Wobbling phases of odd mass nuclei - a semiclassical description

Radu Budaca

IFIN-HH, Bucharest-Magurele, Romania

Wobbling excitations $\left\{\begin{array}{l}\text { predicted for even-even nuclei, Bohr\&Mottelson } \\ \text { observed in odd } A \text { nuclei }{ }^{161,163,165} \mathrm{Lu},{ }^{167} \mathrm{Ta},{ }^{135} \mathrm{Pr}\end{array}\right.$

Particle-rotor Hamiltonian

$$
H=H_{R}+H_{s p}
$$

$$
\begin{aligned}
H_{R} & =\sum_{k=1,2,3} A_{k}\left(\hat{I}_{k}-\hat{j}_{k}\right)^{2} \text { triaxial rotor Hamiltonian } \\
\vec{R} & =\vec{I}-\vec{j} \text { core angular momentum } \\
A_{k} & \text { the inertial parameters related to the MOI by } A_{k}=\frac{1}{2 \mathcal{J}_{k}}
\end{aligned}
$$

One fully aligned particle with $\hat{j}_{1} \approx j \equiv$ const.

$$
H_{\text {align }}=\underbrace{A_{1} \hat{I}_{1}^{2}+A_{2} \hat{I}_{2}^{2}+A_{3} \hat{I}_{3}^{2}-2 A_{1} j \hat{I}_{1}}_{\text {to be treated }}+\text { const } .
$$

- Treating the full degrees of freedom is difficult.

Solution Time-dependent variational approach selects a limited set of degrees of freedom relevant for the studied phenomenon.

- Relies on a time-dependent variational principle applied to a variational state which is constructed according to the problem.

$$
\delta \int_{0}^{t}\langle\psi(z)| H_{\text {align }}-\frac{\partial}{\partial t^{\prime}}|\psi(z)\rangle d t^{\prime}=0
$$

- The variational principle provides the time-dependence of some restricted set of complex variables which parametrize the variational state.

$$
|\psi(z)\rangle=\sum_{K=-I}^{I} \sqrt{\frac{(2 I)!}{(I-K)!(I+K)!}} \frac{z^{I+K}}{\left(1+|z|^{2}\right)^{I}}|I M K\rangle=\frac{1}{\left(1+|z|^{2}\right)^{I}} e^{z \hat{I}-|I M I\rangle}
$$

Classical energy function

$$
\begin{aligned}
\left\langle H_{\text {align }}\right\rangle= & \frac{I}{2}\left(A_{1}+A_{2}\right)+A_{3} I^{2}-\frac{2 A_{1} j I\left(z+z^{*}\right)}{1+z z^{*}} \\
& +\frac{I(2 I-1)}{2\left(1+z z^{*}\right)^{2}}\left[A_{1}\left(z+z^{*}\right)^{2}-A_{2}\left(z-z^{*}\right)^{2}-4 A_{3} z z^{*}\right]
\end{aligned}
$$

Equations of motion

$$
\frac{\partial \mathcal{H}}{\partial z}=-\frac{2 i I \dot{z}^{*}}{\left(1+z z^{*}\right)^{2}}, \quad \frac{\partial \mathcal{H}}{\partial z^{*}}=\frac{2 i I \dot{z}}{\left(1+z z^{*}\right)^{2}}
$$

Canonical variables

Stereographic representation:
$z=\tan \frac{\theta}{2} e^{i \varphi}, 0 \leq \theta<\pi, \quad 0 \leq \varphi<2 \pi$
Change of variable $r=2 I \cos ^{2} \frac{\theta}{2}, \quad 0<r \leq 2 I$

