# Structure of Cd isotopes within the beyond-mean-field IBM

### Kosuke Nomura – U. Zagreb

Padua, May 2018

#### Even-even <sup>106-116</sup>Cd $^{112}Cd$ Deviation from vibrational <u>143</u>3 4<sup>+</sup> <u>141</u>6 $\frac{2^+}{-}$ 1468 $0^{+}$ picture, due to additional 1312 $0^{+}$ 1224 0+ and 2+ states $\rightarrow$ intruder? $2^{+}$ 618 • Experimental evidence: P. E. Garrett (2016), etc. and refs therein $0^{+}$ 0

#### We consider the problem within the DFT framework

#### K.N., J. Jolie, arXiv:1802.02348

#### Self-consistent mean-field potential energy surface



spectroscopic properties  $\rightarrow$  calculated by the IBM Hamiltonian

#### SCMF-to-IBM mapping

1. SCMF calculation of energy surface

2. ... mapped to config. mix IBM surface —> strength parameters of the IBM Hamiltonian



3. energies and electromagnetic transition rates —> diagonalization in lab frame

K.N., N. Shimizu, T. Otsuka, Phys. Rev. Lett. 101, 142501 (2008)

#### IBM with configuration mixing



energy needed to promote protons across Z=50

$$\hat{H}_i = \epsilon_d (\hat{n}_{d\nu} + \hat{n}_{d\pi}) + \kappa \hat{Q}_\nu \cdot \hat{Q}_\pi + \kappa' \hat{L} \cdot \hat{L},$$
$$\hat{H}_{\text{mix}} = \omega (s_\pi^\dagger s_\pi^\dagger + d_\pi^\dagger d_\pi^\dagger)^{(0)} + H.c.$$

Duval-Barrett (1981)











