9th international workshop: Quantum Phase Transitions in Nuclei and Many-body Systems

Shape coexistence and collective low-spin states in ^{112,114}Sn (Lifetime measurements with SONIC@HORUS)

M. Spieker et al., PRC 97, 054319 (2018)

Mark Spieker^{1,2}, P. Petkov^{2,3}, S. G. Pickstone², S. Prill², P. Scholz², and A. Zilges²

¹ NSCL, Michigan State University, East Lansing, MI 48824, USA
 ² Institute for Nuclear Physics, University of Cologne, Germany
 ³IFIN-HH, Bucharest, Romania

Bonn-Cologne Graduate Schoo of Physics and Astronomy

bcgs

supported by

Shape coexistence in Z = 50 region

Shape coexistence in Z = 50 region

Experimental requirements:

- Selective probe needed to excite those low-spin states (non-Yrast)
- Small γ-decay branching ratios need to be detected
- Lifetimes and multipole-mixing ratios need to be measured for the determination of reduced transition strengths

(**p**,**p**'γ) **DSA coincidence technique:** A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

(**p**,**p**'γ) **DSA coincidence technique:** A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

(p,p'γ**) DSA coincidence technique:** A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

Lifetimes of intruder states in ^{112,114}Sn

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]
1256.5(2)	2^{+}_{1}	0_{1}^{+}	1256.5(2)	100	1299.7(2)	2^{+}_{1}	0_{1}^{+}	1299.7(2)	100
2150.5(3)	2^{+}_{2}	0_{1}^{+}	2150.5(2)	20(3)	1952.9(2)	0^{+}_{2}	2^{+}_{1}	653.2(2)	100
	2^{+}_{2}	2^{+}_{1}	893.9(2)	100	2155.9(2)	0_{3}^{+}	2^{+}_{1}	856.2(2)	100
					2187.3(3)	4_{1}^{+}	2^{+}_{1}	887.6(2)	100
2190.5(2)	0^{+}_{2}	2^+_1	934.0(2)	100	2238.6(2)	2^{+}_{2}	0_{1}^{+}	2238.5(2)	100
2247.0(3)	4_{1}^{+}	2^+_1	990.47(10)	100		2^{+}_{2}	2^{+}_{1}	938.9(2)	81(12)
2353.7(2)	3^{-}_{1}	2^+_1	1097.2(2)	100		$2^{\frac{2}{+}}_{2}$	0^{+}_{2}	286.5(10)	0.9(3)
2475.5(2)	2_{3}^{+}	0_{1}^{+}	2475.5(2)	100	2274.5(2)	$3\frac{1}{1}$	2^{2}_{1}	974.8(2)	100
	2^{+}_{3}	2^{+}_{1}	1218.9(2)	36(5)	2420.5(2)	0^{+}_{4}	$2^{\frac{1}{+}}$	1120.8(2)	100
	2^+_3	0^{+}_{2}	284.9(2)	0.70(10)	2453.8(2)	2^{4}_{2}	0_{1}^{+}	2453.7(2)	28(4)
2520.5(2)	4^+_2	2^+_1	1264.0(2)	100	(_)	2^{+}_{2}	2^{+}_{1}	1154.0(2)	100
		:	-			2^{+}_{2}	2^{+}_{2}	215.4(4)	1.3(3)
		÷			2514.4(2)	3^{+}_{1}	4^{+}_{1}	327.1(2)	100
2945.0(7)	4+	2^{+}_{1}	1688.5(2)	100	2613.7(4)	4^{+}_{2}	2^{+}_{1}	1314.5(2)	100
	4+	2^{+}_{2}	794.2(2)	5.4(10)		4^{+}_{2}	4^{+}_{1}	426.0(4)	1.6(6)
	4+	$4_1^{\tilde{+}}$	697.9(2)*	<1.5		4+	2+	375.2(3)	1.8(6)
	4+	2^{+}_{3}	469.5(2)	18(3)		•2	-2	0,012(0)	110(0)
	4+	4^{+}_{2}	424.6(3)*	4.9(9)					
	4+	6_{1}^{+}	396.4(4)*	2.3(5)					
	4+	4+	161.4(2)*	9(2)					

