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The self-consistent mean field method → produces semi-classical energy surfaces as functions 
of intrinsic deformation parameters.

→ include static correlations:  
deformations & pairing 

→ do not include dynamic  
(collective) correlations that  
arise from symmetry restoration  
and quantum fluctuations  
around mean-field minima

prolate-oblate coexistence

triaxial equilibrium shape

octupole deformation



Collective Hamiltonian

... nuclear excitations determined by quadrupole 
vibrational and rotational degrees of freedom:

Hcoll = Tvib(�, ⇥) + Trot(�, ⇥,�) + Vcoll(�, ⇥)
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The dynamics is determined by: the self-consistent collective potential, the three mass parameters: 
Bββ, Bβγ, Bγγ, and the three moments of inertia Ik, functions of the intrinsic deformations β and γ.

Phys. Rev. C 79, 034303 (2009). 

Prog. Part. Nucl. Phys. 66, 519 (2011). 

✔ an intuitive interpretation of mean-field results in terms of intrinsic shapes and single-particle states

✔ the full model space of occupied states can be used; no distinction between core and valence 
nucleons, no need for effective charges!



Global analysis of quadrupole shape invariants
Phys. Rev. C 95, 054321 (2017). 

621 even-even nuclei:



Phys. Rev. C 95, 054321 (2017). 

…the lowest-order quadrupole invariants:
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⇒ effective deformation parameters:

⇒ signatures of shape coexistence



⇒ signatures of shape coexistence: 

Large values of 
  
and 

First excited 0+ state low in energy compared 
to the first 2+.



Lowest 0+ excitations in N ≈ 90 rare-earth nuclei
J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005 

… eigenspectra of the 5D quadrupole collective Hamiltonian: 



Figure 5. The theoretical excitation spectrum of 152Sm (left), compared to data [40].
The intraband and interband B(E2) values (thin solid arrows) are in Weisskopf units
(W.u.), and (red) dashed arrows denote E0 transitions with the corresponding
ρ2(E0)×103 values.

Figure 6. Same as in the caption to figure 5 but for 154Gd.
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Criteria for the excited 0+ state to be labelled as a β-vibration: B(E2; 0+� ! 2+1 ) ⇡ 12� 33 W.u.

B(E2; 2+� ! 0+1 ) ⇡ 2.5� 6 W.u.

⇢2(E0; 0+2 ! 0+1 ) ⇡ (85� 230)⇥ 10�3
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collective Hamiltonian. This is a well known effect of using the simple Inglis–Belyaev
approximation for the moments of inertia, and is also reflected in the excitation energies of the
excited K=0 and K=2 bands [42]. The wave functions, however, are not affected by this
approximation and we note that the model reproduces both the intraband and interband E2
transition probabilities. The K=2 γ-bands are predicted at somewhat higher excitation
energies compared to their experimental counterparts, and this is most probably due to the
potential energy surfaces being too stiff in γ. The deformed rare-earth N=90 isotones are
characterised by very low K=0 bands based on the 02

+ states. In 152Sm, for instance, this
state is found at 685 keV excitation energy, considerably below the K=2 γ-band. Never-
theless, this state has been interpreted as the band-head of the β-band [41, 42].

In 152Sm the excited K=0 band is calculated at moderately higher energy compared to
data, while the agreement with experiment is very good for 154Gd and 156Dy. We note that a
very similar excitation spectrum for 152Sm was also obtained with the collective Hamitonian
based on the D1S Gogny interaction [42]. Particularly important for the present study are the
E0 transitions between the two lowest K=0 bands, and the B E2; 0 22 1( )l+ + and
B E2; 2 02 1( )l+ + values. The available data are very accurately reproduced by the calculation
and, in particular for 152Sm, the E0 transition strengths and B(E2) values seem to match the
criteria for a β-vibrational state [41].

The E0 transitions strengths reflect the degree of mixing between the two lowest K=0
bands, and figures 5–7 show that the theoretical values that correspond to transitions between
the eigenstates of the collective Hamiltonian reproduce the empirical ρ2(E0) values. The
structure of the low-lying 0+ states is analysed in figure 8, in which the probability density
distributions are plotted in the β−γ plane for the three lowest collective 0+ states of 152Sm,
154Gd and 156Dy. We note that the probability distributions for these states are concentrated
on the prolate axis γ=0°, in contrast to the band-heads of the K=2 γ-bands, for which the

Figure 7. Same as in the caption to figure 5 but for 156Dy.
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Criteria for the excited 0+ state to be labelled as a β-vibration: B(E2; 0+� ! 2+1 ) ⇡ 12� 33 W.u.
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β-vibration or shape coexistence?



probability density distributions are shown in figure 9 . The dynamical γ-deformations of the
latter clearly point to the γ-vibrational nature of these states. The average values of the
deformation parameter β for the collective ground-state wave functions of 152 Sm:

Figure 8. Probability distributions equation (11) in the β−γ plane for the lowest
collective 0 + states of 152 Sm, 154 Gd and 156 Dy.