The full structure of the classical system is reproduced if the variables are canonical:

$$
\begin{gathered}
\frac{\partial \mathcal{H}}{\partial r}=\dot{\varphi}, \quad \frac{\partial \mathcal{H}}{\partial \varphi}=-\dot{r} \quad \text { or } \quad\{r, \mathcal{H}\}=\dot{r}, \quad\{\varphi, \mathcal{H}\}=\dot{\varphi} \\
\{\varphi, r\}=1 \quad \\
\quad \varphi \text { the generalized coordinate } \\
r \text { the generalized momentum }
\end{gathered}
$$

Classical energy function in terms of the canonical variables:

$$
\begin{aligned}
\mathcal{H}(r, \varphi)= & \frac{I}{2}\left(A_{1}+A_{2}\right)+A_{3} I^{2}-2 A_{1} j \sqrt{r(2 I-r)} \cos \varphi \\
& +\frac{(2 I-1) r(2 I-r)}{2 I}\left(A_{1} \cos ^{2} \varphi+A_{2} \sin ^{2} \varphi-A_{3}\right)
\end{aligned}
$$

- The classical trajectory of the angular momentum vector \vec{I} is a curve in the space of its classical projections

$$
\begin{aligned}
I_{1} & =\sqrt{r(2 I-r)} \cos \varphi \\
I_{2} & =\sqrt{r(2 I-r)} \sin \varphi \\
I_{3} & =r-I
\end{aligned}
$$

- It is determined by the intersection of the constant energy surfaces provided by the constants of motions:

$$
\begin{aligned}
\text { Shifted ellipsoid } \mathcal{H} & =A_{1} I_{1}^{2}+A_{2} I_{2}^{2}+A_{3} I_{3}^{2}-2 A_{1} j I_{1}, \\
\text { Sphere } I^{2} & =I_{1}^{2}+I_{2}^{2}+I_{3}^{2} .
\end{aligned}
$$

- The classical orbits are closed curves in the phase space of the canonical coordinates which are concentrically positioned around the stationary points of the constant energy surface.

Choosing different sets of complex canonical coordinates as functions of φ and r and making an homeomorphism between classical algebra with Poisson bracket and a boson algebra with a commutator one arrives at various boson expansions.

Boson realizations of the angular momentum operators

$$
\begin{gathered}
\left(\mathcal{C}, \tilde{\mathcal{C}}^{*},\{,\}\right) \longrightarrow\left(a, a^{\dagger},-i[,]\right) \\
\left\{\tilde{\mathcal{C}}^{*}, \mathcal{C}\right\}=i, \quad\{\mathcal{C}, \mathcal{H}\}=\dot{\mathcal{C}}, \quad\left\{\tilde{\mathcal{C}}^{*}, \mathcal{H}\right\}=\dot{\tilde{\mathcal{C}}}^{*}
\end{gathered}
$$

Dyson

$$
\mathcal{C}=\sqrt{\frac{r(2 I-r)}{2 I}} e^{i \varphi}, \quad \tilde{\mathcal{C}}^{*}=\sqrt{\frac{2 I-r}{2 I r}} e^{-i \varphi}
$$

$$
\begin{aligned}
& \hat{J}_{+}=\sqrt{2 I} a \\
& \hat{J}_{-}=\sqrt{2 I}\left[a^{\dagger}-\frac{\left(a^{\dagger}\right)^{2} a}{2 I}\right] \\
& \hat{J}_{3}=I-a^{\dagger} a
\end{aligned}
$$

New

$$
\hat{J}_{+}=\hat{J}_{-}^{\dagger}=\sqrt{\frac{1}{\sqrt{2}}\left(a^{\dagger}+a\right)} e^{\frac{1}{\sqrt{2}}\left(a^{\dagger}-a\right)}
$$

