Wobbling phases of odd mass nuclei - a semiclassical description

Radu Budaca

IFIN-HH, Bucharest-Magurele, Romania

Wobbling excitations { predicted for even-even nuclei, Bohr&Mottelson observed in odd *A* nuclei ^{161,163,165}Lu, ¹⁶⁷Ta, ¹³⁵Pr

Particle-rotor Hamiltonian

$$H = H_R + H_{sp}$$

$$H_R = \sum_{k=1,2,3} A_k (\hat{I}_k - \hat{j}_k)^2$$
 triaxial rotor Hamiltonian

 $\vec{R} = \vec{I} - \vec{j}$ core angular momentum

 A_k the inertial parameters related to the MOI by $A_k = \frac{1}{2 \pi}$

One fully aligned particle with $\hat{j}_1 \approx j \equiv const.$

$$H_{align} = \underbrace{A_1\hat{I}_1^2 + A_2\hat{I}_2^2 + A_3\hat{I}_3^2 - 2A_1j\hat{I}_1}_{\text{to be treated}} + const.$$

Treating the full degrees of freedom is difficult.

Solution Time-dependent variational approach selects a limited set of degrees of freedom relevant for the studied phenomenon.

Semiclassical description

 Relies on a time-dependent variational principle applied to a variational state which is constructed according to the problem.

$$\delta \int_{0}^{t} \langle \psi(z) | H_{align} - \frac{\partial}{\partial t'} | \psi(z) \rangle dt' = 0$$

 The variational principle provides the time-dependence of some restricted set of complex variables which parametrize the variational state.

$$|\psi(z)\rangle = \sum_{K=-I}^{I} \sqrt{\frac{(2I)!}{(I-K)!(I+K)!}} \frac{z^{I+K}}{(1+|z|^2)^I} |IMK\rangle = \frac{1}{(1+|z|^2)^I} e^{z\hat{I}_-} |IMI\rangle$$

Classical energy function

$$\begin{split} \langle H_{align} \rangle & = & \frac{I}{2}(A_1 + A_2) + A_3 I^2 - \frac{2A_1 j I(z+z^*)}{1+zz^*} \\ & + \frac{I(2I-1)}{2(1+zz^*)^2} \left[A_1 (z+z^*)^2 - A_2 (z-z^*)^2 - 4A_3 zz^* \right] \end{split}$$

Equations of motion

$$\frac{\partial \mathcal{H}}{\partial z} = -\frac{2iI\dot{z}^*}{(1+zz^*)^2}, \quad \frac{\partial \mathcal{H}}{\partial z^*} = \frac{2iI\dot{z}}{(1+zz^*)^2}$$

Canonical variables

Stereographic representation:

$$z=\tan\frac{\theta}{2}e^{i\varphi},\ \ 0\leq\theta<\pi,\ \ 0\leq\varphi<2\pi$$
 Change of variable $r=2I\cos^2\frac{\theta}{2},\ \ 0< r\leq 2I$

The full structure of the classical system is reproduced if the variables are canonical:

$$\begin{split} \frac{\partial \mathcal{H}}{\partial r} &= \dot{\varphi}, \quad \frac{\partial \mathcal{H}}{\partial \varphi} = -\dot{r} \quad \text{or} \quad \{r,\mathcal{H}\} = \dot{r}, \quad \{\varphi,\mathcal{H}\} = \dot{\varphi} \\ \{\varphi,r\} &= 1 \qquad \qquad \varphi \quad \text{the generalized coordinate} \\ r \quad \text{the generalized momentum} \end{split}$$

Classical energy function in terms of the canonical variables:

$$\mathcal{H}(r,\varphi) = \frac{I}{2}(A_1 + A_2) + A_3 I^2 - 2A_1 j \sqrt{r(2I - r)} \cos \varphi + \frac{(2I - 1)r(2I - r)}{2I}(A_1 \cos^2 \varphi + A_2 \sin^2 \varphi - A_3)$$

lackbox The classical trajectory of the angular momentum vector \vec{I} is a curve in the space of its classical projections

$$I_1 = \sqrt{r(2I-r)}\cos\varphi,$$

$$I_2 = \sqrt{r(2I-r)}\sin\varphi,$$

$$I_3 = r - I.$$

• It is determined by the intersection of the constant energy surfaces provided by the constants of motions:

Shifted ellipsoid
$$\mathcal{H} = A_1 I_1^2 + A_2 I_2^2 + A_3 I_3^2 - 2A_1 j I_1,$$

Sphere $I^2 = I_1^2 + I_2^2 + I_3^2.$

- The classical orbits are closed curves in the phase space of the canonical coordinates which are concentrically positioned around the stationary points of the constant energy surface.
- Choosing different sets of complex canonical coordinates as functions of φ and r and making an homeomorphism between classical algebra with Poisson bracket and a boson algebra with a commutator one arrives at various boson expansions.

