More (Shapes) is Different (Symmetries)

A. Leviatan
Racah Institute of Physics
The Hebrew University, Jerusalem, Israel

N. Gavrielov (HU)

$9^{\text {th }}$ International Workshop on "Quantum Phase Transitions in Nuclei and Many-Body Systems", Padova, Italy, May 22-25, 2018

Dynamical Symmetry

$\hat{H}=\sum_{G} a_{G} \hat{C}_{G}$

- Solvability of the complete spectrum $\quad E=E_{[N]\langle\Sigma\rangle \ldots \Lambda}$
- Quantum numbers for all eigenstates $|[N]\langle\Sigma\rangle \Lambda\rangle$

Dynamical Symmetry

$\hat{H}=\sum_{G} a_{G} \hat{C}_{G}$

- Solvability of the complete spectrum $\quad E=E_{[N]\langle\Sigma\rangle \ldots \Lambda}$
- Quantum numbers for all eigenstates $|[N]\langle\Sigma\rangle \Lambda\rangle$
- IBM: s ($\mathrm{L}=0$) , d ($\mathrm{L}=2$) bosons, N conserved (Arima, lachello 75) $G_{\text {dyn }}=U(6), G_{\text {sym }}=S O(3)$

$\mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	$\left\|[\mathrm{N}] \mathrm{n}_{d} \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle$	Spherical vibrator
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	$\|[\mathrm{N}](\lambda, \mu) \mathrm{KL} \mathrm{L}\rangle$	Prolate-deformed rotor
$\mathrm{U}(6) \supset \overline{\mathrm{SU}(3)} \supset \mathrm{SO}(3)$	$\|[\mathrm{N}](\bar{\lambda}, \bar{\mu}) \overline{\mathrm{K}} \mathrm{L}\rangle$	Oblate-deformed rotor
$\mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	$\left\|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle$	γ-unstable deformed rotor

Geometry

Coherent state

$$
\begin{aligned}
|\beta, \gamma ; N\rangle & =(N!)^{-1 / 2}\left(b_{c}^{\dagger}\right)^{N}|0\rangle \\
b_{c}^{\dagger} & =\left(1+\beta^{2}\right)^{-1 / 2}\left[\beta \cos \gamma d_{0}^{\dagger}+\beta \sin \gamma \frac{1}{\sqrt{2}}\left(d_{2}^{\dagger}+d_{-2}^{\dagger}\right)+s^{\dagger}\right]
\end{aligned}
$$

Energy surface $\quad E_{N}(\beta, \gamma)=\langle\beta, \gamma ; N| \hat{H}|\beta, \gamma ; N\rangle$
Global min: equilibrium shape (β_{0}, γ_{0})

$$
\begin{aligned}
& \beta_{0}=0 \text { spherical } \\
& \beta_{0}>0 \text { deformed: } \gamma_{0}=0 \text { (prolate), } \gamma_{0}=\pi / 3 \text { (oblate), } 0<\gamma_{0}<\pi / 3 \text { (triaxial) }
\end{aligned}
$$

Intrinsic state ground band $\left|\beta_{0}, \gamma_{0} ; N\right\rangle$, L-projected states $\left|\beta_{0}, \gamma_{0} ; N, x, L\right\rangle$

	$\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \mathrm{SO}(3)$	\| $\left.\mathrm{N}, \lambda_{1}, \lambda_{2}, \ldots, \mathrm{~L}\right\rangle$
U(5)	$\beta_{0}=0$	$\mathrm{n}_{\mathrm{d}}=0$
SU(3)	($\beta_{0}=\sqrt{ } 2, \gamma_{0}=0$)	$(\lambda, \mu)=(2 N, 0)$
SU(3)	($\beta_{0}=\sqrt{ } 2, \gamma_{0}=\pi / 3$)	$\bar{\lambda}, \bar{\mu})=(0,2 \mathrm{~N})$
SO(6)	($\beta_{0}=1, \gamma_{0}$ arbitrary)	$\sigma=\mathrm{N}$

- Dynamical symmetry corresponds to a particular shape (β_{0}, γ_{0})
- $\left|\beta_{0}, \gamma_{0} ; N\right\rangle$ lowest (highest) weight state in a particular irrep λ_{1} of leading subalgebra \mathbf{G}_{1}

