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Universal theory framework:  Nuclear Energy Density Functionals
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Energy Density Functionals

✔ the nuclear many-body problem is effectively mapped onto a one-body problem without explicitly 
involving inter-nucleon interactions!

✔ the exact density functional is approximated with powers and gradients of ground-state densities and 
currents.

✔ universal density functionals can be applied to all nuclei throughout the chart of nuclides.

Important for extrapolations to regions far from stability!
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Basic implementation: the self-consistent mean field method →  
produces semi-classical energy surfaces as functions of intrinsic  
deformation parameters.

→ include static correlations:  
deformations & pairing 

→ do not include dynamic  
(collective) correlations that  
arise from symmetry restoration  
and quantum fluctuations  
around mean-field minima

prolate-oblate coexistence

triaxial equilibrium shape

octupole deformation



…evolution of nucleonic shells ⇒ phase transitions in equilibrium shapes (QPT)

III. RESULTS AND DISCUSSION

A. The 3D PESs of
148,150,152

Nd
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FIG. 1: (Color online) The calculated potential energy surfaces of 148,150,152Nd.
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Nuclear Quantum Phase Transitions:  

⇒  the physical control parameter - nucleon number - integer values! 

⇒  order parameters - expectation values of operators that as observables  
characterize the state of a nuclear system.

Shape Quantum Phase Transitions



Nuclear QPT ⇒ Landau theory based on potential energy surfaces:

I. INTRODUCTION
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Nuclear QPT ⇒ Landau theory based on potential energy surfaces:

⇒ direct computation of order parameters:
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Figure 4. Schematic diagrams for the behaviour of the order parameter as a function of the control
parameter for second-order (left) and first-order (right) phase transitions.
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Figure 5. Two-neutron separation energies, S2n, for nuclei in the Z = 50–82 shell as a function of
neutron number. Based on masses from [44].

relation to quantum phase transitions have been extensively discussed in [37–43]. Moreover,
due to the discreteness of the control parameter (nucleons come in integer numbers), one
cannot even rigorously speak of derivatives. Nevertheless, data exist supporting the centrality
of these concepts to structural evolution and nuclear equilibrium shapes. We will discuss some
of these later, after discussing the theoretical underpinnings, but first it is useful to consider
the simplest possible nuclear data to see evidence for first-order phase transitional behaviour.

To this end, consider nuclear masses. They embody the sum of all the interactions
between the constituent nucleons. Since changes in the equilibrium shape occur because a
different shape becomes energetically favourable, this must be reflected in the overall binding
energies. However, while the effects are dramatic, they mostly involve changes in the binding
of the valence nucleons and, on the enormous scale (∼GeV) of total binding energies in heavy
nuclei, they are hardly visible. It is therefore usual to consider differences of successive
binding energies of even–even nuclei. These are (except for sign) the same as two-neutron
separation energies, S2n, and are illustrated for the A ∼ 150 region in figure 5. The sudden



Nuclear QPT ⇒ Landau theory based on potential energy surfaces:

⇒ direct computation of order parameters:

Both methods can be combined in a  
microscopic beyond-mean mean-field approach! 

I. INTRODUCTION
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DFT-based Description of Nuclear QPTs 

✔ mean-field approach based on microscopic EDFs ➔ intuitive interpretation of QPTs 
in terms of intrinsic shapes and single-particle states.

✔ collective models based on EDFs (symmetry restoration, fluctuations around the MF 
minima) ➔ parameter-free calculation of order parameters  in the full model space of 
occupied states.

✘ discrete integer values for the control parameter - nucleon number ➔ how 
precisely can a QPT point be assigned to a particular nucleus and the importance of 
particle number projection in the mean-field approach?

✘ identification of order parameters? Accuracy of the EDF-based collective models 
used to calculate excitation spectra and transition rates? 

✘ odd-A nuclei - influence of the unpaired fermion on the location and nature of the 
phase transition.