 $[\mathsf{A.A.}\ \mathsf{Raduta},\, \textbf{RB},\, \mathsf{C.M.}\ \mathsf{Raduta},\, \mathsf{PRC}\ \textbf{76},\, \mathsf{064309}\ (2007)]$

Boson realizations of the angular momentum operators

$$\begin{split} \left(\mathcal{C}, \tilde{\mathcal{C}}^*, \{,\}\right) &\longrightarrow \left(a, a^{\dagger}, -i[,]\right) \\ \left\{\tilde{\mathcal{C}}^*, \mathcal{C}\right\} &= i, \; \left\{\mathcal{C}, \mathcal{H}\right\} = \dot{\mathcal{C}}, \; \left\{\tilde{\mathcal{C}}^*, \mathcal{H}\right\} = \dot{\bar{\mathcal{C}}}^* \end{split}$$

Holstein-Primakoff

$$\mathcal{C} = \sqrt{2I - r} \cdot e^{i\varphi}, \ \tilde{\mathcal{C}}^* = \mathcal{C}^{\dagger}$$

$$\hat{J}_{+} = \hat{J}_{-}^{\dagger} = \sqrt{2I} \left(1 - \frac{a^{\dagger}a}{2I} \right)^{1/2}$$

$$\hat{J}_{3} = I - a^{\dagger}a$$

Dyson

$$\mathcal{C} = \sqrt{\frac{r(2I-r)}{2I}}e^{i\varphi}, \ \tilde{\mathcal{C}}^* = \sqrt{\frac{2I-r}{2Ir}}e^{-i\varphi}$$

$$\hat{J}_{+} = \sqrt{2I}a$$

$$\hat{J}_{-} = \sqrt{2I} \left[a^{\dagger} - \frac{\left(a^{\dagger} \right)^{2} a}{2I} \right]$$

$$\hat{J}_{3} = I - a^{\dagger} a$$

Exponential

$$C = \frac{1}{\sqrt{2}}(r - i\varphi), \ \tilde{C}^* = C^{\dagger}$$

$$\hat{J}_{+} = \hat{J}_{-}^{\dagger} = \sqrt{\frac{1}{\sqrt{2}}(a^{\dagger} + a)}e^{\frac{1}{\sqrt{2}}(a^{\dagger} - a)}$$

$$\times \sqrt{2I - \frac{1}{\sqrt{2}}(a^{\dagger} + a)}$$

$$\hat{J}_{3} = \frac{1}{\sqrt{2}}(a^{\dagger} + a) - I$$

New

$$C = \frac{r}{\sqrt{2I}}, \ \tilde{C}^* = i\sqrt{2I}\varphi$$

$$\hat{J}_{+} = 2I\sqrt{\frac{a}{\sqrt{2I}}}e^{\frac{a^{\dagger}}{\sqrt{2I}}}\sqrt{1 - \frac{a}{\sqrt{2I}}}$$

$$\hat{J}_{-} = 2I\sqrt{1 - \frac{a}{\sqrt{2I}}}e^{-\frac{a^{\dagger}}{\sqrt{2I}}}\sqrt{\frac{a}{\sqrt{2I}}}$$

$$\hat{J}_3 = \sqrt{2I}a - I$$

Stable geometries and wobbling phases

The stationary points where $\dot{\varphi}=\dot{r}=0$, which are stable against fluctuations are those which minimize the classical energy.

i	(r_i, φ_i)	Conditions	$I_1^{ m cl}$	I_2^{cl}	I ^{cl} ₃
1	(1,0)	$S_{Ij}A_1 < A_2 < A_3$	I	0	0
2	$(\sqrt{r_2(2I-r_2)}=I,\alpha_2)$	$S_{Ij}A_1 < A_3 < A_2$ $A_2 < A_3 < A_1S_{Ij}$	$I\cos\alpha_2$	$I \sin \alpha_2$	0
3	$(\sqrt{r_3(2I-r_3)}=I\cos\alpha_3,0)$	$A_2 < S_{Ij}A_1 < A_3$ $A_3 < A_2 < A_1S_{Ij}$ $A_3 < A_1S_{Ij} < A_2$	$I\cos\alpha_3$	0	$I \sin \alpha_3$

$$\text{Tilting angle} \quad \cos\alpha_{2,3} = \frac{2A_1j}{(2I-1)(A_1-A_{2,3})}$$