Dynamical Symmetry

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \mathrm{SO}(3) \quad\left|\mathrm{N}, \lambda_{1}, \lambda_{2}, \ldots, \mathrm{~L}\right\rangle
$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape
$\left[\mathrm{G}_{1}=\mathrm{U}(5), \mathrm{SU}(3), \overline{\mathrm{SU}(3)}, \mathrm{SO}(6)\right]$
Spherical, prolate-, oblate-, γ-unstable deformed

> Dynamical Symmetry

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \mathrm{SO}(3) \quad\left|\mathrm{N}, \lambda_{1}, \lambda_{2}, \ldots, \mathrm{~L}\right\rangle
$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape
$\left[\mathrm{G}_{1}=\mathrm{U}(5), \mathrm{SU}(3), \overline{\mathrm{SU}(3)}, \mathrm{SO}(6)\right]$
Spherical, prolate- , oblate-, γ-unstable deformed

Partial Dynamical Symmetry

- Some states solvable and/or with good quantum numbers
- $\mathrm{G}_{1}, \mathrm{G}_{2}$ incompatible (non-commuting) symmetries
- PDS: benchmark for shape coexistence

Construction of Hamiltonians with a single PDS

$$
\begin{array}{ccc}
G_{\mathrm{dyn}} \supset G \supset \cdots \supset G_{\mathrm{sym}} \\
{[\mathrm{~N}]} & \langle\Sigma\rangle & \Lambda
\end{array}
$$

n-particle annihilation operator

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0
$$ for all possible Λ contained in the irrep $\left\langle\Sigma_{0}\right\rangle$ of G

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle\right\rangle=0}
$$

- Condition is satisfied if $\langle\sigma\rangle \otimes\left\langle\Sigma_{0}\right\rangle \notin[N-n]$

$$
\hat{H}=\sum_{\alpha, \beta} u_{\alpha \beta} \hat{T}_{\alpha}^{\dagger} \hat{T}_{\beta}
$$

DS is broken but
solvability of states with $\langle\Sigma\rangle=\left\langle\Sigma_{0}\right\rangle$ Is preserved

Construction of Hamiltonians with a single PDS

$$
\begin{array}{ccc}
G_{\mathrm{dyn}} \supset G \supset \cdots \supset G_{\mathrm{sym}} \\
{[\mathrm{~N}]} & \langle\Sigma\rangle & \Lambda
\end{array}
$$

n-particle annihilation operator

$$
\hat{T}_{[n]\langle\sigma\rangle \lambda}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0
$$ in the irrep $\left\langle\Sigma_{0}\right\rangle$ of G

Equivalently:

$$
\hat{T}_{[n]}\langle\sigma\rangle \lambda\left|[\mathbf{N}]\left\langle\Sigma_{0}\right\rangle\right\rangle=0
$$

- Condition is satisfied if $\langle\sigma\rangle \otimes\left\langle\Sigma_{0}\right\rangle \notin[\mathrm{N}-\mathrm{n}]$

$$
\hat{H}=\sum_{\alpha, \beta} u_{\alpha \beta} \hat{T}_{\alpha}^{\dagger} \hat{T}_{\beta}
$$

DS is broken but
solvability of states with $\langle\Sigma\rangle=\left\langle\Sigma_{0}\right\rangle$ Is preserved

- PDS Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}+\hat{H}_{c} \quad$ Intrinsic collective resolution

Intrinsic part: $\mathrm{H}\left|[\mathrm{N}]\left\langle\Sigma_{0}\right\rangle \Lambda\right\rangle=0$
Collective part: H_{c} composed of Casimir operators of conserved $G_{i} \subset G$ in the chain

Multiple PDS and Shape Coexistence

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) \quad\left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle \quad\left(\beta_{1}, \gamma_{1}\right)
$$

Single PDS
Single shape

Multiple PDS and Shape Coexistence

$$
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) \quad\left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle \quad\left(\beta_{1}, \gamma_{1}\right)
$$