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	$I_{\gamma} [\%]$
1256.5(2) 2150.5(3)	$2^+_1 \\ 2^+_2$	$0^+_1 \\ 0^+_1$	1256.5(2) 2150.5(2)	100 20(3)	<u>1299.7(2)</u> 1952.9(2)	$-\frac{2^+_1}{0^+_2}$	$-\frac{0_1^+}{2_1^+}$	<u>1299.7(2)</u> 653.2(2)	$-\frac{100}{100}$
	2 ₂ ⁺	2 ₁ ⁺	893.9(2)	100	2155.9(2) 2187.3(3)	0^+_3 4^+_1	2^+_1 2^+_1	856.2(2) 887.6(2)	100 100
2190.5(2) 2247.0(3)	$-\frac{0^+_2}{4^+_1}$	$-\frac{2_1^+}{2_1^+}$	$-\frac{934.0(2)}{990.47(10)}$	100	2238.6(2)	$2^+_2 \\ 2^+_2$	$0^+_1 \\ 2^+_1$	2238.5(2) 938.9(2)	100 81(12)
2 <u>353.7(2)</u> 2475.5(2)	$-\frac{3_1}{2_3^+}$	$-\frac{2_{1}^{+}}{0_{1}^{+}}$	$\frac{1097.2(2)}{2475.5(2)}$	$\frac{100}{100}$	2274.5(2)	$-\frac{2^+_2}{3^1}$	$-\frac{0_2^+}{2_1^+}$ -	$-\frac{286.5(10)}{974.8(2)}-$	0.9(3) 100
2520.5(2)	$-\frac{\frac{2_3}{2_3^+}}{\frac{4_2^+}{4_2^+}}$	$-\frac{\frac{0^{+}_{2}}{0^{+}_{2}}}{\frac{2^{+}_{1}}{2^{+}_{1}}}$	<u>284.9(2)</u> 1264.0(2)	$\frac{0.70(10)}{100}$	2420.5(2) 2453.8(2)	0^+_4 2^+_3	2^+_1 0^+_1	1120.8(2) 2453.7(2)	100 28(4)
					2714 4/2	2^+_3 2^+_3	$2^+_1 2^+_2$	1154.0(2) 215.4(4)	100 1.3(3)
2945.0(7)	4^+ 4^+	2^+_1 2^+_2	1688.5(2) 794.2(2)	100 5 4(10)	2 <u>514</u> . <u>4(2)</u> 2613.7(4)	$\frac{3^+}{4^+_2}$	$\frac{4_{1}^{+}}{2_{1}^{+}}$	$ \underbrace{327.1(2)}_{1314.5(2)} \\ \underbrace{426.0(4)}_{426.0(4)} $	$\frac{100}{100}$
1	4+ 4+	2^{2} 4^{+}_{1} 2^{+}_{2}	697.9(2)* 469.5(2)	<1.5 18(3)	Ĺ	4_{2}^{+} 4_{2}^{+}	2^{+}_{2}	375.2(3)	1.8(6)
1	4+ 4+	4^+_2 6^+_1	424.6(3)* 396.4(4)*	$\frac{4.9(9)}{2.3(5)}$	_				1
I └── ── ── ── * New γ-dec	4+	4 ⁺	161.4(2)*	9(2)		"intr	uder	" states	
		ы. С							

