Topological Superfluid Phase

with
Repulsive Fermionic Atoms

Department of Physics - Indiana University

[ ? 3 ‘.m;‘.(‘ SIN Y (g
e QPTn-9 — Mav 24th 2018
i;-““':’}' " - . Q n- — uy i
TR,

’i
s




Is Landau theory the only possible framework
for (Quantum or Thermal) Phase Transitions ?



Is Landau theory the only possible framework
for (Quantum or Thermal) Phase Transitions ?

— Anonymous |




Landau versus Topological orders
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@ But real "closed systems” are interacting particle-number
conserving (pnc) systems
— What is a topological superfluid in a pnc system?
— What is a Majorana fermion in a pnc system?
— How one detects Majorana fermions?
— Can one braid MFs in pnc systems?
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What is the Fate of Majoranas Beyond Mean-Field?

Meaning to zero-energy modes

Coherent superpositions of states with different # of particles
I"1 o modes anti-commute with fermionic parity
Non-number conserving in number conserving systems

Can one prepare/manipulate/braid coherent superpositions
of states with a different number of particles?
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Nothing to see: The man Muiomnu in Ihe NeWS

who made a Majorana
particle

By Lisa Grossman

Physicist Leo Kouwenhoven ended a 75-year hunt for the tricky Majorana fermion — a particle
that is its own antiparticle — by creating one on a chip

{ l)g Ncw ﬂork Eima http:/nyti.ms/1TmfRwAY

TECHNOLOGY

Microsoft Makes Bet Quantum
Computing Is Next Breakthrough

By JOHN MARKOFF JUNE 23, 2014

That may change soon. The company has been spending heavily and is
contributing to 10 of the roughly 20 academic research groups exploring a
long-hypothesized class of subatomic particles known as Majorana fermions. Beyond
being a scientific advance, proving the existence of the Majorana would mean that it
was likely they could be used to form qubits for this new form of quantum

computing.
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News » Science

'‘Angel particle’ which is both matter and anti-matter discovered
in ‘landmark’ quantum physics breakthrough

Scientists say they have found the first evidence that 'Majorana fermions' exist, 80 years after they
were first suggested

lan Johnston Science Correspondent | @montaukian | Thursday 20 July 2017 18:41 BST | [ J98 comments
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—— Repulsive Superfluidity in Optical Lattices
1 Fermion Pairing from Repulsion

1 Attraction from Local Fluctuations: New Mechanism

1 Topological Superfluid State in a quasi-1D Lattice

1 Topological Superfluidity in 2-D

Developing Probes in AMO Experiments
B Probing Topological Superfluidity
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Superfluid State in a quasi-1D Lattice
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Emergent Fermion pairing

/Li/ » e-atom quantum fluctuations
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Ettective Model (Schrieffer-Wolff Transformation)
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Phase Diagram in quasi-1D

Unconstrained Single-site unit cell
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Topological Superfluidity in two-dimensions

(P + ipy)-wave symmetry
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» g-atom dispersion: €n,n, = 2J4(ny cos % +ny cos F), ng, = +1
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Synthetic Magneto-Electric Effect
(Spin-Galvanic Effect)

» Laser-induced Magnetic Field
ARy =2t Zi,a,b(b : O'ab)g;fagz‘b
bz /b, < intra-dimer real /complex hopping
b. = relative energy shift of dimer sites

» Time-reversal Symmetry T
and a c-number

Only b, breaks T
We consider b = (0, b,, 0)




Unveiling the Superfluid State

» Linear Mass Current Response
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