$$
\times \sqrt{2 I-\frac{1}{\sqrt{2}}\left(a^{\dagger}+a\right)}
$$

$$
\hat{J}_{3}=\frac{1}{\sqrt{2}}\left(a^{\dagger}+a\right)-I
$$

$$
\begin{gathered}
\mathcal{C}=\frac{r}{\sqrt{2 I}}, \tilde{\mathcal{C}}^{*}=i \sqrt{2 I} \varphi \\
\hat{J}_{+}=2 I \sqrt{\frac{a}{\sqrt{2 I}}} e^{\frac{a^{\dagger}}{\sqrt{2 I}}} \sqrt{1-\frac{a}{\sqrt{2 I}}} \\
\hat{J}_{-} \quad=\quad 2 I \sqrt{1-\frac{a}{\sqrt{2 I}}} e^{-\frac{a^{\dagger}}{\sqrt{2 I}} \sqrt{\frac{a}{\sqrt{2 I}}}} \\
\hat{J}_{3}=\sqrt{2 I} a-I
\end{gathered}
$$

The stationary points where $\dot{\varphi}=\dot{r}=0$, which are stable against fluctuations are those which minimize the classical energy.

i	$\left(r_{i}, \varphi_{i}\right)$	Conditions	I_{1}^{cl}	I_{2}^{cl}	I_{3}^{cl}
(1)	$(I, 0)$	$S_{I j} A_{1}<A_{2}<A_{3}$	I	0	0
(2)	$\left(\sqrt{r_{2}\left(2 I-r_{2}\right)}=I, \alpha_{2}\right)$	$S_{I j} A_{1}<A_{3}<A_{2}$			
(3)	$A_{2}<A_{3}<A_{1} S_{I j}$	$I \cos \alpha_{2}$	$I \sin \alpha_{2}$	0	
	$\left(\sqrt{r_{3}\left(2 I-r_{3}\right)}=I \cos \alpha_{3}, 0\right)$	$A_{2}<S_{I j} A_{1}<A_{3}$			
	$A_{3}<A_{2}<A_{1} S_{I j}$	$I \cos \alpha_{3}$	0	$I \sin \alpha_{3}$	
$A_{3}<A_{1} S_{I j}<A_{2}$					

Tilting angle $\quad \cos \alpha_{2,3}=\frac{2 A_{1} j}{(2 I-1)\left(A_{1}-A_{2,3}\right)} \quad$ Weighting factor $\quad S_{I j}=\frac{2 I-1-2 j}{2 I-1}$

The stationary points where $\dot{\varphi}=\dot{r}=0$, which are stable against fluctuations are those which minimize the classical energy.

i	$\left(r_{i}, \varphi_{i}\right)$	Conditions	I_{1}^{cl}	I_{2}^{cl}	I_{3}^{cl}
(1)	$(I, 0)$	$S_{I j} A_{1}<A_{2}<A_{3}$	I	0	0
(2)	$\left(\sqrt{r_{2}\left(2 I-r_{2}\right)}=I, \alpha_{2}\right)$	$S_{I j} A_{1}<A_{3}<A_{2}$			
(3)	$A_{2}<A_{3}<A_{1} S_{I j}$	$I \cos \alpha_{2}$	$I \sin \alpha_{2}$	0	
	$\left(\sqrt{r_{3}\left(2 I-r_{3}\right)}=I \cos \alpha_{3}, 0\right)$	$A_{2}<S_{I j} A_{1}<A_{3}$			
	$A_{3}<A_{2}<A_{1} S_{I j}$	$I \cos \alpha_{3}$	0	$I \sin \alpha_{3}$	
$A_{3}<A_{1} S_{I j}<A_{2}$					

Tilting angle $\quad \cos \alpha_{2,3}=\frac{2 A_{1} j}{(2 I-1)\left(A_{1}-A_{2,3}\right)} \quad$ Weighting factor $\quad S_{I j}=\frac{2 I-1-2 j}{2 I-1}$

Quantized energy and wobbling frequency

Harmonic approximation on classical energy function

$$
\mathcal{H}_{i}(r, \varphi)=\mathcal{H}\left(r_{i}, \varphi_{i}\right)+\frac{1}{2}\left(\frac{\partial^{2} \mathcal{H}}{\partial r^{2}}\right)_{r_{i}, \varphi_{i}} \tilde{r}_{i}^{2}+\frac{1}{2}\left(\frac{\partial^{2} \mathcal{H}}{\partial \varphi^{2}}\right)_{r_{i}, \varphi_{i}} \tilde{\varphi}_{i}^{2}
$$

$\tilde{r}_{i}=r-r_{i}$ and $\tilde{\varphi}_{i}=\varphi-\varphi_{i}$ replaced with their operator counterparts.