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

γ -decay behavior of the states of interest

¹¹² Sn					¹¹⁴ Sn				
E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	I_{γ} [%]	E_x [keV]	J_i^{π}	J_f^π	E_{γ} [keV]	$I_{\gamma} [\%]$
1256.5(2)	2^{+}_{1}	0^{+}_{1}	1256.5(2)	100	1299.7(2)	2^{+}_{1}	0_{1}^{+}	1299.7(2)	100
2150.5(3)	2^{+}_{2}	0_{1}^{+}	2150.5(2)	20(3)	1952.9(2)	0^+_2	2^{+}_{1}	653.2(2)	100
	2^{+}_{2}	2^+_1	893.9(2)	100	2155.9(2)	0_{3}^{+}	2^{+}_{1}	856.2(2)	100
					2187.3(3)	4_{1}^{+}	2^{+}_{1}	887.6(2)	100
2190.5(2)	0^+_2	2_1^+	934.0(2)	100	2238.6(2)	2^{+}_{2}	0^{+}_{1}	2238.5(2)	100
2247.0(3)	-4_1^+	2_{1}^{+}	990.47(10)	$\overline{100}$		$2^{\tilde{+}}_{2}$	2^{+}_{1}	938.9(2)	81(12)
2353.7(2)	3_1^-	2^{+}_{1}	1097.2(2)	100	Ì	$2^{\frac{2}{+}}_{2}$	0^{+}_{2}	286.5(10)	0.9(3)
2475.5(2)	2^+_3	0^{+}_{1}	2475.5(2)	100	2274.5(2)	$-\frac{2}{3_1^-}$	$-\frac{2}{2^+_1}$	974.8(2)	100
	2^+_3	2^+_1	1218.9(2)	36(5)	2420.5(2)	0_{4}^{+}	2^{+}_{1}	1120.8(2)	100
L	$-\frac{2_3^+}{4_3^+}$	$-\frac{0^+_2}{2^+}$	284.9(2)	0.70(10)	2453.8(2)	2^{+}_{3}	0_{1}^{+}	2453.7(2)	28(4)
2520.5(2)	42	2_{1}^{+}	1264.0(2)	100		2^{+}_{3}	2^{+}_{1}	1154.0(2)	100
0+@2	2617 keV	:	_			2_{3}^{+}	2^{+}_{2}	215.4(4)	1.3(3)
					<u>2514.4(2)</u>	3^+_1	4_1^+	<u>327.1(2)</u>	100
2945.0(7)	4+	2^{+}_{1}	1688.5(2)	100	2613.7(4)	4^{+}_{2}	2^{+}_{1}	1314.5(2)	100
	4+	2^{+}_{2}	794.2(2)	5.4(10)		4^{+}_{2}	4_{1}^{+}	426.0(4)	1.6(6)
i	4+	4_{1}^{+}	697.9(2)*	<1.5		4^{+}_{2}	2^{+}_{2}	375.2(3)	1.8(6)
	4+	2_{3}^{+}	469.5(2)	18(3)	<u> </u>				'
	4+	4_{2}^{+}	424.6(3)*	4.9(9)					
1	4+	6_{1}^{+}	396.4(4)*	2.3(5)				— — —	
·	4+	4+	161.4(2)*	9(2)		"intr	uder	" states	
* New γ-deo	cay branchir	ng			L				

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

"Quasi-rotational structure" already existent at higher energies in Sn isotopes?

Influence of underlying single-particle structure or overall structure change?

Different influence of neutron single-particle states?

Influence of underlying single-particle structure or overall structure change?

Different influence of neutron single-particle states?

Influence of underlying single-particle structure or overall structure change?

Different influence of neutron single-particle states?

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

J_i^{π}	E_x	$E_{x,\mathrm{IBM}}$	$J_f^{\pi} B(E2)_{\text{exp.}} \downarrow$		$B(E2)_{\rm IBM}\downarrow$					
	[MeV]	[MeV]	-	[W.u.]	[W.u.]					
		norm	al co	nfiguration						
2_{1}^{+}	1.30	1.30	0_{1}^{+}	11.1(7)	11					
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19					
0^{+}_{2}	1.95	1.99	2_{1}^{+}	23.2(8)	21					
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004					
			2_{1}^{+}	3(2)	17					
			2^{+}_{2}	-	8					
intruder configuration										
0^{+}_{3}	2.16	2.15	2_{1}^{+}	≤ 5	2					
2^{+}_{2}	2.24	2.46	0_{1}^{+}	≤ 0.12	0.04					
			2_{1}^{+}	≤ 8	2					
			0^{+}_{2}	≤ 44	31					
			0^{+}_{3}	-	27					
4_{2}^{+}	2.61	3.00	2_{1}^{+}	6.6(10)	0.2					
			4_{1}^{+}	1.6(10)	0.06					
			2^{+}_{2}	62(25)	85					
6^{+}	3.19	3.63	4_{1}^{+}	1.68(9)	1.5					
			4_{2}^{+}	97(5)	93					
			4_{3}^{+}	18.9(12)	0.7					