Single PDS
Single shape

$$
\hat{H}\left|\beta_{1}, \gamma_{1} ; N, \lambda_{1}=\Lambda_{0}, \lambda_{2}, \ldots, L\right\rangle=0
$$

$$
\begin{array}{lll}
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle & \left(\beta_{1}, \gamma_{1}\right) \\
\mathrm{U}(6) \supset \mathrm{G}_{1}^{\prime} \supset \mathrm{G}_{2}^{\prime} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \sigma_{1}, \sigma_{2}, \ldots, L\right\rangle & \left(\beta_{2}, \gamma_{2}\right)
\end{array}
$$

Multiple PDS
Multiple shapes

$$
\left\{\begin{aligned}
\hat{H}\left|\beta_{1}, \gamma_{1} ; N, \lambda_{1}=\Lambda_{0}, \lambda_{2}, \ldots, L\right\rangle & =0 \\
\hat{H}\left|\beta_{2}, \gamma_{2} ; N, \sigma_{1}=\Sigma_{0}, \sigma_{2}, \ldots, L\right\rangle & =0
\end{aligned}\right.
$$

$\mathrm{G}_{1} \neq \mathrm{G}_{1}^{\prime}$
Critical-point Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}+\hat{H}_{\text {c }}$ $G_{1}-P D S \& G_{1}^{\prime}$-PDS

Intrinsic part: \hat{H} determines $\mathrm{E}(\beta, \gamma) \quad$ band structure
Collective part: $\hat{H}_{\mathrm{c}}=\sum_{\mathrm{G}_{\mathrm{i}}} a_{\mathrm{G}_{\mathrm{i}}} \hat{C}_{\mathrm{G}_{\mathrm{i}}} \quad$ rotational splitting
conserved G_{i} in both chains

Departure from the Critical Point

$$
\begin{array}{lll}
\mathrm{U}(6) \supset \mathrm{G}_{1} \supset \mathrm{G}_{2} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \lambda_{1}, \lambda_{2}, \ldots, L\right\rangle & \left(\beta_{1}, \gamma_{1}\right) \\
\mathrm{U}(6) \supset \mathrm{G}_{1}^{\prime} \supset \mathrm{G}_{2}^{\prime} \supset \ldots \supset \mathrm{SO}(3) & \left|N, \sigma_{1}, \sigma_{2}, \ldots, L\right\rangle & \left(\beta_{2}, \gamma_{2}\right)
\end{array} \quad \mathrm{G}_{1} \neq \mathrm{G}_{1}^{\prime}
$$

Symmetry Approach to Shape-Coexistence

$\mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	Spherical vibrator	$\beta=0$
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	Prolate-deformed rotor	$\beta=\sqrt{ } 2, \gamma=0$
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	Oblate-deformed rotor	$\beta=\sqrt{ } 2, \gamma=\pi / 3$
$\mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	γ-unstable deformed rotor	$\beta=1, \gamma$ arbitrary

Multiple PDS and Multiple Shapes

$G_{1}=U(5)$	$G_{2}=\operatorname{SU}(3)$	
$G_{1}=S U(3)$	$G_{2}=\overline{S U(3)}$	
spherical - prolate - oblate		
$G_{1}=U(5)$	$G_{2}=S O(6)$	
spherical $-\gamma$-unstable		

Triple coexistence $\mathrm{G}_{1}=\mathrm{U}(5) \quad \mathrm{G}_{2}=\mathrm{SU}(3) \quad \mathrm{G}_{3}=\overline{\mathrm{SU}(3)}$ spherical-prolate-oblate \&

SU(3) and SU(3) Dynamical Symmetries

$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	$\|[N](\lambda, \mu) K L\rangle$	Prolate-deformed rotor	
$\mathrm{U}(6) \supset \overline{\mathrm{SU}(3)} \supset \mathrm{SO}(3)$	$\mid[\mathrm{N}](\bar{\lambda}, \bar{\mu}) \mathrm{KL}$ ¢	Obl	formed rotor
$\overline{\mathrm{SU}(3)}$ $4 \pm 4^{+}$ $2^{+ \pm}=$ $0^{+} 2^{+}$ $6 \pm$ $(2,2 \mathrm{~N}-4)$ 4^{+} $2^{+}=$ oblate 0^{+} $(0,2 \mathrm{~N})$	$\begin{array}{ll} \hline & 4 \pm-4^{+}= \\ 6 \pm & 2^{+}=2^{+} \\ 4 \pm & 0^{+} \\ 2^{+}= & (2 N-4,2) \\ 0^{+} & \\ (2 N, 0) & \end{array}$	SU(3) prolate	DS spectra are identica Quadrupole moments of corresponding states differ in sign