Discrete energy spectra

$$
\begin{aligned}
& E_{1}(I, n)=A_{1} I^{2}+\frac{I}{2}\left(A_{2}+A_{3}\right)-2 A_{1} j I+\omega_{1}(I)\left(n+\frac{1}{2}\right) \\
& E_{2}(I, n)=A_{2} I^{2}+\frac{I}{2}\left(A_{1}+A_{3}\right)-A_{1} j I \cos \alpha_{2}+\omega_{2}(I)\left(n+\frac{1}{2}\right) \\
& E_{3}(I, n)=A_{3} I^{2}+\frac{I}{2}\left(A_{1}+A_{2}\right)-A_{1} j I \cos \alpha_{3}+\omega_{3}(I)\left(n+\frac{1}{2}\right)
\end{aligned}
$$

Wobbling frequencies

$$
\begin{aligned}
\omega_{1}(I) & =\sqrt{\left[(2 I-1)\left(A_{3}-A_{1}\right)+2 A_{1} j\right]\left[(2 I-1)\left(A_{2}-A_{1}\right)+2 A_{1} j\right]} \\
& \underset{I \gg 1}{\longrightarrow} \text { [S. Frauendorf, F. Dönau, PRC 89, 014322(2014)] } \\
\omega_{2}(I) & =(2 I-1) \sqrt{\left(A_{3}-A_{2}\right)\left(A_{1}-A_{2}\right)} \sin \alpha_{2} \\
\omega_{3}(I) & =(2 I-1) \sqrt{\left(A_{2}-A_{3}\right)\left(A_{1}-A_{3}\right)} \sin \alpha_{3}
\end{aligned}
$$

Longitudinal wobbling (1)- Quasiparticle angular momentum aligned to the axis with the largest MOI.
Transversal wobbling (t1)- Quasiparticle angular momentum aligned perpendicularly to the axis with the largest MOI.
[Y.R. Shimizu, M. Matsuzaki, K. Matsuyanagi, conf. talk (2004)]

$j=11 / 2$ \& hydrodynamic MOI

$$
\mathcal{J}_{k}=\frac{4}{3} \mathcal{J}_{0} \sin ^{2}\left(\gamma-\frac{2}{3} k \pi\right)
$$

- (2)-(3) separatrix at $\gamma=2 \pi / 3(\operatorname{Mod} \pi)$
- Longitudinal wobbling phase (1) interval of existence $\gamma \in(0, \pi / 3)(\operatorname{Mod} \pi)$ is isolated from the tilted angle wobbling phase

4 Transversal wobbling with alignment around an axis with the minimum MOI is restricted to a very narrow existence interval and only for $I=13 / 2$ and $I=15 / 2$ states.

4 At rigid γ, as spin is increased, a transition is possible only from transversal wobbling to tilted axis wobbling.
 $j=11 / 2$ \& hydrodynamic MOI

$$
\mathcal{J}_{k}=\frac{4}{3} \mathcal{J}_{0} \sin ^{2}\left(\gamma-\frac{2}{3} k \pi\right)
$$

- (2)-(3) separatrix at $\gamma=2 \pi / 3(\operatorname{Mod} \pi)$
- Longitudinal wobbling phase (1) interval of existence $\gamma \in(0, \pi / 3)(\operatorname{Mod} \pi)$ is isolated from the tilted angle wobbling phase

4 Transversal wobbling with alignment around an axis with the minimum MOI is restricted to a very narrow existence interval and only for $I=13 / 2$ and $I=15 / 2$ states.