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

J_i^{π}	E_x	$E_{x,\mathrm{IBM}}$	J_f^{π}	$B(E2)_{\text{exp.}}\downarrow$	$B(E2)_{\rm IBM}\downarrow$					
	[MeV]	[MeV]		[W.u.]	[W.u.]					
		norm	nal con	nfiguration						
2_{1}^{+}	1.30	1.30	0_{1}^{+}	11.1(7)	11					
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19					
0_{2}^{+}	1.95	1.99	2_{1}^{+}	23.2(8)	21					
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004					
			2_{1}^{+}	3(2)	17					
			2^{+}_{2}	-	8					
intruder configuration										
0^{+}_{3}	2.16	2.15		= 0.9(3) %	(Exp.)					
2^{+}_{2}	2.24	2.46	γ,2 Ι _{γ 3}	≈ 0.002 %	(IBM)					
			γ,5 ι 0+	< 11	21					
			0^{2}_{2} 0^{+}_{2}		27					
4_{2}^{+}	2.61	³ B(I	E2) =	= 55.5(9) W	<i>l</i> .u. in ¹¹⁰ Pd					
			2^{+}_{2}	62(25)	85					
6^{+}	3.19	3.63	4_{1}^{+}	1.68(9)	1.5					
			4^{+}_{2}	97(5)	93					
			4_{3}^{+}	18.9(12)	0.7					

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

						• I • •
J_i^{π}	E_x	$E_{x,\text{IBM}}$	J_f^{π}	$B(E2)_{\text{exp.}}\downarrow$	$B(E2)_{\text{IBM}} \downarrow$	³⁰³³ B(E2) = 44(3) W.u.
		norm	nal co	nfiguration	[•• .u.]	$^{641}_{2520}$ $^{503}_{\gamma,2} = 5.16(14) \%$
2^{+}_{1}	1.30	1.30	0^{+}_{1}	11.1(7)	11	4_1^+ 2391 138 304
4_{1}^{+}	2.19	2.28	2^{+}_{1}	5.9(5)	19	279 - 417 - 2225 - 2
0^{+}_{2}	1.95	1.99	2^{+}_{1}	23.2(8)	21	$103 - \frac{212}{100} + \frac{85}{100} + \frac{22}{100} + \frac{22}{100$
2^{+}_{3}	2.45	2.54	0^{+}_{1}	0.023(9)	0.004	$1097 \frac{1236}{910} \frac{2027}{1000} \frac{333}{1000} \frac{1757}{92} \frac{0^+}{932}$
			2^{+}_{1}	3(2)	17	$\begin{vmatrix} 819 \\ 1 \end{vmatrix}$ 734 463 1
			2^{+}_{2}	-	8	2_{1}^{+} 1294
		intru	der co	nfiguration		$D(E_2) = 100(8) M(y)$
0^{+}_{3}	2.16	2.15		- 0 9(3) %	(Evn)	B(EZ) = 100(8) VV.U.
2^{+}_{2}	2.24	2.46	γ,2	- 0.5(5) /0		$I_{\gamma,3} = 0.0091(6) \%$
-			Ι _{γ,3}	≈ 0.002 %	(IBIMI)	
			0^+_2	≤ 44	31	J.L. Pore <i>et al.</i> ,
			0^{+}_{3}	-	27	$- 0^+ 0$
4_{2}^{+}	2.61	³ B(E 2) =	= 55.5(9) W	<i>l</i> .u. in ¹¹⁰ Pd	B(E2) = 40(7) W.u. in ¹¹² Pd
			2^{+}_{2}	62(25)	85	
6+	3.19	3.63	4_1^+ 4_2^+	1.68(9) 97(5)	How co	uld this large B(E2) in ¹¹⁶ Sn be explained?
			4_3^{+}	18.9(12)	0.7	
			-	~ *		

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

¹¹⁶Sn – Is 3rd 0⁺ bandhead?

2p-2h Band

Comparison to IBM-2 mixing calculations (assuming ¹¹⁰Pd to cause intruder structure)