| $J_i^+$               | $J_f^+$        | <sup>108</sup> Cd |            | <sup>110</sup> Cd  |            | <sup>112</sup> Cd |           | <sup>114</sup> Cd |           | <sup>116</sup> Cd |            |
|-----------------------|----------------|-------------------|------------|--------------------|------------|-------------------|-----------|-------------------|-----------|-------------------|------------|
|                       |                | Expt              | Theo       | Expt               | Theo       | Expt              | Theo      | Expt              | Theo      | Expt              | Theo       |
| $2_1$                 | 01             | 26.6(3)           | 29         | 27.0(8)            | 33         | 30.3(2)           | 39        | 31.1(19)          | 46        | 33.5(12)          | 36         |
| $0_2$                 | $2_1$          | -                 | 1.4        | <40                | <b>2.8</b> | 51(14)            | 4.5       | 27.4(17)          | 2.9       | 0.79(22)          | 9.5        |
| $2_2$                 | 01             | 1.8(3)            | 1.1        | 0.68(14)           | 1.7        | 0.65(11)          | 2.4       | 0.48(6)           | 3.2       | 1.11(18)          | 1.9        |
| $2_2$                 | $2_1$          | 17(5)             | 6          | 19(4)  or  30(5)   | 11         | 39(7)             | 18        | 22(6)             | <b>21</b> | 25(10)            | 27         |
| $\mathbf{2_2}$        | $0_{2}$        | -                 | 1.7        | 1.35(20)           | 1.2        | -                 | 2.6       | 3.4(7)            | 11        | -                 | 1.7        |
| $4_1$                 | $2_{1}$        | 41(6)             | 39         | 42(9)              | 47         | 63(8)             | 55        | 62(4)             | 65        | 56(14)            | 51         |
| <b>0</b> <sub>3</sub> | $2_1$          | -                 | 0.003      | <7.9               | 0.10       | 0.0121(17)        | 0.82      | 0.0026(4)         | 4.4       | 30(6)             | 1.6        |
| 03                    | $2_{2}$        | -                 | 13         | <1680              | 29         | 99(16)            | 42        | 127(16)           | 39        | -                 | 96         |
| $2_{3}$               | $0_1$          | -                 | 0.02       | 0.28(4)            | 0.051      | 0.88(17)          | 0.085     | 0.33(4)           | 0.072     | 1.11(18)          | 0.25       |
| $2_{3}$               | $2_1$          | -                 | 0.02       | $0.7^{+3}_{-4}$    | 0.068      | 0.12(7)           | 0.14      | < 0.045           | 0.17      | $6.2^{+22}_{-26}$ | 0.0083     |
| $2_{3}$               | $0_{2}$        | -                 | 16         | 29(5)              | 20         | 120(50)           | 25        | 65(9)             | 32        | -                 | <b>2.8</b> |
| $\mathbf{2_3}$        | $\mathbf{2_2}$ | -                 | 0.17       | <8                 | 0.46       | -                 | 0.79      | -                 | 0.22      | -                 | 7.8        |
| $2_{3}$               | 03             | -                 | 0.56       | -                  | 0.43       | -                 | 0.98      | -                 | 1.9       | $86^{+24}_{-30}$  | 76         |
| $3_{1}$               | $2_1$          | -                 | 1.5        | 0.85(25)           | 2.5        | 1.8(5)            | 3.3       | -                 | 4.2       | 2.6(7)            | 2.0        |
| $3_{1}$               | $2_2$          | -                 | 30         | 22.7(69)           | 38         | 64(18)            | 47        | -                 | 55        | 61(17)            | 39         |
| $3_{1}$               | 41             | -                 | <b>3.9</b> | $2.4^{+9}_{-8}$    | 6.8        | 25(8)             | 10        | -                 | 12        | 18(10)            | 11         |
| $\mathbf{3_1}$        | $2_3$          | -                 | 2.3        | $<\!\!5$           | 1.9        | -                 | 1.6       | -                 | 1.9       | -                 | 3.6        |
| $4_2$                 | $2_1$          | -                 | 0.035      | 0.14(6)            | 0.083      | 0.9(3)            | 0.14      | 0.50(5)           | 0.32      | 3.0(7)            | 0.22       |
| $4_2$                 | $\mathbf{2_2}$ | -                 | 15         | 22(10)             | 23         | 58(17)            | 31        | 32(4)             | 45        | 230(130)          | 44         |
| $4_2$                 | $4_1$          | -                 | 4.8        | $10.7^{+49}_{-48}$ | 8.6        | 24(8)             | 13        | 17(6)             | 16        | 150(90)           | 18         |
| $4_2$                 | $2_3$          | -                 | 1.4        | < 0.5              | 0.98       | 59(20)            | 0.79      | 119(12)           | 5.9       | -                 | 31         |
| $6_1$                 | $4_1$          | -                 | 39         | 62(18)             | 49         | -                 | 59        | 119(15)           | 72        | 110(46)           | 58         |
| $8_1$                 | 61             | -                 | <b>34</b>  | 80(22)             | 45         | -                 | <b>58</b> | 86(28)            | 73        | -                 | 61         |

TABLE II: Comparison between experimental and theoretical  $B(E2; J_i^+ \to J_f^+)$  values in Weisskopf units.

#### Structures of 0+ and 2+ states



Table IV. Comparison between experimental and theoretical  $\rho^2(\text{E0}; J_i^+ \to J_f^+)$  values. The experimental  $\rho^2(\text{E0})$  values are not known for <sup>108</sup>Cd and <sup>116</sup>Cd.

