A new approximate nuclear symmetry, Proxy-SU(3), and parameter-free predictions for deformed nuclei

R. F. Casten
Yale and MSU-FRIB

Padova, May 22-25, 2018

SU(3) (a la Elliott) breaks down in heavy nuclei. Proxy-SU(3) – Approximate shell model to recover SU(3)

Recovers H.O. → SU(3). Lose one orbit: 30/32 particles Big problem: Parity issue Spurious matrix elements.

N particles: group is U(N/2) with SU(3) sub-group G.s.— highest weight irreps labeled by SU(3) quantum numbers: (λ, μ)

Relation of Proxy-SU(3) irrep labels, (λ, μ) to β and γ

$$eta^2 = rac{4\pi}{5} rac{1}{(Ar^2)^2} (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3)$$

$$\gamma = \arctan\left(\frac{\sqrt{3}(\mu+1)}{2\lambda+\mu+3}\right)$$

Note that, if $\mu > \lambda$, the nucleus is oblate ($\gamma > 30$ deg.)

Combined (proton + neutron) Proxy-SU(3) irreps: prolate-oblate shapes

TABLE II: Most leading SU(3) irreps [34, 35] for nuclei with protons in the 50-82 shell and neutrons in the 82-126 shell. Boldface numbers indicate nuclei with $R_{4/2} = E(4_1^+)/E(2_1^+) \ge 2.8$, while * denotes nuclei with $2.8 > R_{4/2} \ge 2.5$, and ** labels a few nuclei with $R_{4/2}$ ratios any other nuclei with $R_{4/2} < 2.5$. For the rest of the still unknown [47]. Oblate irre **Predictions using** (λ , μ)

			Ba	Ce	Nd	Sm	Gd	Dy	\mathbf{Er}	Yb	Hf	W	Os	Pt
		Z	56	58	60	62	64	66	68	70	72	74	76	78
		Z_{val}	6	8	10	12	14	16	18	20	22	24	26	28
	N_{val}	irrep	(18.0)	(18.4)	(20,4)	(24,0)	(20,6)	(18,8)	(18,6)	(20,0)	(12,8)	(6,12)	(2,12)	(0,8)
88	6	(24.0)	(42,0)*	$(42,4)^*$	(44,4)*									
90	8	(26(4))	(44,4)	(44,8)	(16,8)		(46,10)	(44,12)	(44,10)*	(46,4)*	(38,12)*			
92	10	(30, 1)	(48,4)	(48,8)	(50,8)	(54,4)	· · · ·	(48,12)			(42,12)*			
94	12	(36.0)	MI	4	(56.4)	(60.0)	_(56,6)	(54,8)	(54.6)	(56,0)	(48,8)		(38,12)*	
	()	(,,,,	aro	w to	War	de	1,12)	(52,14)		$(54,^{\circ})$	(4R 11)	(40 12)	(26 1 <u>2</u>)*	
	(λ,μ) grow towards mid-shell					1,14)	62,16)	(52,14)	(54,8)	4	1		I	
1						3,12)	54,14)		(56,6)	4	'	Ţ	ĮI	
1			IIIIG	-2116	711		30,6)	(8.8)	(58,6)	(60.0)	[eb]	0 -	, retereters	Jolie and
1	$\lambda \gg \mu$ prolate						(52,16)		(54,8)	2	-		neman, Phys.	
1		// //	- μ -	- þi	Ulau	-	0,18)	(48,20)	(48,18)		•	-1		C 68 , 031301
108	26	(28,12)	(40,12)	(40,10)	(48,16)	(52,12)	(48,18)	(46,20)	(46,18)	(48,12)		2 - I	1	· · · · · · · · · · · · · · · · · · ·
110	28	(28,8)		(46,12)	(48,12)	(52,8)	(48,14)	(46,16)	(46,14)	(48,8)	(4	,		R□□2003□
112	30	(30,0)	(48,0)	(48,4)	(50,4)	(54,0)	(50,6)	(48,8)	(48,6)	(50,0)	(42,8)	(36,12)	(32,12)	(30,8)**
114	32	(20,10)	(38.10)	(38.14)	(40.14)	(44.10)	(40.16)	(38.18)	(38.16)	(40.10)	(32,18)	(26.22)	(22.22)	(20.18)**
116	34	(12,16)	0.70	malat	to to	abla	to ab	anal	nhaa	0	(24,14)	(18, 28)*	(14, 28)	(12, 24) * *
118	36	(6,18)	a p	roiai	ie-10-	-UD12	ite sh	ape/	pnaso	t	18, 26	(12, 30)	(8,30)*	(6,26)**
120	38	(2,16)	two	ngiti	0 1 1 0 0		a of N	J _ 11	16)	/	14, 24	(8, 28)	(4,28)*	(2,24)**
		` ' /	I ura	115111	OH OC	Cur	s at N	I = I	LU, A	$< \mu$		<u>, , , , , , , , , , , , , , , , , , , </u>	· /	<u>, , , , , , , , , , , , , , , , , , , </u>