						• -F
J_i^{π}	E_x	$E_{x,\text{IBM}}$	J_f^{π}	$B(E2)_{\mathrm{exp.}}\downarrow$	$B(E2)_{\text{IBM}}\downarrow$	B(E2) = 44(3) W.U
	[MeV]	[MeV]		[W.u.]	[W.u.]	503 =
		norn	nal co	nfiguration		$^{641}_{1,2529}$ $^{70}_{1,2} = 5.16(14)$ %
2^{+}_{1}	1.30	1.30	0_{1}^{+}	11.1(7)	11	4_{1}^{+} 2391 $\frac{252}{1138}$ $\frac{304}{117}$
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19	279 417 2225 165 2112 $2\pm$ $2\pm$
0^{+}_{2}	1.95	1.99	2_{1}^{+}	23.2(8)	21	$\frac{85}{0}$
2^{-}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004	$1097 \frac{1236}{2027} \frac{2027}{1757} \frac{0}{2} \frac{1}{932}$
			2^{+}_{1}	3(2)	17	$\begin{vmatrix} 819 \\ 734 \end{vmatrix}$
			2^{+}_{2}	-	8	
		intru	der co	onfiguration		$2112 - D(E_2) = 100(8) M(u)$
0^{+}_{3}	2.16	2.15		- 0 0(2) %	(E_{VD})	B(EZ) = 100(8) VV.U.
2^{+}_{2}	2.24	2.46	γ,2	2 - 0.9(3) /0		$I_{3} = 0.0091(6) \%$
-2			Ι _{γ,3}	₃ ≈ 0.002 %	(IBM)	
			0^{+}_{2}	< 44	31	J.L. Pore <i>et al.</i> ,
			0_{3}^{+}	_	27	0^+_1 0 EPJA 52, 27 (2017)
4_{2}^{+}	2.61	^з В(E2) =	= 55.5(9) W	<i>I</i> .u. in ¹¹⁰ Pd	B(E2) = 40(7) W.u. in ¹¹² P
			2^+_2	62(25)	85	
6+	3.19	3.63	4_1^+ 4_2^+	1.68(9) 97(5)	How co	uld this large B(E2) in ¹¹⁶ Sn be explained
			4^{+}_{3}	18.9(12)	0.7	B(E2) = 101(5) W.u. in ¹²⁰

MICHIGAN STATE M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

¹¹⁶Sn – Is 3rd 0⁺ bandhead?

2p-2h Band

Summary

 SONIC@HORUS to determine lifetimes and γ-decay behavior of low-spin states via (p,p'γ) DSA coincidence technique

[A. Hennig *et al.*, NIM **794**, 171 (2015)][S.G. Pickstone *et al.*, NIM **875**, 104 (2017)]

- Collectivity of low-spin "intruder" states studied in ^{112,114}Sn
- Mixing hypothesis between normal and intruder configuration tested via schematic IBM-2 mixing calculations
- No clear hints at quadrupole multiphonon structures in ^{112,114}Sn

 $\frac{112,114}{1 + 1}$ M. Spieker – Shape coexistence and collective low-spin states in $\frac{112,114}{1}$ Sn

back-up

Determination of γ-energy centroid shifts due to Doppler effect with SONIC@HORUS at UoC (Cologne, Germany)

$$E_{\gamma}(\Theta, t) = E_{\gamma}^{0} \left(1 + F(\tau) \frac{v_{0}}{c} \cos \Theta \right)$$

The (p,p' γ) DSA coincidence technique

- Lifetimes from 10 fs to 1 ps can be measured
- Feeding from higher-lying states excluded due to pγ coincidences (excitation gate)
- γ-decay branching can be measured
 - \rightarrow Partial decay widths accessible
- Dozens of lifetimes in one experiment!
- J = 0 6 are excited with (p,p') at $E_p = 8$ MeV

(p,p'γ) DSA coincidence technique: A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

Determination of γ-energy centroid shifts due to Doppler effect with SONIC@HORUS at UoC (Cologne, Germany)

MICHIGAN STATE

$$E_{\gamma}(\Theta, t) = E_{\gamma}^{0} \left(1 + F(\tau) \frac{v_{0}}{c} \cos \Theta \right)$$

The (p,p' γ) DSA coincidence technique

- Lifetimes from 10 fs to 1 ps can be measured
 Feeding from higher-lying states excluded due
 - to $p\gamma$ coincidences (excitation gate)
- γ-decay branching can be measured
 - \rightarrow Partial decay widths accessible
- Dozens of lifetimes in one experiment!
- J = 0 6 are excited with (p,p') at $E_p = 8$ MeV

(p,p'γ**) DSA coincidence technique:** A. Hennig *et al.*, NIM **794**, 171 (2015) **SONIC@HORUS (UoC, Germany):** S.G. Pickstone *et al.*, NIM **875**, 104 (2017)

Shape coexistence in Cd isotopes

- "additional" states observed
- → attributed to 2p-4h
 excitations across the
 Z = 50 shell closure, i.e. Pd
 isotopes as "inert core"

64

M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn

Ν

68

72

76

Different influence of neutron single-particle states?

Neutron single-particle structure

Are there quadrupole multiphonon states?

