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 Dynamical Symmetry 

• Solvability of the complete spectrum 

• Quantum numbers for all eigenstates 

U(6)  U(5)  SO(5)  SO(3)       [N] nd  n L            Spherical vibrator 

U(6)  SO(6)  SO(5)  SO(3)     [N]   n L             -unstable deformed rotor      

• IBM:  s (L=0) , d (L=2) bosons, N conserved (Arima, Iachello 75) 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Prolate-deformed rotor 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Oblate-deformed rotor 

Gdyn = U(6), Gsym = SO(3) 



Geometry 

Coherent state 

Global min: equilibrium shape (0,0)  

Energy surface  

0 = 0 spherical 

0 > 0 deformed: 0 =0 (prolate), 0 = /3 (oblate),  0 < 0 < /3 (triaxial) 

U(5)           0 = 0                                     nd = 0 

SU(3)        (0 = 2, 0 = 0)                      (,) = (2N,0)  

SU(3)        (0 = 2, 0 = /3)                   (,) = (0,2N)  

SO(6)        (0 = 1, 0 arbitrary)                 = N  

Intrinsic state ground band |0,0; N,      L-projected states |0,0; N,x,L   

• |0,0; N lowest (highest) weight state in a particular irrep 1 of leading subalgebra G1    

• Dynamical symmetry corresponds to a particular shape (0,0)    

U(6)  G1  G2  … SO(3)               |N, 1, 2,…,L  
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• Good quantum numbers for all states 
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 Dynamical Symmetry 

• Complete solvability 

• Good quantum numbers for all states 

• DS: benchmark for a single shape 

U(6)  G1  G2  … SO(3)               |N, 1, 2,…,L  

Spherical, prolate- , oblate-, -unstable deformed 

         [G1 = U(5), SU(3), SU(3), SO(6)] 

 Partial Dynamical Symmetry 

• Some states solvable and/or with good quantum numbers 

• G1, G2 incompatible (non-commuting) symmetries 

• PDS: benchmark for shape coexistence 



Construction of Hamiltonians with a single PDS  

N                            

  |N 0  = 0  
n-particle  
annihilation 
operator 

for all possible  contained  

in the irrep 0 of G  

• Condition is satisfied if  0  N-n  

DS is broken but  
solvability of states with  = 0  Is preserved  

  |N 0  = 0  Lowest weight state  Equivalently: 
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• PDS Hamiltonian 

Intrinsic part:    H|N 0  = 0  

Collective part:  Hc composed of Casimir operators of conserved Gi  G in the chain   

Intrinsic collective resolution 



Multiple PDS and Shape Coexistence  

(1,1) 

Single PDS 

Single shape 



Multiple PDS and Shape Coexistence  

(1,1) 

Single PDS 

Single shape 

(1,1) 

(2,2) 

Multiple PDS 

Multiple shapes  

Collective part:                                        rotational splitting 

Critical-point Hamiltonian 

G1 -PDS & G’1 -PDS 

Intrinsic part:         determines E(,)      band structure            

conserved Gi  in both chains 



Departure from the Critical Point 

(1,1) 

(2,2) 



 Symmetry Approach to Shape-Coexistence  

U(6)  U(5)  SO(5)  SO(3)       Spherical vibrator                 = 0  

U(6)  SU(3)   SO(3)                  Prolate-deformed rotor         = 2,  = 0 

U(6)  SO(6)  SO(5)  SO(3)     -unstable deformed rotor    =1,  arbitrary  

 Multiple PDS and Multiple Shapes 

G1 = U(5)      G2 = SU(3)          spherical – prolate  

G1 = SU(3)    G2 = SU(3)          prolate – oblate  

G1 = U(5)      G2 = SO(6)          spherical - -unstable  

G1 = U(5)  G2 = SU(3)  G3 = SU(3)  spherical-prolate-oblate  

U(6)  SU(3)   SO(3)                  Oblate-deformed rotor          = 2,  = /3 

Triple coexistence  

  Leviatan, Shapira, PRC 93, 051302(R) (2016)  

 Leviatan, Gavrielov,  Phys. Scr. 92, 114005 (2017)                                     

                     arXiv:1803.03982 [nucl-th] (2018)                             



(0,2N) 

(2,2N-4) 

