Saddle Point Localization of Molecular Wavefunctions

G. Ch. MELLAU

Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen

Padua, 22.05.2018

Outline

Molecules in highly excited states

1. Intuitive understanding of molecules and the [H,C,N] molecular system

FT-IR spectroscopy of the highly excited states

- 1. FT-IR Hot GAs Molecular Emission (HOTGAME) spectroscopy
- 2. Analysis of the high resolution very dense emission spectra of HCN and HNC

Complete eigenenergy list

- 1. Complete eigenenergy structure of the [H,C,N] molecular system
- 2. "Spectroscopy" of the *ab initio* [H,C,N] eigenenergies

Classical to Quantum correspondence at the saddle point

- 1. Classical and quantum frequencies at the barrier for Morse and quartic potential
- 2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Saddle Point Localization

- 1. Saddle point localization of the wavefunctions for the quartic potential
- 2. Molecular saddle point localized states

Intuitive understanding of molecules

H. Primas, Chemie in unserer Zeit, 19, 109 (1985), G. Ch. Mellau, in preparation

Outline

Molecules in highly excited states

1. Intuitive understanding of molecules and the [H,C,N] molecular system

FT-IR spectroscopy of the highly excited states

- 1. FT-IR Hot GAs Molecular Emission (HOTGAME) spectroscopy
- 2. Analysis of the high resolution very dense emission spectra of HCN and HNC

Complete eigenenergy list

- 1. Complete eigenenergy structure of the [H,C,N] molecular system
- 2. "Spectroscopy" of the *ab initio* [H,C,N] eigenenergies

Classical to Quantum correspondence at the saddle point

- 1. Classical and quantum frequencies at the barrier for Morse and quartic potential
- 2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Saddle Point Localization

- 1. Saddle point localization of the wavefunctions for the quartic potential
- 2. Molecular saddle point localized states

Emission spectrum of a candle

Hot gas molecular emission (HOTGAME)

HCN Emission experiments

[c] D. Bailly, C. Camy-Peyret, R. Lanquetin, Temperature Measurement in Flames through CO2 and CO Emission: New Highly Excited Levels of CO2, J.Mol.Spectrosc.182,10 (1997).

G. Ch. Mellau, S. N. Mikhailenko, V. G. Tyuterev, J. Mol. Spectr. 308-309, 6-19 (2015)

Analysis

I skipped this in fact very important part due to the time limit: To assign these spectra some very complex assignment program is needed where the (x,y) data points of the spectrum are linked directly to the eigenvalues of the Energy Matrix. In this way it is possible to achieve a perfect deconvolution of the overlapping lines. This is a screenshot of the analysis program.

Outline

Molecules in highly excited states

1. Intuitive understanding of molecules and the [H,C,N] molecular system

FT-IR spectroscopy of the highly excited states

- 1. FT-IR Hot GAs Molecular Emission (HOTGAME) spectroscopy
- 2. Analysis of the high resolution very dense emission spectra of HCN and HNC

Complete eigenenergy list

- 1. Complete eigenenergy structure of the [H,C,N] molecular system
- 2. "Spectroscopy" of the *ab initio* [H,C,N] eigenenergies

Classical to Quantum correspondence at the saddle point

- 1. Classical and quantum frequencies at the barrier for Morse and quartic potential
- 2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Saddle Point Localization

- 1. Saddle point localization of the wavefunctions for the quartic potential
- 2. Molecular saddle point localized states

Complete eigenenergy list

THE JOURNAL OF CHEMICAL PHYSICS 134, 194302 (2011)

Rovibrational eigenenergy structure of the [H,C,N] molecular system

Georg Ch. Mellau^{a)} Physikalisch-Chemisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany

(Received 17 March 2011; accepted 21 April 2011; published online 17 May 2011; corrected 23 May 2011)

Fundamental understanding of the structure and dynamical evolution of molecules can be extracted from high resolution spectra. The list of possible rovibrational eigenenergies is the main result obtained from these experiments. In principle, these eigenenergies could be determined to any precision by theoretical calculations if the molecular Schrödinger equation, which describes the correlated motions of the electrons and nuclei could be solved exactly. This is, however, not possible, because while this multi-dimensional eigenvalue differential equation is extremely simple to formulate, it is impossible to solve. For polyatomic molecules we can obtain theoretical eigenenergies for the molecular motion of the nuclei only within the Born-Oppenheimer approximation using a highly accurate potential energy surface (PES). But even using such an exact PES the eigenenergies observed do not reach the accuracy of the high resolution experiments. In fact in high resolution spectroscopy we reverse the situation described: we use experiments to solve the molecular Schrödinger equation. The analysis of the observed

Accurate partition functions

The internal partition function Q_{int}of a free molecule is

$$Q_{int}(T) = \sum_{i} g_i (2J_i + 1) e^{-\frac{C_2 E_i}{T}} \equiv \text{Complete Eigenenergy List}$$

where c_2 is the second radiation constant, J_i is the rotational quantum number and g_i is the degeneracy factor. The relative accuracy of the partition function at temperature T calculated by summing over the E_i high resolution eigenenergies is

where $u(E_i)$ is the measurement uncertainty of energy levels given in cm⁻¹. All levels up to ~16*T excitation energy in cm⁻¹ must be measured and included in the sum. For HCN the complete eigenenergy list is very accurate with $u(E_i)=0.0005 - 0.00001 \text{ cm}^{-1}$ resulting in

$$Q_{\rm HCNint}(298 {\rm K}) = 148.70043(5)$$

where the uncertainty has been calculated based on the specific mean uncertainty of each rovibrational data set. The best values published before are 148.72 and 148.5(5). Theoretical first principle calculations are limited to $u(Q_{int})/Q_{int}=10^{-2}$ - 10^{-4} . The accuracy of Q_{int} is in fact related to the question up to which excitation energy is the measured eigenenergy list complete.