J_i^{π}	E_x [keV]	J_f^{π}	$B(E2)_{exp.}$	¹²⁴ Sn	D. Band	vopadhvav <i>et al.</i> , NPA 747 , 206 (2005)
	11	² Sn	[[[]]	J^{π} [\hbar]	$J_{c}^{\pi}[\hbar]$	Exp [W.u.]
0^{+}	2617.4(3)	2_{1}^{+}	≤ 2	<u></u>		
		2^{+}_{2}	≤ 7	2_{1}^{+}	0_{1}^{+}	9.0 ^a
2^{+}	2720.6(2)	0_{1}^{+}	≤ 0.02	4^{+}_{1}	2^{+}_{1}	4.8 ^a
		2^{+}_{1}	$0.06\substack{+0.08\\-0.01}$	2^{+}_{2}	2^{+}_{1}	< 9.3
		2^{+}_{2}	≤ 4.3	2^{+}	0 ⁺	< 0.004
		0^+_2	3.3(12)	² 2	01	< 0.004
3^{+}	2755.2(3)	2^+_1	≤ 0.004	0_{2}^{+}	2^{+}_{1}	< 8.3
		2^{+}_{2}	≤ 12	0^{+}_{3}	2^{+}_{2}	< 78
		4_{1}^{+}	≤ 45	0^{+}_{-}	2^{+}_{-}	< 1.6
		4_{2}^{+}	≤ 0.2	°3 2+	-1 2 ⁺	4 4+0.2
4^{+}	2783.5(2)	2^{+}_{1}	5.1(6)	23	22	4.4-4.4
	11	41	≤ 35	2^+_3	2^{+}_{1}	$0.12^{+0.13}_{-0.07}$
	2020 2(2)	⁴ Sn	2.2(1)	2^{+}_{2}	0^{+}_{1}	$0.028^{+0.008}_{-0.007}$
4^+	2859.2(5)	2_{1}^{+}	2.8(4)	-3 6 ⁺	1 4+	< 90
		$4'_{1}$	≤ 10	0 ₁	41 .+	< 90
		2_{2}^{+}	< 5	3_{1}^{+}	42	< 46°
o+	0048 4(8)	2_{3}^{+}	< 46	3^{+}_{1}	4_{1}^{+}	< 5
2 '	2943.4(2)	0_1	< 0.001	3+	2+	< 67 ^b
		$\frac{z_1}{0^+}$	≤ 0.3	2+	-2 + 2	= 0.3
		0_2	≤ 0.4	51	21	< 0.3
		$\frac{2}{0^{+}}$	≤ 0.9	4_{3}^{+}	4^{+}_{2}	$3.1^{+14}_{-3.1}$
		0_4 2^+	≤ 1.0	4^{+}_{2}	4^{+}_{1}	$4.2^{+0.2}$
0+	3038 0(3)	² 3 9 ⁺	≥ 0.2 1 7(7)	13 1+	2+	$0.27^{\pm 0.21}$
0.	3020.0(2)	$\frac{2}{2^+}$	1.7(7) 1.4(10)	43	21	0.27-0.19
		$2^{2}_{2^{+}}$	16(8)	^a Calculated us	sing the halflives from R	lef. [14].

^b Calculated using mixing ratios from the present work and from Ref. [20].

IBM-2 calculations

Table IV. Comparison of the normal and intruder configurations identified experimentally and the predictions of the *sd* IBM-2 with mixing in ¹¹⁴Sn. The parameters for the intruder configuration were adopted from Ref. [53], i.e. ¹¹⁰Pd. The parameters for the normal configuration in ¹¹⁴Sn were adopted from Ref. [54] but slightly changed, i.e. $C_{0\nu} = -0.55$, $C_{2\nu} = 0$, and $C_{4\nu} = -0.31$. The mixing parameters α and β were kept at 0.2 and 0, respectively. Δ , i.e. the relative energy shift between the normal and intruder configurations was set to 2.78 MeV. The parameters of the E2 operator were also slightly changed to $e_{\nu} = 0.07 \text{ eb}^2$, $e_{\pi} = 0.105 \text{ eb}^2$ and $e_2/e_0 = 1.43$. The experimental $B(E2; 2_1^+ \to 0_1^+)$ value is taken from Ref. [35]. For a description of the Hamiltonian, the E2 operator and their parameters see, *e.g.*, Refs. [53, 55].