(2N,0) 

(2N-4,2) 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Prolate-deformed rotor 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Oblate-deformed rotor 

 SU(3) and SU(3) Dynamical Symmetries 

SU(3) SU(3) 
DS spectra are identical 

 

Quadrupole moments  

of corresponding states 

differ in sign  prolate oblate 



 
Intrinsic part of C.P. Hamiltonian 

Energy Surface 

(0,2N) 

(2,2N-4) 

(2N,0) 

(2N-4,2) 
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 SU(3) and SU(3) Dynamical Symmetries 

SU(3) SU(3) 
DS spectra are identical 

 

Quadrupole moments  

of corresponding states 

differ in sign  

 Prolate-Oblate Shape Coexistence 

• Two degenerate P-O global minima  

(=2, = 0) and (=2, = /3) [or equivalently (= -2,  0) ] 

prolate oblate 



E(,) 

E(,=0) 

Saddle points support 

a barrier separating 

the various minima 

Normal modes: 

oblate-prolate 



Complete Hamiltonian 

Ground g1 band: pure SU(3)-DS states (2N,0) 

Ground g2 band: pure SU(3)-DS states (0,2N) 

Excited  and  bands: considerable mixing  

 SU(3)-PDS coexisting with SU(3)-PDS 

SU(3) decomposition SU(3) decomposition 

oblate     prolate 



(1,1)  (2,2) tensor 

E2 selection rule: g1    g2 

(0,0)  (2,2) tensor 

E0 selection rule: g1    g2 

ANALYTIC expressions ! 

P-O coexistence 



 U(5), SU(3) and SU(3) Dynamical Symmetries 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Prolate-deformed rotor 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Oblate-deformed rotor 

U(6)  U(5)  SO(5)  SO(3)        [N] nd  n L           Spherical vibrator 

(2,2N-4) 

(0,2N) SU(3) (2N,0) 

(2N-4,2) 

SU(3) nd = 0 

nd = 1 

nd = 2 

U(5)   



 U(5), SU(3) and SU(3) Dynamical Symmetries 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Prolate-deformed rotor 

U(6)  SU(3)   SO(3)                  [N] ( , ) K L         Oblate-deformed rotor 

U(6)  U(5)  SO(5)  SO(3)        [N] nd  n L           Spherical vibrator 

 Spherical-Prolate-Oblate Shape Coexistence 

 Intrinsic part of C.P. Hamiltonian 

Energy Surface 

• Three degenerate S-P-O global minima: =0, (= 2, = 0)  

Complete Hamiltonian 

(2,2N-4) 

(0,2N) SU(3) (2N,0) 

(2N-4,2) 

SU(3) nd = 0 

nd = 1 

nd = 2 

U(5)   



oblate-spherical-prolate 

E(,) 

E(,=0) 

bandhead 

spectrum 

Saddle points support 

a barrier separating 

the various minima 

Normal modes: 

Triple coexistence 



 Triple Spherical-Prolate-Oblate Coexistence 

P-O bands show similar behavior as in P-O coexistence 

New aspect: occurrence of spherical type of states 

(nd=L=0) and (nd=1,L=2) pure U(5)-DS 

Higher spherical states: pronounced (70%) nd=2 

U(5) decompostion 

oblate  spherical prolate  



 Coexisting Partial Dynamical Symmetries 

SU(3) decomposition SU(3) decompostion U(5) decompostion 

The purity of selected sets of states with respect to  

SU(3), SU(3) and U(5), in the presence of other mixed states, 

are the hallmarks of coexisting SU(3)-PDS, SU(3)-PDS and U(5)-PDS 

oblate spherical prolate 



S-P-O coexistence 

Deformed SU(3) & SU(3) DS states  

(g1  g1, g2  g2)  QL & B(E2)  KNOWN!  