4 At rigid γ, as spin is increased, a transition is possible only from transversal wobbling to tilted axis wobbling.

Comparison to experiment

Wobbling excitations in ${ }^{135} \mathrm{Pr}$ [J.T. Matta et al., PRL 114, 082501 (2015)]

- $I=31 / 2$ and $I=35 / 2$ yrast states and the wobbling state $I=33 / 2$ are considered to be part of a different rotation-wobbling regime
- The low critical spin excludes the non-independent rigid MOI description
- $\mathcal{J}_{0}^{R}=30.96 \mathrm{MeV}^{-1}, \mathcal{J}_{0}^{W}=65.93 \mathrm{MeV}^{-1}, \gamma=-11.18^{\circ} \rightarrow \mathrm{rms}=0.149 \mathrm{MeV}$
- Tilting $\alpha_{2}=4.22^{\circ}, 20.78^{\circ}, 28.36^{\circ}$ for the states $I=31 / 2,33 / 2,35 / 2$.
- In addition to transversal and longitudinal wobbling, one completed the wobbling phase space with a tilted-axis wobbling mode.
- The whole dynamics of the system is treated in a unified manner.
- Each wobbling mode follows strict conditions for MOI. This analysis put some additional constraints to the transverse wobbling regime.
- For a stable γ asymmetry, a transition from the transversal wobbling to a tilted-axis regime can occur. This transition is used to describe the wobbling excitations in ${ }^{135} \mathrm{Pr}$ nucleus.
- A similar semiclassical approach can be used to study the transition from chiral vibration to static chirality in nuclear systems with two single-particle generated spins aligned perpendicularly to the core angular momentum.

I	$\frac{B(E 2, I \rightarrow I-1)_{\text {out }}}{B(E 2, I \rightarrow I-2)_{\text {in }}}$				$\frac{B(M 1, I \rightarrow I-1)_{\text {out }}}{B(E 2, I \rightarrow I-2)_{\text {in }}}\left(\frac{\mu_{N}}{e b}\right)^{2}$	
	Expt.	Th.		Expt.	Th.	
$\frac{17}{2}$		0.313		0.164		
$\frac{21}{2}$	$0.843(32)$	0.270		$0.164(14)$	0.164	
$\frac{25}{2}$	$0.500(25)$	0.258		$0.035(9)$	0.183	
$\frac{29}{2}$	$\geqslant 0.261(14)$	0.318		$\geqslant 0.016(4)$	0.279	

$$
\begin{aligned}
B(E 2 ; n, I \rightarrow n, I \pm 2)_{i} & =\frac{5 e^{2}}{16 \pi}\left|Q_{2}^{(i)}\right|^{2} \\
B(E 2 ; n, I \rightarrow n-1, I-1)_{i} & =\frac{5 e^{2}}{16 \pi} \frac{n}{2 I}\left|Q_{0}^{(i)} \sqrt{\frac{3}{2}}\left(\frac{1}{k_{i}}+k_{i}\right)-Q_{2}^{(i)}\left(\frac{1}{k_{i}}-k_{i}\right)\right|^{2} \\
B(M 1 ; n, I \rightarrow n-1, I-1)_{i} & =\frac{3}{4 \pi} \frac{n}{4 I}\left|j\left(g_{j}-g_{R}\right)\left(\frac{1}{k_{i}}+k_{i}\right)\right|^{2} \\
k_{i}=\sqrt{m_{i} \omega_{i}}, & m_{i}=\left[I\left(\frac{\partial^{2} \mathcal{H}}{\partial r^{2}}\right)_{r_{i}, \varphi_{i}}\right]^{-1}
\end{aligned}
$$

FIG. 2. Evolution of the separatrix $S_{I j}$ as a function of angular momentum for $j=11 / 2$ and $13 / 2$.

