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Introduction

predicted for even-even nuclei, Bohr&Mottelson

observed in odd A nuclej 161,163,165| ; 16775 135py

Particle-rotor Hamiltonian H=Hgr+ Hsp

Hp = > Ap(Ix — ji)? triaxial rotor Hamiltonian
k=123

Wobbling excitations {

R = I — j core angular momentum
1
Ay, the inertial parameters related to the MOl by A, = B
k
One fully aligned particle with j; ~ j = const.

Halign = A1j12 ar A2f22 aF A3f32 = 2A1jf1 +const.

to be treated

@ Treating the full degrees of freedom is difficult.

Solution ¥~ Time-dependent variational approach selects a limited set of
degrees of freedom relevant for the studied phenomenon.



Semiclassical description

@ Relies on a time-dependent variational principle applied to a variational state
which is constructed according to the problem.
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@ The variational principle provides the time-dependence of some restricted set of
complex variables which parametrize the variational state.
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Canonical variables

Stereographic representation:
0 .
z:tamiew7 0<O<m 0<p<2r

. 0
Change of variable r = 21 cos? 5 0<r<2I

The full structure of the classical system is reproduced if the variables are canonical:

OH . OH . . .
o = # % =—r or {r,H}=71, {p,H}=¢
{or} =1 ¢ the generalized coordinate

r the generalized momentum

Classical energy function in terms of the canonical variables:

1
H(r, o) = E(Al + Ag) + A3I? — 2A15+/r(2I — ) cosp
L @I = 1)r2l )

o (A1 cos? p+ As sin? p— Asz)




Classical dynamics

@ The classical trajectory of the angular momentum vector I is a curve in the
space of its classical projections

I Vr(2I —r)cosp,
I = +/r(2] —r)singp,

Is = r—1.

@ It is determined by the intersection of the constant energy surfaces provided by
the constants of motions:

Shifted ellipsoid A A1T2 4 AoI2 + A3I2 — 2Aq514,
Sphere 12 = IZ2+4+12+1I2.

@ The classical orbits are closed curves in the phase space of the canonical
coordinates which are concentrically positioned around the stationary points of
the constant energy surface.

Choosing different sets of complex canonical coordinates as functions of ¢ and r
I and making an homeomorphism between classical algebra with Poisson bracket and
a boson algebra with a commutator one arrives at various boson expansions.
[A.A. Raduta, RB, C.M. Raduta, PRC 76, 064309 (2007)]



Boson realizations of the angular momentum operators
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Stable geometries and wobbling phases

The stationary points where ¢ = 7 = 0, which are stable against fluctuations are those
which minimize the classical energy.
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Quantized energy and wobbling frequency

Harmonic approximation on classical energy function

1 (0%*H o 1 [(0*H 2
Hi(r,p) = H(ri, pi) + 5 ( or2 )Ti’% i3 (78902 )T“% ?;

=r —r;and ¢; = ¢ — p,; replaced with their operator counterparts.

Discrete energy spectra

I 1

El(I,n) = A112+§(A2+A3)—2A1j]+w1(])(n+§)
, I _ 1
Ex(I,n) = Aol +§(A1+A3)—A1jfcoso¢2+w2(1) n+§
2 1 . 1
E3(I,n) = Asl +5(A1+A2)7A1]Icosa3+w3(1) n+ =

Wobbling frequencies

wil) = [2I—1)(As — A1) + 2415][(2] — 1)(Az — A1) + 244 7]
j’ [S. Frauendorf, F. Dénau, PRC 89, 014322 (2014)]
wa(I) = (21 —1)\/(A3 — A2)(A1 — A3)sinan

w3(I) = (21 —1)y/(Az — A3)(A1 — A3)sinag




Wobbling phase diagram
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Longitudinal wobbling (1) - Quasiparticle angular momentum aligned to the axis
with the largest MOI.

Transversal wobbling (t1) - Quasiparticle angular momentum aligned

perpendicularly to the axis with the largest MOI.
[Y.R. Shimizu, M. Matsuzaki, K. Matsuyanagi, conf. talk (2004)]



Dynamical phase diagram

j = 11/2 & hydrodynamic MOI
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T = gjo sin? ('y - gkﬁr)

@ (2)-(3) separatrix at v = 2w /3(Mod )

@ Longitudinal wobbling phase (1) interval
of existence v € (0, 7/3)(Mod )
is isolated from the tilted angle
wobbling phase
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B3 Transversal wobbling with alignment around an axis with the minimum MOI is
restricted to a very narrow existence interval and only for I = 13/2 and I = 15/2

states.
B At rigid +y, as spin is increased, a transition is possible only from transversal
wobbling to tilted axis wobbling.
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Wobbling phase transition
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Evolution of wobbling frequency from the

transversal regime (1) to the tilted-axis
wobbling mode (2).
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@ |Increases very rapidly for the first few spin
states and then reaches a relative

20
saturation plateau.

@ + closer to the % separatrix — more
abrupt is the increase and the plateau 10

more level.




Comparison to experiment

Wobbling excitations in 135Pr [J.T. Matta et al, PRL 114, 082501 (2015)]
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@ [ =31/2and I = 35/2 yrast states and the wobbling state I = 33/2 are
considered to be part of a different rotation-wobbling regime

@ The low critical spin excludes the non-independent rigid MOI description
@ Jft =30.96 MeV~L, 7}V =65.93 MeV~1, v = —11.18° — rms=0.149 MeV
@ Tilting ax = 4.22°,20.78°,28.36° for the states I = 31/2,33/2,35/2.



@ In addition to transversal and longitudinal wobbling, one completed the
wobbling phase space with a tilted-axis wobbling mode.

@ The whole dynamics of the system is treated in a unified manner.

@ Each wobbling mode follows strict conditions for MOI. This analysis put
some additional constraints to the transverse wobbling regime.

@ For a stable v asymmetry, a transition from the transversal wobbling to a
tilted-axis regime can occur. This transition is used to describe the
wobbling excitations in 12°Pr nucleus.

@ A similar semiclassical approach can be used to study the transition
from chiral vibration to static chirality in nuclear systems with two
single-particle generated spins aligned perpendicularly to the core
angular momentum.



Transition probabilities
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FIG. 2. Evolution of the separatrix S;; as a function of angular
momentum for j = 11/2 and 13/2.