Spherical U(5)-DS states (nd=1  nd=0) 

Q(nd=1,L=2) = 0 

nd = 1 diagnal in nd 

No E0 transitions involving these 

spherical states 

The spherical states exhaust the 

(nd=0,1) irreps of U(5) 

Spherical  deformed  E2 rates very weak 

The nd=2 component in the (L=0,2,4) 

states of the g1 and g2 bands is 

extremely small 



 U(5) and SO(6) Dynamical Symmetries 

U(6)  U(5)  SO(5)  SO(3)       [N] nd  n L       Spherical vibrator 

U(6)  SO(6)  SO(5)  SO(3)     [N]   n L        -unstable rotor  

nd = 0 

nd = 1 

nd = 2 

U(5)   =N 

=N-2 

SO(6)   

common segment  

SO(5)   SO(3)  



 U(5) and SO(6) Dynamical Symmetries 

U(6)  U(5)  SO(5)  SO(3)       [N] nd  n L       Spherical vibrator 

U(6)  SO(6)  SO(5)  SO(3)     [N]   n L        -unstable rotor  

nd = 0 

nd = 1 

nd = 2 

U(5)   =N 

=N-2 

SO(6)   

 Spherical and -unstable deformed Shape Coexistence 

 
Intrinsic part of C.P. Hamiltonian 

Energy Surface 

• Two degenerate spherical and -unstable deformed global minima: =0 and =1  

common segment  

SO(5)   SO(3)  



Spherical & -unstable deformed 

Energy surface independent of  

SO(5) symmetry 

a barrier separates the 

spherical and -unstable 

deformed minima 

Normal modes: 

Complete Hamiltonian 

E(,) 

E(,=0) 

bandhead 

spectrum 



U(5) decompostion 

SO(6) decompostion 

- g-band: pure SO(6)-DS (=N) 

- Excited  bands: mixed 

- Spherical states: pure U(5)-DS 

   with (nd==L=0) & (nd==1,L=2) 

- Higher spherical states:  

   pronounced & coherent mixing  

 SO(6)-PDS 

 U(5)-PDS 

Coexisting U(5)-PDS & SO(6)-PDS 



Deformed SO(6)-DS states (g  g) 

Q(=N,) = 0 

Spherical U(5)-DS states (nd=1  nd=0) 

Q(nd=1,L=2) = 0 

Spherical and  

-unstable deformed 

coexistence 

 = 0, nd   = 1 

g-band exhausts the =N irrep of SO(6) 

deformed  spherical E2 rates very weak 

diagnal in nd 

No E0 transitions involving these 

spherical states 

= KNOWN ! 



 Concluding Remarks 

• A symmetry-based approach to shape coexistence 

  Ingredients: spectrum generating algebra with several DS chains 

                      geometry: coherent states 

                      intrinsic-collective resolution of the Hamiltonian 

• A single number-conserving rotational invariant H which conserves    

  the dynamical symmetry for selected bands 

  Multiple Partial Dynamical Symmetries relevant for shape-coexistence 

  

 U(5) and SU(3) PDS                spherical-prolate 

 SU(3) and SU(3) PDS             prolate-oblate   

 U(5), SU(3) and SU(3) PDS    spherical-prolate-oblate 

 U5) and SO(6) PDS                 spherical - -unstable deformed 

• Closed expressions for quadrupole moments and B(E2) values; 

  selection rules for E2 & E0 transitions and isomeric states   

Single DS  

or PDS 
Multiple PDS 



• Structure away from the critical point can be studied by 

  adding the Casimir operator of a particular DS chain 

• PDS:  solvable bands are unmixed. 

  Band mixing can be incorporated by including in H    

  kinetic terms which do not affect E(,) but, if strong,  

  may destroy the PDS 

 Concluding Remarks 

G1 -PDS 

G2 -PDS 

G1 -PDS 

G2 -PDS 

G3 -PDS  

• PDS in the IBM with configuration mixing:  Gavrielov 

  Partial symmetry/solvability in the GCM:     Levai, Georgoudis, Buganu 



 More (Shapes) is Different (Symmetries)  

• Structure away from the critical point, can be studied by 

  adding the Casimir operator of a particular DS chain 

• PDS:  solvable bands are unmixed. 

  Band mixing can be incorporated by including in H    

  kinetic terms which do not affect E(,) but, if strong,  

  may destroy the PDS 

 Concluding Remarks 

G1 -PDS 

G2 -PDS 

G1 -PDS 

G2 -PDS 

G3 -PDS  


 

Coexistence               Multiple PDSs 

• PDS in the IBM with configuration mixing:  Gavrielov 

  Partial symmetry/solvability in the GCM:     Levai, Georgoudis, Buganu 


 



Thank you 