SU(3) and $\overline{\operatorname{SU}(3)}$ Dynamical Symmetries

$$
\begin{aligned}
& U(6) \supset S U(3) \supset S O(3) \\
& U(6) \supset \overline{S U(3)} \supset S O(3)
\end{aligned}
$$

| $[\mathrm{N}](\lambda, \mu) \mathrm{K} \mathrm{L}\rangle$
| $[\mathrm{N}](\bar{\lambda}, \bar{\mu}) \mathrm{KL}\rangle \quad$ Oblate-deformed rotor

$6 \pm$	$\begin{aligned} & a^{+ \pm+4^{+}} \\ & 2^{+}= \\ & 0^{+} 2^{+} \end{aligned}$	SU(3)
${ }^{4+}$	(2N-4,2)	
$\begin{aligned} & 0^{\circ}= \\ & (2 N, 0) \end{aligned}$		prolate

DS spectra are identical
Quadrupole moments of corresponding states differ in sign

Prolate-Oblate Shape Coexistence

Intrinsic part of C.P. Hamiltonian

$$
\left\{\begin{array}{l}
\hat{H}|N,(\lambda, \mu)=(2 N, 0), K=0, L\rangle=0 \\
\hat{H}|N,(\bar{\lambda}, \bar{\mu})=(0,2 N), \bar{K}=0, L\rangle=0
\end{array}\right.
$$

$$
\hat{H}=h_{0} P_{0}^{\dagger} \hat{n}_{s} P_{0}+h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \quad G_{3, \mu}^{\dagger}=\sqrt{7}\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]_{\mu}^{(3)}
$$

Energy Surface $\tilde{E}(\beta, \gamma)=\left(1+\beta^{2}\right)^{-3}\left\{\left(\beta^{2}-2\right)^{2}\left[h_{0}+h_{2} \beta^{2}\right]+\eta_{3} \beta^{6} \sin ^{2}(3 \gamma)\right\}$

$$
=z_{0}+\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+B \beta^{6} \Gamma^{2}+D \beta^{4}+F \beta^{2}\right] \quad \Gamma=\cos 3 \gamma
$$

- Two degenerate P-O global minima $(\beta=\sqrt{ } 2, \gamma=0)$ and $(\beta=\sqrt{ } 2, \gamma=\pi / 3)$ [or equivalently $(\beta=-\sqrt{ } 2, \gamma \quad 0)$]

oblate-prolate

Saddle points support a barrier separating the various minima

Normal modes:

$$
\begin{array}{lrl}
\text { Normal modes: } & \mathrm{E} & \begin{array}{l}
\beta_{2}= \\
\boldsymbol{\gamma}_{2}=\beta_{1} \\
\epsilon_{\beta 1}=\epsilon_{\beta 2}=\frac{8}{3}\left(h_{0}+2 h_{2}\right) N^{2} \\
\end{array} \\
0.1- & \\
\epsilon_{\gamma 1}=\epsilon_{\gamma 2}=4 \eta_{3} N^{2} & 0.0-g_{2}- & -g_{1} \\
\hline
\end{array}
$$

Complete Hamiltonian $\quad \hat{H}^{\prime}=\hat{H}\left(h_{0}, h_{2}, \eta_{3}\right)+\alpha \hat{\theta}_{2}+\rho \hat{C}_{2}[\mathrm{SO}(3)]$

$$
\begin{aligned}
& \alpha \hat{\theta}_{2}=\alpha\left[-\hat{C}_{2}[S U(3)]+2 \hat{N}(2 \hat{N}+3)\right] \\
& \tilde{\alpha}\left(1+\beta^{2}\right)^{-2}\left[\left(\beta^{2}-2\right)^{2}+2 \beta^{2}\left(2-2 \sqrt{2} \beta \Gamma+\beta^{2}\right)\right] \quad \tilde{\alpha}=\alpha /(N-2)
\end{aligned}
$$