Proxy-SU(3) predictions of the β deformation variable

Proxy-SU(3) predictions of the β deformation variable

Empirical values and Proxy-SU(3) predictions of γ deformation values

Similar trends: 10-15 deg. rising to ~30 degrees

Oscillations in the predictions: Presumably due to neglect
of pairing which would average out predictions over
several neutron numbers

Proxy
$$\rightarrow \gamma \rightarrow$$
 Davydov \rightarrow B(E2: $\gamma \rightarrow$ ground) values

- Finite γ is equivalent to bandmixing
- Deviations from Alaga rules increase with γ
- Spin INcreasing transitions
 INcrease rel to Alaga
- Spin DEcreasing transitions
 DEcrease rel to Alaga
- Er: γ values vary "parabolically". So do predicted Proxy B(E2)s

Use Proxy γ in Davydov model to predict B(E2: $\gamma \rightarrow$ ground) values: deviations from Alaga rules: Generic behavior of B(E2: $\gamma \rightarrow$ ground) values vs γ

Full set of Proxy-Davydov predictions for ¹⁶⁸ Er

$\mathbf{J}_{ ext{initial}}$	$\mathbf{J}_{ ext{final}}$	¹⁶⁸ Er-EXP	Alaga	Proxy	Ζγ=0.035	PDS	CQF
2 _y	0+	56.2(11)	70	52.9	56.9	64.3	54
•	2+	100	100	100	100	100	100
	4+	7.3(4)	5	8.5	7.6	6.3	8
3 _γ	2+	100	100	100	100	100	100
•	4+	62.6(14)	40	73	62.9	49.3	69
4 _γ	2+	19.3(4)	34	16.4	20.2	28.1	18
•	4+	100	100	100	100	100	100
	6+	13.1(12)	8.6	18.7	16	12.5	16
5 _γ	4+	100	100	100	100	100	100
•	6+	123(14)	57.1	147.7	117	79.6	125
6 _γ	4+	11.2(10)	26.9	7.4	11	20.3	9
•	6+	100	100	100	100	100	100
	8+	37.6(72)	10.6	27.9	23.6	18	20

 Yb: γ values vary erratically. So do predicted Proxy B(E2)s

Summary

- Approximate shell model scheme physics-motivated orbit substitution – recovers an SU(3) symmetry for heavy deformed nuclei
- The Proxy Scheme: simple but with inherent flaws to be assessed
- Analytic parameter-free predictions: ground state shapes, prolate-oblate transition. Overall agreement.
- γ -band to ground band B(E2)s: Proxy $\rightarrow \gamma \rightarrow$ Davydov \rightarrow B(E2)s: Relation to bandmixing
- Improvements (e.g., pairing) and extensions (e.g., higher intrinsic excitations)

Collaborators

Dennis Bonatsos
Nikolay Minkov
R. Burcu Cakirli
Klaus Blaum
Andriana Martinou
I.E. Assimakis
S. Sarantopoulou
RFC

PR. C 95, 064325(2017): Proxy-SU(3) symmetry in heavy def. nuclei

PR C 95, 064326(2017): Analytic predictions for nuclear shapes, prolate dominance, and the P-O shape transition in the proxy-SU(3) model

B(E2) values, in preparation