J_i^{π}	E_x	$E_{x,\mathrm{IBM}}$	J_f^{π}	$B(E2)_{\text{exp.}}\downarrow$	$B(E2)_{\rm IBM}\downarrow$						
	[MeV]	[MeV]		[W.u.]	[W.u.]						
		norm	al co	nfiguration							
2^{+}_{1}	1.30	1.30	0_{1}^{+}	11.1(7)	11						
4_{1}^{+}	2.19	2.28	2_{1}^{+}	5.9(5)	19						
0_{2}^{+}	1.95	1.99	2_{1}^{+}	23.2(8)	21						
2^{+}_{3}	2.45	2.54	0_{1}^{+}	0.023(9)	0.004						
			2_{1}^{+}	3(2)	17						
			2^{+}_{2}	-	8						
	intruder configuration										
0^{+}_{3}	2.16	2.15	2_{1}^{+}	≤ 5	2						
2^{+}_{2}	2.24	2.46	0_{1}^{+}	≤ 0.12	0.04						
			2_{1}^{+}	≤ 8	2						
			0^{+}_{2}	≤ 44	31						
			0^{+}_{3}	-	27						
4_{2}^{+}	2.61	3.00	2_{1}^{+}	6.6(10)	0.2						
			4_{1}^{+}	1.6(10)	0.06						
			2^{+}_{2}	62(25)	85						
6^+	3.19	3.63	4_{1}^{+}	1.68(9)	1.5						
			4_{2}^{+}	97(5)	93						
			4_{3}^{+}	18.9(12)	0.7						

MICHIGAN STATE

 $\frac{112,114}{1 T Y}$ M. Spieker – Shape coexistence and collective low-spin states in $\frac{112,114}{1 T Y}$ Sn

Quadrupole-octupole coupled states

R

¹¹²Sn: Quadrupole-octupole coupled states

E_x [keV]	J^{π}	J_f^π	E_f [keV]	E_{γ} [keV]	I_{γ}	$B(E1) \downarrow [mW.u.]$	$B(E2) \downarrow \\ [W.u.]$
1256.5(2)	2_{1}^{+}	0_{1}^{+}	0	1256.5(2)	1		12.5(7) ^a
2353.7(2)	$3\frac{1}{1}$	2_{1}^{+}	1256.5(2)	1097.2(2)	1	1.13(8)	
3383.3(2)	3-	2_{1}^{+}	1256.5(2)	2126.8(2)	0.85(2)	0.120(9)	
		2^{+}_{2}	2150.5(3)	1232.9(2)	0.041(9)	0.030(7)	
		$(2^+, 3, 4^+)$	2917.0(2)	466.5(2)	0.11(2)	1.5(2)	
3396.6(2)	2(-)	2_{1}^{+}	1256.5(2)	2139.9(2)	0.057(13)	0.005(2)	
		2^{+}_{2}	2150.5(2)	1246.1(2)	0.64(3)	0.30(9)	
		$3\frac{2}{1}$	2353.7(2)	1042.4(2)	0.27(5)		9^{+3}_{-7}
		2_{4}^{+}	2720.6(2)	675.8(2)	0.039(9)	0.11(5)	,
3433.4(2)	$1^{(-)}$	0_{1}^{+}	0	3433.4(2)	1	1.31(15)	
3497.9(2)	5-	$3\frac{1}{1}$	2353.7(2)	1144.2(2)	0.70(4)		29(13)
		4^{+}_{2}	2520.5(2)	977.1(2)	0.27(6)	0.39(18)	
		4^{+}	2783.5(2)	714.7(3)	≤0.03	≤0.19	
3553.2(2)	(3)-	2^{+}_{1}	1256.5(2)	2296.8(2)	0.83(3)	0.06(2)	
		3_{1}^{+}	2755.2(3)	797.7(3)	0.17(3)	0.30(10)	
3827.1(3)	$(1^{-}, 2^{+})$	0_{1}^{1}	0	3827.1(2)	0.58(3)	0.040(5)	
		2_{1}^{+}	1256.5(2)	2570.8(2)	0.29(5)	0.066(11)	
		$3\frac{1}{1}$	2353.7(2)	1473.0(7)	0.13(3)		4.5(11)
3984.7(3)	$(1^{-},2^{+})$	0_{1}^{+}	0	3984.7(3)	0.79(2)	0.08(2)	
		$3\frac{1}{1}$	2353.7(2)	1630.0(3)	0.14(2)		5(2)
		2_{3}^{+}	2475.5(2)	1507.8(4)	0.07(2)	0.137(95)	