Weighting factor $S_{Ij} = \frac{2I - 1 - 2j}{2I - 1}$

Stable geometries and wobbling phases

The stationary points where $\dot{\varphi}=\dot{r}=0$, which are stable against fluctuations are those which minimize the classical energy.

i	(r_i, φ_i)	Conditions	$I_1^{ m cl}$	$I_2^{ m cl}$	I ^{cl} ₃
1	(1,0)	$S_{Ij}A_1 < A_2 < A_3 S_{Ij}A_1 < A_3 < A_2$	I	0	0
2	$(\sqrt{r_2(2I-r_2)}=I,\alpha_2)$	$A_2 < A_3 < A_1 S_{Ij}$	$I\cos\alpha_2$	$I \sin \alpha_2$	0
3	$(\sqrt{r_3(2I-r_3)}=I\cos\alpha_3,0)$	$A_2 < S_{Ij}A_1 < A_3$ $A_3 < A_2 < A_1S_{Ij}$ $A_3 < A_1S_{Ii} < A_2$	$I\cos\alpha_3$	0	$I \sin \alpha_3$

Tilting angle
$$\cos \alpha_{2,3} = \frac{2A_1j}{(2I-1)(A_1 - A_{2,3})}$$

Weighting factor $S_{Ij} = \frac{2I - 1 - 2j}{2I - 1}$

Harmonic approximation on classical energy function

$$\mathcal{H}_{i}(r,\varphi) = \mathcal{H}(r_{i},\varphi_{i}) + \frac{1}{2} \left(\frac{\partial^{2} \mathcal{H}}{\partial r^{2}} \right)_{r_{i},\varphi_{i}} \tilde{r}_{i}^{2} + \frac{1}{2} \left(\frac{\partial^{2} \mathcal{H}}{\partial \varphi^{2}} \right)_{r_{i},\varphi_{i}} \tilde{\varphi}_{i}^{2}$$

 $\tilde{r}_i = r - r_i$ and $\tilde{\varphi}_i = \varphi - \varphi_i$ replaced with their operator counterparts.

Discrete energy spectra

$$E_{1}(I,n) = A_{1}I^{2} + \frac{I}{2}(A_{2} + A_{3}) - 2A_{1}jI + \omega_{1}(I)\left(n + \frac{1}{2}\right)$$

$$E_{2}(I,n) = A_{2}I^{2} + \frac{I}{2}(A_{1} + A_{3}) - A_{1}jI\cos\alpha_{2} + \omega_{2}(I)\left(n + \frac{1}{2}\right)$$

$$E_{3}(I,n) = A_{3}I^{2} + \frac{I}{2}(A_{1} + A_{2}) - A_{1}jI\cos\alpha_{3} + \omega_{3}(I)\left(n + \frac{1}{2}\right)$$

Wobbling frequencies

$$\begin{array}{rcl} \omega_1(I) & = & \sqrt{[(2I-1)(A_3-A_1)+2A_1j]} \, [(2I-1)(A_2-A_1)+2A_1j] \\ & \stackrel{\longrightarrow}{}_{I\gg 1} \, [\text{S. Frauendorf, F. Dönau, PRC 89, 014322 (2014)}] \\ & \omega_2(I) & = & (2I-1)\sqrt{(A_3-A_2)(A_1-A_2)} \sin \alpha_2 \end{array}$$

$$\omega_3(I) = (2I - 1)\sqrt{(A_2 - A_3)(A_1 - A_3)} \sin \alpha_3$$

Longitudinal wobbling (1) - Quasiparticle angular momentum aligned to the axis with the largest MOI.

Transversal wobbling (t1) - Quasiparticle angular momentum aligned perpendicularly to the axis with the largest MOI.

[Y.R. Shimizu, M. Matsuzaki, K. Matsuyanagi, conf. talk (2004)]

j = 11/2 & hydrodynamic MOI

$$\mathcal{J}_k = \frac{4}{3}\mathcal{J}_0 \sin^2\left(\gamma - \frac{2}{3}k\pi\right)$$

- (2)-(3) separatrix at $\gamma = 2\pi/3 (Mod\,\pi)$
- $\bullet \ \ \, \text{Longitudinal wobbling phase (1) interval } \\ \text{of existence } \gamma \in (0,\pi/3)(Mod\,\pi) \\ \text{is isolated from the tilted angle} \\ \text{wobbling phase}$

Transversal wobbling with alignment around an axis with the minimum MOI is restricted to a very narrow existence interval and only for I=13/2 and I=15/2 states

 \blacksquare At rigid γ , as spin is increased, a transition is possible only from transversal wobbling to tilted axis wobbling.

