to find the sequence which is parabolic, no E2 transitions

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

Experimental spectrum of ${ }^{152} \mathrm{Sm}$ from the NNDC data base

Start Looking for the Reference Band with no E2's

- We must try to find the sequence which is parabolic, no E2 transitions

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

Experimental spectrum of ${ }^{152} \mathrm{Sm}$
From NNDC data base: Notice the fantasist nomenclature of the bands ... invented long ago by an NNDC data base evaluator "OUR BAND" is called ... Band (T) like ...

Start Looking for the Reference Band with no E2's

- We must try to find the sequence which is parabolic, no E2 transitions

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

Experimental spectrum of ${ }^{152} \mathrm{Sm}$
From NNDC data base: Notice the fantasist nomenclature of the bands ... invented long ago by an NNDC data base evaluator "OUR BAND" is called ... Band (T) like ... Terrific

Start Looking for the Reference Band with no E2's

- We must try to find the sequence which is parabolic, no E2 transitions

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

(A)

$$
{ }^{152} \mathrm{Sm}
$$

Experimental spectrum of ${ }^{152} \mathrm{Sm}$
From NNDC data base: Notice the fantasist nomenclature of the bands ... invented long ago by an NNDC data base evaluator "OUR BAND" is called ... Band (T) like ... Terrific or Terrible

I could not stop laughing seeing it for the first time

- We must try to find the sequence which is parabolic, no E2 transitions

$$
4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots
$$

(A)

${ }^{152} \mathrm{Sm}$
Experimental spectrum of ${ }^{152} \mathrm{Sm}$
From NNDC data base: Notice the fantasist nomenclature of the bands ... invented long ago by an NNDC data base evaluator "OUR BAND" is called ... Band (T) like ... Terrific or Terrible ... or Tetrahedral ... or ...

- The sequence $4^{+}, 6^{+}, 8^{+}, 10^{+} \ldots$ of experimental energies turns out to be (very) parabolic and with no E2 transitions
- In this way we obtain the coefficients of the reference parabola

$$
E_{I}=a * I^{2}+b I+c
$$

- Numbers marked in red count observed distinct depopulating transitions as a certain measure of exoticity

Nest Steps in the Procedure

We Proceed Looking for the Other Candidate States

Criterion no. 1:
Accepted states must neither be populated nor depopulated by any strong E1 or E2 transitions, preferably populated by nuclear reaction

Criterion No. 2:
Their energies should be 'reasonably' close to the reference parabola
Observation:
Since they do not decay via a single strong transition it is instructive verifying that they decay into several states - with weak intensities

A typical diagram among a hundred in this analysis Decay from the tetrahedral $I^{\pi}=3^{-}$candidate (among five others)

Let us note that 3^{-}does not decay to the 0^{+}ground-states (suggesting that it is not an octuple vibrational state built on the other) and that there are numerous states populating it suggesting that its structure is exotic from our point of view.

A typical diagram among a hundred in this analysis Decay from the tetrahedral $I^{\pi}=3^{-}$candidate (among five others)

Let us observe that this state decays to many others suggesting its 'exotic' structure as in the previous case

A typical diagram among a hundred in this analysis
Decay from the tetrahedral $I^{\pi}=4^{+}$candidate level

Let us observe that this state decays to many others via very weak transitions suggesting no resemblance to quadrupole-deformed rotational states

Proposed experimental energy levels candidates members of the tetrahedral band in ${ }^{152} \mathrm{Sm}$ after analysing numerous hypotheses. Columns 3 and 4 give the numbers of decay-out transitions and feeding transitions, respectively.