¹¹⁴Sn: Quadrupole-octupole coupled states

E_x [keV]	J^{π}	J_f^π	E_f [keV]	E_{γ} [keV]	I_{γ}	$B(E1) \downarrow [mW.u.]$	$B(E2) \downarrow \\ [W.u.]$
1299.7(2)	2^{+}_{1}	0^{+}_{1}	0	1299.7(2)	1		$11.1(7)^{a}$
2274.5(2)	3^{-1}_{1}	2^{+}_{1}	1299.7(2)	974.8(2)	1	0.65(8)	
2814.6(2)	$5\frac{1}{1}$	4^{+}_{1}	2187.3(3)	627.4(2)	0.88(2)	≤0.77	
(_)	- 1	$3\frac{1}{1}$	2274.5(2)	539.9(2)	0.12(3)		≤38
2904.9(3)	3-	$2^{\frac{1}{+}}_{1}$	1299.7(2)	1605.1(4)	0.026(5)	0.0030(14)	
		4^{+}_{1}	2187.3(3)	717.3(2)	0.77(2)	0.7(3)	
		3^{+}_{1}	2514.4(2)	390.2(2)	0.20(3)	1.6(7)	
		4^{+}_{2}	2613.7(4)	290.3(4)	0.011(4)	0.21(12)	
3225.1(2)	3-	$2^{\frac{2}{1}}$	1299.7(2)	1925.4(2)	0.920(14)	0.11(2)	
		2^{+}_{3}	2453.8(2)	771.4(4)	0.019(7)	0.04(2)	
		3-	2904.9(3)	319.9(4)	0.061(13)		
3397.3(2)	3-	2^{+}_{1}	1299.7(2)	2097.6(2)	0.31(5)	0.06(2)	
		2^{+}_{2}	2238.6(2)	1158.3(2)	0.13(2)	0.14(6)	
		$3\frac{2}{1}$	2274.5(2)	1122.0(4)	0.44(2)		3^{+11}_{-3}
		2^{+}_{3}	2453.8(2)	943.2(2)	0.12(2)	0.24(10)	_5
3452.1(2)	(1^{-})	0_{1}^{+}	0	3452.1(2)	1	1.6(7)	
3483.9(4)	$(1^{-},2^{+})$	2^{+}_{1}	1299.7(2)	2184.1(2)	0.671(13)	0.06(2)	
		0^{+}_{3}	2155.9(2)	1327.7(3) ^b	0.094(14)	0.037(11)	
		$3\frac{5}{1}$	2274.5(2)	1209.0(2)	0.235(14)		5.2(13)
3514.1(3)	3-	2^{+}_{1}	1299.7(2)	2214.4(2)	0.76(3)	0.14(6)	
		4_{1}^{+}	2187.4(3)	1327.0(4) ^c	0.07(2)	0.06(3)	
		2^{+}_{2}	2238.6(2)	1275.0(3)	0.17(3)	0.17(8)	
3524.4(2)	3-	$2_{1}^{\tilde{+}}$	1299.7(2)	2224.5(3)	0.55(3)	0.023(17)	
		4_{1}^{+}	2187.3(3)	1158.3(2)	0.15(3)	0.028(22)	
		3^{-}_{1}	2274.5(2)	1122.0(4)	0.13(2)		1.2(10)
		2^{+}_{3}	2453.8(2)	943.2(2)	0.17(3)	0.08(6)	
3610.2(4)	5(-)	4_{1}^{+}	2187.3(3)	1422.9(3)	1	1.0(3)	
3650.3(3)	$(1^-, 2^+)$	0_{1}^{+}	0	3650.1(3)	0.44(3)	0.012(4)	
		2^{+}_{1}	1299.7(2)	2350.3(3)	0.11(2)	0.011(5)	
		0_{3}^{+}	2155.9(2)	1493.7(3)	0.09(2)	0.04(2)	
		3^{-}_{1}	2274.5(2)	1374.6(2)	0.36(6)		6(2)

MICHIGAN STATE UNIVERSITY M. Spieker – Shape coexistence and collective low-spin states in ^{112,114}Sn