j = 11/2 & hydrodynamic MOI

$$\mathcal{J}_k = \frac{4}{3}\mathcal{J}_0 \sin^2\left(\gamma - \frac{2}{3}k\pi\right)$$

- (2)-(3) separatrix at $\gamma = 2\pi/3 (Mod\,\pi)$
- $\bullet \ \ \, \text{Longitudinal wobbling phase (1) interval } \\ \text{of existence } \gamma \in (0,\pi/3)(Mod\,\pi) \\ \text{is isolated from the tilted angle} \\ \text{wobbling phase}$

Transversal wobbling with alignment around an axis with the minimum MOI is restricted to a very narrow existence interval and only for I=13/2 and I=15/2 states

 \blacksquare At rigid γ , as spin is increased, a transition is possible only from transversal wobbling to tilted axis wobbling.

Wobbling phase transition

Evolution of wobbling frequency from the transversal regime (1) to the tilted-axis wobbling mode (2).

Tilting angle α_2 with hydrodynamic MOI.

- Increases very rapidly for the first few spin states and then reaches a relative saturation plateau.
- γ closer to the $\frac{\pi}{3}$ separatrix \rightarrow more abrupt is the increase and the plateau more level.

Wobbling excitations in $^{135}\mathrm{Pr}$ [J.T. Matta et al., PRL 114, 082501 (2015)]

- I=31/2 and I=35/2 yrast states and the wobbling state I=33/2 are considered to be part of a different rotation-wobbling regime
- The low critical spin excludes the non-independent rigid MOI description
- $\bullet \ \ \, \mathcal{J}_0^R = 30.96 \ \mathrm{MeV^{-1}}, \, \mathcal{J}_0^W = 65.93 \ \mathrm{MeV^{-1}}, \, \gamma = -11.18^\circ \rightarrow \mathrm{rms} = 0.149 \ \mathrm{MeV} = 1.00 \ \mathrm{MeV^{-1}} = 0.00 \ \mathrm{MeV^$
- Tilting $\alpha_2 = 4.22^{\circ}, 20.78^{\circ}, 28.36^{\circ}$ for the states I = 31/2, 33/2, 35/2.

- In addition to transversal and longitudinal wobbling, one completed the wobbling phase space with a tilted-axis wobbling mode.
- The whole dynamics of the system is treated in a unified manner.
- Each wobbling mode follows strict conditions for MOI. This analysis put some additional constraints to the transverse wobbling regime.
- ullet For a stable γ asymmetry, a transition from the transversal wobbling to a tilted-axis regime can occur. This transition is used to describe the wobbling excitations in 135 Pr nucleus.
- A similar semiclassical approach can be used to study the transition from chiral vibration to static chirality in nuclear systems with two single-particle generated spins aligned perpendicularly to the core angular momentum.

Transition probabilities

I	$B(E2,I \to I - B(E2,I \to I - B$	1) _{out} -2) _{in}	$\frac{B(M1, I \rightarrow I - 1)_{\text{ou}}}{B(E2, I \rightarrow I - 2)_{\text{in}}}$	$\frac{1}{eb} \left(\frac{\mu_N}{eb}\right)^2$
	Expt.	Th.	Expt.	Th.
17 2		0.313		0.164
$\frac{21}{2}$	0.843(32)	0.270	0.164(14)	0.164
$\frac{25}{2}$	0.500(25)	0.258	0.035(9)	0.183
<u>29</u>	≥0.261(14)	0.318	≥0.016(4)	0.279

$$B(E2; n, I \to n, I \pm 2)_{i} = \frac{5e^{2}}{16\pi} \left| Q_{2}^{(i)} \right|^{2}$$

$$B(E2; n, I \to n - 1, I - 1)_{i} = \frac{5e^{2}}{16\pi} \frac{n}{2I} \left| Q_{0}^{(i)} \sqrt{\frac{3}{2}} \left(\frac{1}{k_{i}} + k_{i} \right) - Q_{2}^{(i)} \left(\frac{1}{k_{i}} - k_{i} \right) \right|^{2}$$

$$B(M1; n, I \to n - 1, I - 1)_{i} = \frac{3}{4\pi} \frac{n}{4I} \left| j(g_{j} - g_{R}) \left(\frac{1}{k_{i}} + k_{i} \right) \right|^{2}$$

$$k_{i} = \sqrt{m_{i}\omega_{i}}, \quad m_{i} = \left[I \left(\frac{\partial^{2}\mathcal{H}}{\partial r^{2}} \right)_{r_{i}, \omega_{i}} \right]^{-1}$$

FIG. 2. Evolution of the separatrix S_{Ij} as a function of angular momentum for j = 11/2 and 13/2.