Spin	E[keV]	No. D-out	No. Feed	Reaction
3^{-}	1579.4	10	none	CE \& α
4^{+}	1757.0	9	$1+(1)$	CE \& α
6^{-}	1929.9	2	(1)	CE \& α
6^{+}	2040.1	7	none	CE \& α
7^{-}	2057.5	6	$2+(1)$	CE \& α
8^{+}	2391.7	3	1	CE \& α
9^{-}	2388.8	4	3	CE \& α
9^{+}	2588	2	1	α
10^{-}	2590.7	4	1	α
$\left(10^{+}\right)$	2810	2	none	α
11^{-}	2808.9	2	none	CE

- We expect the tetrahedral band composed of spins:

$$
I^{\pi}=0^{+}, 4^{+}, 6^{+}, 8^{+}, 9^{+}, 10^{+}, \ldots
$$

- ... and at the same time of the negative parity states:
$I^{\pi}=3^{-}, 6^{-}, 7^{-}, 9^{-}, 10^{-}, 11^{-} \ldots$
- Both sequences are expected to form a common parabola
- Each of the tetrahedral states once populated is expected to give rise to an isomer

Plans: Joining Super-FRS Experiment collaboration, GSI

- Mass spectrometry can detect and identify the isomers without measuring their decay: This is the method of choice particularly for the long lived isomers

Courtesy: Dr T. Dickel, GSI Darmstadt and Giessen University

Plans: Joining Super-FRS Experiment collaboration, GSI

Measurement and Separation of Isomers

- Identification of ${ }^{211 \mathrm{gPo}}$ and ${ }^{211 \mathrm{mP}}$ Po by using PID detectors in the FRS, by alpha decay on Si detector and by mass spectrometry
- Measurement of excitation energy:
$(1472 \pm 120) \mathrm{keV}$ Lit.: $(1462 \pm 5) \mathrm{keV}$

Measurement using the TOF detector
T. Dickel et al., Phys. Lett. B 744 (2015) 137

Courtesy: Dr T. Dickel, GSI Darmstadt and Giessen University

Parabolic Relations: R.M.S.-Deviation Analysis (I)

Tetrahedral Symmetry Hypothesis: One Parabolic Branch

Forming a common parabola

- We performed the test of the tetrahedral A_{1}-type hypothesis by fitting the parameters of the parabola to the energies in the Table. The obtained root-mean-square deviation:

$$
T_{d}: A_{1} \rightarrow \text { r.m.s. } \approx 80.5 \mathrm{keV} \leftrightarrow 11 \text { levels } I^{\pi}=I^{ \pm}
$$

For comparison:

$$
\text { G.s.b. } \rightarrow \text { r.m.s. } \approx 52.4 \mathrm{keV} \leftrightarrow 7 \text { levels } I^{\pi}=I^{+}
$$

Parabolic Relations: R.M.S.-Deviation Analysis (II)

Octahedral Symmetry Hypothesis: Two Parabolic Branches

- We performed the test of the octahedral $A_{1 g}-A_{2 u}$ hypothesis by fitting the parameters of the parabolas to the energies in the Table. The obtained root-mean-square deviations:

$$
O_{h}: A_{1 g} \rightarrow \text { r.m.s. } \approx 1.6 \mathrm{keV} \leftrightarrow 5 \text { levels } I^{\pi}=I^{+}
$$

$$
O_{h}: A_{2 u} \rightarrow \text { r.m.s. } \approx 7.5 \mathrm{keV} \leftrightarrow 6 \text { levels } I^{\pi}=I^{-}
$$

For comparison:

$$
T_{d}: A_{1} \rightarrow \text { r.m.s. } \approx 80.5 \mathrm{keV} \leftrightarrow 11 \text { levels } I^{\pi}=I^{ \pm}
$$

Dominating Octahedral-Symmetry Hypothesis

Experimental Results [$\mathrm{T}_{\mathrm{d}}-v s .-\mathrm{O}_{\mathrm{h}}$]

Graphical representation of the experimental data from the summary Table. Curves represent the fit and are not meant 'to guide the eye'. Emphasise: the point $\left[I^{\pi}=0^{+}\right]$is a prediction by extrapolation - not an experimental datum.

Experimental Results [$\mathrm{T}_{\mathrm{d}}-v s .-\mathrm{O}_{\mathrm{h}}$]

Notice: The negative parity sequence lies entirely below the positive parity one. Extrapolating the parabolas to zero-spin we find $E_{l=0}^{-}=1.3968 \mathrm{MeV}$ compared to $E_{l=0}^{+}=1.3961 \mathrm{MeV}$, the difference of $\underline{\underline{0.7 \mathrm{keV}}}$ at the level $\underline{\underline{1.4 \mathrm{MeV}}}$ excitation!