$\overline{\mathrm{SU}(3)}$ decomposition

Ground g_{1} band: pure $\mathrm{SU}(3)$-DS states $(2 \mathrm{~N}, 0)$ Ground g_{2} band: pure $\overline{S U(3)}$-DS states ($0,2 \mathrm{~N}$) Excited β and γ bands: considerable mixing
$\Rightarrow S U(3)-P D S$ coexisting with $\overline{S U(3)}-P D S$

SU(3) decomposition

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right) \quad(1,1) \oplus(2,2) \text { tensor }
$$

E2 selection rule: $g_{1} \nLeftarrow g_{2}$
P-O coexistence

$T(E 0) \propto \hat{n}_{d} \quad(0,0) \oplus(2,2)$ tensor E0 selection rule: $g_{1} \nLeftarrow g_{2}$
$Q_{L}=\mp e_{B} \sqrt{\frac{16 \pi}{40}} \frac{L}{2 L+3} \frac{4(2 N-L)(2 N+L+1)}{3(2 N-1)}$
$B\left(E 2 ; g_{i}, L+2 \rightarrow g_{i}, L\right)=$

$$
e_{B}^{2} \frac{3(L+1)(L+2)}{2(2 L+3)(2 L+5)} \frac{(4 N-1)^{2}(2 N-L)(2 N+L+3)}{18(2 N-1)^{2}}
$$

ANALYTIC expressions !
$\mathrm{U}(5), \mathrm{SU}(3)$ and $\overline{\mathrm{SU}(3)}$ Dynamical Symmetries

$U(6) \supset U(5) \supset S O(5) \supset S O(3)$	$\left\|[N] n_{d} \tau n_{\Delta} L\right\rangle$	Spherical vibrator
$U(6) \supset S U(3) \supset S O(3)$	$\|[N](\lambda, \mu) K L\rangle$	Prolate-deformed rotor
$U(6) \supset \overline{S U(3)} \supset S O(3)$	$\|[N](\bar{\lambda}, \mu) K L\rangle$	Oblate-deformed rotor

$\mathrm{U}(5), \mathrm{SU}(3)$ and $\overline{\mathrm{SU}(3)}$ Dynamical Symmetries

$\mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)$	$\mid[N] \mathrm{n}_{\mathrm{d}} \tau \mathrm{n}_{\Delta} \mathrm{L}$ >	Spherical vibrator
$\mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$	$\|[N](\lambda, \mu) K \mathrm{~L}\rangle$	Prolate-deformed rotor
$\mathrm{U}(6) \supset \overline{\mathrm{SU}(3)} \supset \mathrm{SO}(3)$	$\|[\mathrm{N}](\bar{\lambda}, \bar{\mu}) \mathrm{K} \mathrm{L}\rangle$	Oblate-deformed rotor

Spherical-Prolate-Oblate Shape Coexistence
Intrinsic part of C.P. Hamiltonian $\left\{\begin{array}{l}\hat{H}|N,(\lambda, \mu)=(2 N, 0), K=0, L\rangle=0 \\ \hat{H}|N,(\bar{\lambda}, \bar{\mu})=(0,2 N), \bar{K}=0, L\rangle=0 \\ \hat{H}\left|N, n_{d}=0, \tau=0, L=0\right\rangle=0\end{array}\right.$

$$
\hat{H}=h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3} \quad P_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-2\left(s^{\dagger}\right)^{2} \quad G_{3, \mu}^{\dagger}=\sqrt{7}\left[\left(d^{\dagger} d^{\dagger}\right)^{(2)} d^{\dagger}\right]_{\mu}^{(3)}
$$

Energy Surface

$$
\tilde{E}(\beta, \gamma)=\beta^{2}\left[h_{2}\left(\beta^{2}-2\right)^{2}+\eta_{3} \beta^{4} \sin ^{2}(3 \gamma)\right]\left(1+\beta^{2}\right)^{-3}
$$

- Three degenerate S-P-O global minima: $\beta=0,(\beta= \pm \sqrt{ } 2, \gamma=0)$

