QPT vs shape coexistence in N≈ 90 rare-earth nuclei

Dario Vretenar
University of Zagreb I KOHEZIJA

The self-consistent mean field method \rightarrow produces semi-classical energy surfaces as functions of intrinsic deformation parameters.

Collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom:

$$
\begin{gathered}
H_{\text {coll }}=\mathcal{T}_{\text {vib }}(\beta, \gamma)+\mathcal{T}_{\text {rot }}(\beta, \gamma, \Omega)+\mathcal{V}_{\text {coll }}(\beta, \gamma) \\
\mathcal{T}_{\text {vib }}=\frac{1}{2} B_{\beta \beta} \dot{\beta}^{2}+\beta B_{\beta \gamma} \dot{\beta} \dot{\gamma}+\frac{1}{2} \beta^{2} B_{\gamma \gamma} \dot{\gamma}^{2} \\
\mathcal{T}_{\text {rot }}=\frac{1}{2} \sum_{k=1}^{3} \mathcal{I}_{k} \omega_{k}^{2}
\end{gathered}
$$

The dynamics is determined by: the self-consistent collective potential, the three mass parameters: $B_{\beta \beta}, B_{\beta y}, B_{y y}$, and the three moments of inertia l_{k}, functions of the intrinsic deformations β and γ.
$\boldsymbol{\sim}$ an intuitive interpretation of mean-field results in terms of intrinsic shapes and single-particle states
\checkmark the full model space of occupied states can be used; no distinction between core and valence nucleons, no need for effective charges!

Global analysis of quadrupole shape invariants

Phys. Rev. C 95, 054321 (2017).

621 even-even nuclei:

...the lowest-order quadrupole invariants:

$$
\begin{gathered}
q_{2}\left(0_{i}^{+}\right)=\left\langle 0_{i}^{+}\right| Q^{2}\left|0_{i}^{+}\right\rangle=\sum_{j}\left\langle 0_{i}^{+}\|Q\| 2_{j}^{+}\right\rangle\left\langle 2_{j}^{+}\|Q\| 0_{i}^{+}\right\rangle \\
q_{3}\left(0_{i}^{+}\right)=\sqrt{\frac{35}{2}}\left\langle 0_{i}^{+}\right| Q^{3}\left|0_{i}^{+}\right\rangle=\sqrt{\frac{7}{10}} \sum_{j k}\left\langle 0_{i}^{+}\|Q\| 2_{j}^{+}\right\rangle\left\langle 2_{j}^{+}\|Q\| 2_{k}^{+}\right\rangle\left\langle 2_{k}^{+}\|Q\| 0_{i}^{+}\right\rangle
\end{gathered}
$$

\Rightarrow effective deformation parameters:

$$
\begin{aligned}
& q_{2}\left(0_{i}^{+}\right)=\left(\frac{3 Z e R^{2}}{4 \pi}\right)^{2}\left\langle\beta^{2}\right\rangle \equiv\left(\frac{3 Z e R^{2}}{4 \pi}\right)^{2} \beta_{\mathrm{eff}}^{2} \\
& \frac{q_{3}\left(0_{i}^{+}\right)}{q_{2}^{3 / 2}\left(0_{i}^{+}\right)}=\frac{\left\langle\beta^{3} \cos 3 \gamma\right\rangle}{\left\langle\beta^{2}\right\rangle^{3 / 2}} \equiv \cos 3 \gamma_{\mathrm{eff}}
\end{aligned}
$$

\Rightarrow signatures of shape coexistence

\Rightarrow signatures of shape coexistence:
Large values of $\left|\beta_{\text {eff }} \boldsymbol{\operatorname { c o s }} 3 \gamma_{\text {eff }}\left(0_{2}^{+}\right)-\beta_{\text {eff }} \cos 3 \gamma_{\text {eff }}\left(0_{1}^{+}\right)\right|$ and $\left|\beta_{\text {eff }}\left(0_{2}^{+}\right)-\beta_{\text {eff }}\left(0_{1}^{+}\right)\right|$

First excited 0^{+}state low in energy compared to the first 2^{+}.

Lowest O^{+}excitations in $\mathrm{N} \approx 90$ rare-earth nuclei

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

... eigenspectra of the 5D quadrupole collective Hamiltonian:

Criteria for the excited 0^{+}state to be labelled as a β-vibration:

$$
\begin{aligned}
B\left(E 2 ; 0_{\beta}^{+} \rightarrow 2_{1}^{+}\right) & \approx 12-33 \text { W.u. } \\
B\left(E 2 ; 2_{\beta}^{+} \rightarrow 0_{1}^{+}\right) & \approx 2.5-6 \text { W.u. } \\
\rho^{2}\left(E 0 ; 0_{2}^{+} \rightarrow 0_{1}^{+}\right) & \approx(85-230) \times 10^{-3}
\end{aligned}
$$

Criteria for the excited 0^{+}state to be labelled as a β-vibration:

$$
\begin{aligned}
B\left(E 2 ; 0_{\beta}^{+} \rightarrow 2_{1}^{+}\right) & \approx 12-33 \text { W.u. } \\
B\left(E 2 ; 2_{\beta}^{+} \rightarrow 0_{1}^{+}\right) & \approx 2.5-6 \text { W.u. } \\
\rho^{2}\left(E 0 ; 0_{2}^{+} \rightarrow 0_{1}^{+}\right) & \approx(85-230) \times 10^{-3}
\end{aligned}
$$

Criteria for the excited 0^{+}state to be labelled as a β-vibration:

$$
\begin{aligned}
B\left(E 2 ; 0_{\beta}^{+} \rightarrow 2_{1}^{+}\right) & \approx 12-33 \mathrm{~W} . u \\
B\left(E 2 ; 2_{\beta}^{+} \rightarrow 0_{1}^{+}\right) & \approx 2.5-6 \mathrm{~W} . u \\
\rho^{2}\left(E 0 ; 0_{2}^{+} \rightarrow 0_{1}^{+}\right) & \approx(85-230) \times 10^{-3}
\end{aligned}
$$

Transitions between spherical and axially deformed shapes in the chain of Nd-Sm-Gd isotopes.

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7\end{array}$
β

Neutron single-particle levels in Nd isotopes.

Experimental evidence for a first-order shape phase transition at $\mathrm{N} \approx 90$

Coll.
${ }^{150} \mathrm{Nd}$

... using collective wave functions obtained by diagonalization of the five-dimensional Hamiltonian ...

... microscopic calculation of order parameters for a first-order nuclear QPT between spherical and axially deformed shapes.

\mathbf{x} identification of order parameters? Accuracy of the EDF-based collective models used to calculate excitation spectra and transition rates?
\boldsymbol{x} How much are the discontinuities at a phase transitional point smoothed out in finite nuclei?
\boldsymbol{x} discrete integer values for the control parameter - nucleon number \rightarrow how precisely can a QPT point be assigned to a particular nucleus?