Figure 9. Probability distributions equation (11) in the β−γ plane for the band-heads
of the K=2 γ-bands of 152 Sm, 154 Gd and 156 Dy.
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Transitions between spherical and axially deformed shapes in the chain of Nd-Sm-Gd isotopes. 
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FIG. 8: (Color online) Neutron single-particle levels in Nd isotopes, as functions of the axial

deformation parameter β. Thick dot-dashed curves denote the position of the Fermi level.
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Neutron single-particle  
levels in Nd isotopes.



Experimental evidence for a first-order shape phase transition at N≈90

Nikšić, Vretenar, Lalazissis, Ring, Phys. Rev. Lett. 99, 092502 (2007)
Li, Nikšić, Vretenar, Meng, Lalazissis, Ring, Phys. Rev. C 79, 054301 (2009)























































































































































 



















 











































































































































































































F
IG

.
6:

(C
ol

or
on

li
n
e)

T
h
e

sp
ec

tr
u
m

of
15

0
N

d
ca

lc
u
la

te
d

w
it
h

th
e

P
C

-F
1

re
la

ti
vi

st
ic

d
en

si
ty

fu
n
c-

ti
on

al
(l
ef

t)
,
co

m
p
ar

ed
w

it
h

th
e

d
at

a
[3

4]
(m

id
d
le

),
an

d
th

e
X

(5
)-

sy
m

m
et

ry
p
re

d
ic

ti
on

s
(r

ig
ht

)
fo

r

th
e

ex
ci

ta
ti
on

en
er

gi
es

,
in

tr
ab

an
d

an
d

in
te

rb
an

d
B

(E
2)

va
lu

es
(i
n

W
ei

ss
ko

p
f
u
n
it
s)

of
th

e
gr

ou
n
d
-

st
at

e
(s

=
1)

an
d

β
1

(s
=

2)
b
an

d
s.

T
h
e

th
eo

re
ti
ca

l
sp

ec
tr

a
ar

e
n
or

m
al

iz
ed

to
th

e
ex

p
er

im
en

ta
l

en
er

gy
of

th
e

st
at

e
2+ 1

,
an

d
th

e
X

(5
)

tr
an

si
ti
on

st
re

n
gt

h
s

ar
e

n
or

m
al

iz
ed

to
th

e
ex

p
er

im
en

ta
l
B

(E
2;

2+ 1
→

0+ 1
).

28



... microscopic calculation of order  
parameters for a first-order nuclear  
QPT between spherical and axially  
deformed shapes.

... using collective wave functions  
obtained by diagonalization of the  
five-dimensional Hamiltonian ...
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TABLE I: The B(E2) values and quadrupole shape invariant q2(0+
n ; k) (in unit of e2b2) in Nd

isotopes, where q2(0+
n ; k) =

k∑
j=1

B(E2; 0+
n → 2+

j ).

144Nd 146Nd 148Nd 150Nd 152Nd 154Nd 156Nd

B(E2; 0+
1 → 2+

1 ) 0.41243 0.796875 1.353881 2.384046 3.548996 4.080346 4.345655

B(E2; 0+
1 → 2+

2 ) 0.003803 0.040853 0.063625 0.003361 0.0002 0.101858 0.106663

B(E2; 0+
1 → 2+

3 ) 0.003146 0.014203 0.056151 0.178894 0.187663 0.072398 0.061663

B(E2; 0+
1 → 2+

4 ) 0.000001 0.000186 0.004067 0.005471 0.002464 0.000127 0.000029

q2(0+
1 ; k = 4) (e2b2) 0.41938 0.852117 1.477724 2.571772 3.739323 4.254729 4.51401

B(E2; 0+
2 → 2+

1 ) 0.098967 0.166729 0.198274 0.205903 0.139194 0.087872 0.07251

B(E2; 0+
2 → 2+

2 ) 0.006116 0.028769 0.362488 1.957861 2.267689 0.10286 0.041417

B(E2; 0+
2 → 2+

3 ) 0.590782 1.005561 1.44571 1.000794 0.718995 2.952074 3.754696

B(E2; 0+
2 → 2+

4 ) 0.001867 0.009202 0.002254 0.001864 0.020941 0.077057 0.059296

q2(0+
2 ; k = 4) (e2b2) 0.697732 1.210261 2.008726 3.166422 3.146819 3.219863 3.927919

FIG. 1: (color online) (a) q2(0+
1 ; k = 4) and q2(0+

2 ; k = 4) in Nd isotopes. (b) the difference between

q2(0+
2 ; k = 4) and q2(0+

1 ; k = 4).

In fig. 1 (a) we show the quadrupole shape invariants q2(0
+
1 ; k = 4) and q2(0

+
2 ; k = 4) in
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q shape invariants:



✘ identification of order parameters? Accuracy of the EDF-based collective models  
used to calculate excitation spectra and transition rates?

✘ How much are the discontinuities at a phase transitional point smoothed out in finite 
nuclei?

✘ discrete integer values for the control parameter - nucleon number ➔ how precisely 
can a QPT point be assigned to a particular nucleus?