Complete Hamiltonian

$$
\hat{H}^{\prime}=h_{2} P_{0}^{\dagger} \hat{n}_{d} P_{0}+\eta_{3} G_{3}^{\dagger} \cdot \tilde{G}_{3}+\alpha \hat{\theta}_{2}+\rho \hat{C}_{2}[\mathrm{SO}(3)]
$$

oblate-spherical-prolate

Triple coexistence

Normal modes:

$$
\begin{aligned}
\epsilon_{\beta 1} & =\epsilon_{\beta 2}=\frac{16}{3} h_{2} N^{2} \\
\epsilon_{\gamma 1} & =\epsilon_{\gamma 2}=4 \eta_{3} N^{2} \\
\epsilon & =4 h_{2} N^{2}
\end{aligned}
$$

$\mathrm{E}(\beta, \gamma=0)$
$\mathrm{U}(5)$ decompostion

oblate spherical prolate

The purity of selected sets of states with respect to $S U(3), \overline{S U(3)}$ and $U(5)$, in the presence of other mixed states, are the hallmarks of coexisting $\mathrm{SU}(3)-\mathrm{PDS}, \overline{\mathrm{SU}(3)-\mathrm{PDS} \text { and } U(5)-\mathrm{PDS}}$

$$
T(E 2)=e_{B}\left(d^{\dagger} s+s^{\dagger} \tilde{d}\right)
$$

Spherical \rightarrow deformed E2 rates very weak
Deformed SU(3) \& SU(3) DS states $\left(g_{1} \rightarrow g_{1}, g_{2} \rightarrow g_{2}\right) Q_{L} \& B(E 2) K N O W N!$

Spherical U(5)-DS states ($\mathrm{n}_{\mathrm{d}}=1 \rightarrow \mathrm{n}_{\mathrm{d}}=0$)

$$
\mathrm{Q}\left(\mathrm{n}_{\mathrm{d}}=1, \mathrm{~L}=2\right)=0
$$

$$
B\left(E 2 ; n_{d}=1, L=2 \rightarrow n_{d}=0, L=0\right)=e_{B}^{2} N
$$

$T(E 0) \propto \hat{n}_{d} \quad$ diagnal in n_{d}
No E0 transitions involving these spherical states

The spherical states exhaust the ($\mathrm{n}_{\mathrm{d}}=0,1$) irreps of $\mathrm{U}(5)$

The $\mathrm{n}_{\mathrm{d}}=2$ component in the ($\mathrm{L}=0,2,4$) states of the g_{1} and g_{2} bands is extremely small

$\mathrm{U}(5)$ and $\mathrm{SO}(6)$ Dynamical Symmetries

$$
\begin{aligned}
& U(6) \supset U(5) \supset S O(5) \supset S O(3) \quad\left|[N] n_{d} \tau n_{\Delta} L\right\rangle \quad \text { Spherical vibrator } \\
& \mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) \quad\left|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle \quad \gamma \text {-unstable rotor }
\end{aligned}
$$

common segment
$\mathrm{SO}(5) \supset \mathrm{SO}(3)$

$\mathrm{U}(5)$ and $\mathrm{SO}(6)$ Dynamical Symmetries

$$
\begin{aligned}
& \mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) \quad\left|[\mathrm{N}] \mathrm{n}_{\mathrm{d}} \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle \quad \text { Spherical vibrator } \\
& \mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) \quad\left|[\mathrm{N}] \sigma \tau \mathrm{n}_{\Delta} \mathrm{L}\right\rangle \quad \gamma \text {-unstable rotor } \\
& \begin{array}{|llc|}
\hline n_{d}=2^{4 \pm}{ }_{2 \pm} & 0^{ \pm}- \\
n_{d}=1 & { }^{2 \pm} & \\
n_{d}=0 & 0^{+ \pm} & U(5) \\
\hline
\end{array}
\end{aligned}
$$

Spherical and γ-unstable deformed Shape Coexistence
Intrinsic part of C.P. Hamiltonian

$$
\begin{gathered}
\left\{\begin{array}{l}
\hat{H}|N, \sigma=N, \tau, L\rangle=0 \\
\hat{H}\left|N, n_{d}=\tau=L=0\right\rangle=0
\end{array}\right. \\
\hat{H}=r_{2} R_{0}^{\dagger} \hat{n}_{d} R_{0} \quad R_{0}^{\dagger}=d^{\dagger} \cdot d^{\dagger}-\left(s^{\dagger}\right)^{2}
\end{gathered}
$$