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one
- Coexistence of two symmetries - Coexistence? Or symmetry breaking? Tetrahedral group is a subgroup of the octahedral group

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one
- Coexistence of two symmetries - Coexistence? Or symmetry breaking? Tetrahedral group is a subgroup of the octahedral group
... as a matter of fact: which symmetry is breaking which?

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one
- Coexistence of two symmetries - Coexistence? Or symmetry breaking? Tetrahedral group is a subgroup of the octahedral group ... as a matter of fact: which symmetry is breaking which?
- The negative parity branch lies entirely below the positive parity branch: Can positions of rotational band members be 'accidental'?

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one
- Coexistence of two symmetries - Coexistence? Or symmetry breaking? Tetrahedral group is a subgroup of the octahedral group ... as a matter of fact: which symmetry is breaking which?
- The negative parity branch lies entirely below the positive parity branch: Can positions of rotational band members be 'accidental'?
- What is the probability that "due to enormous complexity of the nuclear interactions" the discussed energies are positioned in reality at random and the discussed structures incidentally form parabolas?

Octahedral Symmetry Breaking by Tetrahedral One?

- The two branches characteristic for octahedral symmetry are very close to the single parabola predicted for the tetrahedral symmetry
- In general, positive- and negative-parity parabolas do not need to lie so closely with energies placed symmetrically about the third one
- Coexistence of two symmetries - Coexistence? Or symmetry breaking? Tetrahedral group is a subgroup of the octahedral group ... as a matter of fact: which symmetry is breaking which?
- The negative parity branch lies entirely below the positive parity branch: Can positions of rotational band members be 'accidental'?
- What is the probability that "due to enormous complexity of the nuclear interactions" the discussed energies are positioned in reality at random and the discussed structures incidentally form parabolas?

$$
\left.T_{\mathrm{d}}-\text { incidental : } \quad P_{11}^{\sqrt{\sigma^{2}}}=80 \mathrm{keV}\right) \approx 1.1 \cdot 10^{-14}
$$

Summary and Outlook

- The above results are compatible with coexistence of tetrahedral and octahedral symmetries predicted by the mean-field calculations

Summary and Outlook

- The above results are compatible with coexistence of tetrahedral and octahedral symmetries predicted by the mean-field calculations
- At the same time they are compatible with the very constraining group-theory conditions: mixing odd-, and even spins, doublets, etc.

Summary and Outlook

- The above results are compatible with coexistence of tetrahedral and octahedral symmetries predicted by the mean-field calculations
- At the same time they are compatible with the very constraining group-theory conditions: mixing odd-, and even spins, doublets, etc.
- One may be tempted to conclude that the experimental results in the form of two parabolas identify the presence of both discussed symmetries in ${ }^{152} \mathrm{Sm}$ nucleus. However - data contain uncertainties

Summary and Outlook

- The above results are compatible with coexistence of tetrahedral and octahedral symmetries predicted by the mean-field calculations
- At the same time they are compatible with the very constraining group-theory conditions: mixing odd-, and even spins, doublets, etc.
- One may be tempted to conclude that the experimental results in the form of two parabolas identify the presence of both discussed symmetries in ${ }^{152} \mathrm{Sm}$ nucleus. However - data contain uncertainties
- Emphasise: None of the geometrical nuclear symmetries can be considered exact because of the zero-point motion (Bohr model) and various polarisation mechanism, e.g. by nucleons outside shells
- The above results are compatible with coexistence of tetrahedral and octahedral symmetries predicted by the mean-field calculations
- At the same time they are compatible with the very constraining group-theory conditions: mixing odd-, and even spins, doublets, etc.
- One may be tempted to conclude that the experimental results in the form of two parabolas identify the presence of both discussed symmetries in ${ }^{152} \mathrm{Sm}$ nucleus. However - data contain uncertainties
- Emphasise: None of the geometrical nuclear symmetries can be considered exact because of the zero-point motion (Bohr model) and various polarisation mechanism, e.g. by nucleons outside shells
- Consequently relatively weak electromagnetic transitions are to be expected and this mechanism can/should be used to obtain a more complete information about electromagnetic decay, spectra and possibly phase transitions.