|                   | 7+                    | 7+             | $\rho^2(\text{E0}) \times 10^3$ |           |  |  |  |
|-------------------|-----------------------|----------------|---------------------------------|-----------|--|--|--|
|                   | $J_i$                 | $J_f$          | Exp                             | Theory    |  |  |  |
| <sup>110</sup> Cd | 02                    | 01             | $<31(5)^{a}$                    | 37        |  |  |  |
|                   | <b>0</b> <sub>3</sub> | $0_1$          | <11 <sup>b</sup>                | 1.1       |  |  |  |
|                   | $2_2$                 | $\mathbf{2_1}$ | $20(15)^{c}$                    | 1.1       |  |  |  |
|                   | $2_3$                 | $2_1$          | $9(8)^{a}$                      | 26        |  |  |  |
|                   | $4_3$                 | $4_1$          | $106^{+98\mathrm{a}}_{-91}$     | 0.44      |  |  |  |
| $^{112}$ Cd       | $0_2$                 | $\mathbf{0_1}$ | $34(9)^{d}$                     | 36        |  |  |  |
|                   | <b>0</b> <sub>3</sub> | $\mathbf{0_1}$ | $0.87(5)^{d}$                   | 8.6       |  |  |  |
|                   | $0_3$                 | $\mathbf{0_2}$ | $10.7(6)^{d}$                   | 12        |  |  |  |
|                   | $2_3$                 | $\mathbf{2_1}$ | $31(20)^{c}$                    | <b>27</b> |  |  |  |
| $^{114}$ Cd       | $0_2$                 | $0_{1}$        | $19(2)^{d}$                     | 12        |  |  |  |
|                   | <b>0</b> <sub>3</sub> | $0_1$          | $1.83(13)^{d}$                  | 44        |  |  |  |
|                   | <b>0</b> <sub>3</sub> | $0_2$          | $0.65(5)^{d}$                   | 100       |  |  |  |
|                   | $0_4$                 | $0_1$          | $0.9(4)^{d}$                    | 8.8       |  |  |  |
|                   | $\mathbf{2_2}$        | $\mathbf{2_1}$ | $< 28^{\circ}$                  | 0.25      |  |  |  |
|                   | $2_3$                 | $\mathbf{2_1}$ | $38(5)^{\mathrm{e}}$            | 22        |  |  |  |
|                   | $2_3$                 | $\mathbf{2_2}$ | $22(6)^{e}$                     | 1.1       |  |  |  |
|                   | $2_4$                 | $\mathbf{2_2}$ | ${<}20^{ m e}$                  | 57        |  |  |  |
|                   | $\mathbf{3_2}$        | $\mathbf{3_1}$ | $<\!\!130^{\rm e}$              | <b>35</b> |  |  |  |
|                   | $4_2$                 | $4_1$          | $67(10)^{ m e}$                 | 0.38      |  |  |  |

#### Configuration-mixing IBM based on SCMF

- overall good description of energies and transition rates without empirical fit
- predicts intruder states
- mixing between normal and intruder configs not correctly reproduced
- normal states predicted to be rotational like —> too deformed prolate minimum

## Thank you

#### Geometrical Structure

Coherent-state matrix

$$\mathcal{E} = \begin{pmatrix} E_{11}(\beta, \gamma) & E_{13}(\beta, \gamma) \\ E_{31}(\beta, \gamma) & E_{33}(\beta, \gamma) + \Delta \end{pmatrix}$$

$$E_{ii}(\beta,\gamma) = \langle \phi_i | \hat{H}_i | \phi_i \rangle$$
$$E_{ij}(\beta,\gamma) = E_{ji}(\beta,\gamma) = \langle \phi_j | \hat{H}_{\text{mix}} | \phi_i \rangle$$

Boson coherent state

$$|\phi_i\rangle = \Pi_{\rho=\nu,\pi} (s_{\rho}^{\dagger} + \beta_{\rho} \cos \gamma d_{\rho 0}^{\dagger} + \frac{1}{\sqrt{2}} \sin \gamma (d_{\rho 2}^{\dagger} + d_{\rho - 2}^{\dagger})^{N_{\rho}} |\mathbf{o}\rangle$$

IBM energy surface -> lower eigenvalue of the matrix

Frank, Van Isacker, Vargas (2004)

 associate unperturbed Op-Oh config (E<sub>11</sub>) to prolate global minimum and 2p-2h config (E<sub>33</sub>) to oblate local "minimum" —> parameters for unperturbed IBM Hamiltonians

2. reproduce energy difference between the minima —>  $\Delta$ 

3. mixing term introduced perturbatively to reproduce "barrier" —>  $\omega$ 

KN, R. Rodriguez-Guzman, L. M. Robledo, N. Shimizu, Phys. Rev. C 86, 034322 (2012)