Energy Surface $\tilde{E}(\beta)=r_{2} \beta^{2}\left(\beta^{2}-1\right)^{2}\left(1+\beta^{2}\right)^{-3}$

$$
=\left(1+\beta^{2}\right)^{-3}\left[A \beta^{6}+D \beta^{4}+F \beta^{2}\right]
$$

- Two degenerate spherical and γ-unstable deformed global minima: $\beta=0$ and $\beta=1$

Spherical \& γ-unstable deformed

Energy surface independent of γ SO(5) symmetry

a barrier separates the spherical and γ-unstable deformed minima

$$
\mathrm{E}(\beta, \gamma=0)
$$

Normal modes: $\quad \epsilon_{\beta}=2 r_{2} N^{2}$

$$
\epsilon=r_{2} N^{2}
$$

Complete Hamiltonian
$\hat{H}^{\prime}=r_{2} R_{0}^{\dagger} \hat{n}_{d} R_{0}+\rho_{5} \hat{C}_{2}[\mathrm{SO}(5)]+\rho_{3} \hat{\mathrm{C}}_{2}[\mathrm{SO}(3)]$

bandhead spectrum

SO(6) decompostion

- g-band: pure SO(6)-DS ($\sigma=\mathrm{N}$)
- Excited β bands: mixed

$$
\Rightarrow \mathrm{SO}(6)-\mathrm{PDS}
$$

U(5) decompostion

- Spherical states: pure U(5)-DS with ($n_{d}=\tau=L=0$) \& ($\left.n_{d}=\tau=1, L=2\right)$
- Higher spherical states: pronounced \& coherent mixing

$$
\Rightarrow U(5)-\mathrm{PDS}
$$

Coexisting U(5)-PDS \& SO(6)-PDS

Concluding Remarks

Single DS

 or PDS

- A symmetry-based approach to shape coexistence

Ingredients: spectrum generating algebra with several DS chains geometry: coherent states
intrinsic-collective resolution of the Hamiltonian

- A single number-conserving rotational invariant H which conserves the dynamical symmetry for selected bands
Multiple Partial Dynamical Symmetries relevant for shape-coexistence
$\mathrm{U}(5)$ and $\mathrm{SU}(3)$ PDS spherical-prolate

SU(3) and $\overline{\mathrm{SU}(3)} \mathrm{PDS}$
$U(5), S U(3)$ and $\overline{S U(3)}$ PDS U5) and SO(6) PDS
prolate-oblate spherical-prolate-oblate spherical - γ-unstable deformed

- Closed expressions for quadrupole moments and $\mathrm{B}(\mathrm{E} 2)$ values; selection rules for E2 \& E0 transitions and isomeric states

Concluding Remarks

$$
\begin{aligned}
& \mathrm{G}_{1}-\mathrm{PDS} \\
& \mathrm{G}_{2}-\mathrm{PDS} \\
& \mathrm{G}_{3}-\mathrm{PDS}
\end{aligned}
$$

- Structure away from the critical point can be studied by adding the Casimir operator of a particular DS chain
- PDS: solvable bands are unmixed. Band mixing can be incorporated by including in H
 kinetic terms which do not affect $\mathrm{E}(\beta, \gamma)$ but, if strong, may destroy the PDS
- PDS in the IBM with configuration mixing: Gavrielov

Partial symmetry/solvability in the GCM: Levai, Georgoudis, Buganu

Concluding Remarks

$$
\begin{aligned}
& \mathrm{G}_{1}-\mathrm{PDS} \\
& \mathrm{G}_{2}-\mathrm{PDS} \\
& \mathrm{G}_{3}-\mathrm{PDS}
\end{aligned}
$$

- Structure away from the critical point, can be studied by adding the Casimir operator of a particular DS chain
- PDS: solvable bands are unmixed.

Band mixing can be incorporated by including in H
 kinetic terms which do not affect $E(\beta, \gamma)$ but, if strong, may destroy the PDS

- PDS in the IBM with configuration mixing: Gavrielov

Partial symmetry/solvability in the GCM: Levai, Georgoudis, Buganu
More (Shapes) is Different (Symmetries)

Coexistence

Multiple PDSs

Thank you