Ab initio [H,C,N] eigenenergies: $v_1v_2^lv_3$?				
e, J=0	e, <i>J</i> =1	f, <i>J</i> =1	e, <i>J</i> =60	f, <i>J</i> =60
0.0000	2.9100	$00^{0}0$	5376.5455	
	718.7979	718.8120 <i>01¹0</i>	6091.7720	6118.0706
1414.9159	1417.8414	$02^{0}0$	6797.5744	
2100.5823	2103.4725	$02^{2}0$	6852.9351	6832.6549
2801.4591	2117.2600	2117.2909	7440.7011	7535.3291
3307.7458	2804.4008	2816.9020	7494.9722	7582.0682
3510.9917	2816.8871	3496.8648	7568.2503	8179.3270
4176.2430	3310.6353	4007.1891	8153.0590	8231.9466
4181.4534	3496.8172	4210.5491	8187.3730	8300.5555
4686.2843	3513.8969	4865.8119	8268.2633	8891.0365
18754.768	18150.834	18029.4513	18033.7293	18057.3009
18770.643	18159.392	18051.2290	18036.1204	18063.0370
18795.017	18165.387	18087.2527	18039.4689	18091.6386
18817.187	18165.677	18096.2871	18055.2306	18102.6992

HCN/HNC eigenenergy and eigenvector data sets

Complete (v_1, v_2, v_3, l) assigned ab initio up to the isomerization barrier

e, J=0 e, J=1	e, <i>J</i> =60 f, <i>J</i> =60				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5376.5455 6091.7720 6118.0706				
1414.9159 1417.8414 0200	6797.5744				
2100.5823 2103.4725 <i>02²0</i>	6852.9351 6832.6549				
18754.768 18150.834 ?????	18033.7293 18057.3009				
18770.643 18159.392 ?????	18036.1204 18063.0370				
Complete pattern based assignment of all					
168.110 ab initio rotation-vibration					
eigenenergies					

G.Ch. Mellau, J. Chem. Phys., 134, 234303 (2011)

Source 1): UCL Exomol ab initio list

Mourik et al. J. Chem. Phys. 115, 3706 (2001), G. J. Harris et al., MNRAS 367, 400 (2006)

Source 2): extended 1) to higher energies with stored eigenvectors and improved convergence (A. Kyuberis, O. Polyansky, N. F. Zobov)

G.Ch. Mellau, J. Chem. Phys. 133, 164303 (2010), G.Ch. Mellau, J. Chem. Phys. 134, 234303 (2011),... 14 papers

Onset of isomerization: $0v_20 =>23$ and $0v_21 =>21$

Vibrational signature of the isomerization Vibrational signature of a transition state

Outline

Molecules in highly excited states

1. Intuitive understanding of molecules and the [H,C,N] molecular system

FT-IR spectroscopy of the highly excited states

- 1. FT-IR Hot GAs Molecular Emission (HOTGAME) spectroscopy
- 2. Analysis of the high resolution very dense emission spectra of HCN and HNC

Complete eigenenergy list

- 1. Complete eigenenergy structure of the [H,C,N] molecular system
- 2. "Spectroscopy" of the *ab initio* [H,C,N] eigenenergies

Classical to Quantum correspondence at the saddle point

- 1. Classical and quantum frequencies at the barrier for Morse and quartic potential
- 2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Saddle Point Localization

- 1. Saddle point localization of the wavefunctions for the quartic potential
- 2. Molecular saddle point localized states

Morse classical to quantum correspondence

 $\hbar\omega_c(E)$ classical frequency $\Delta E_n(E_n)$ quantum frequency

 $\hbar\omega_c(E) \approx \Delta E_n(E_n)$

$$E \longleftrightarrow E_n = \frac{\omega_e}{2} + \frac{E'_0 + E''_0}{2}$$

J. R. Nielsen (ed.), Niels Bohr Collected Works, Vol. 3: The Correspondence Principle (1918–1923), Amsterdam: North-Holland Publishing(1976).

Morse classical to quantum correspondence

quantum frequency

 $\Delta E_n(E_n)$

Mg-NC bending potential

Classical to quantum correspondence at the saddle point

$$\hbar\omega_u(E) = \frac{\sqrt{2\pi E_0 \sqrt[4]{\frac{E-E_b}{E_b} + 1}}}{K\left(\frac{1}{2}\left(1 + \frac{1}{\sqrt{\frac{E-E_b}{E_b} + 1}}\right)\right)}$$

$$\hbar\omega_{l}(E) = \frac{\pi E_{0}\sqrt{\sqrt{\frac{E-E_{b}}{E_{b}}+1}+1}}{K\left(\frac{2}{1+\frac{1}{\sqrt{\frac{E-E_{b}}{E_{b}}+1}}}\right)}$$

$$E \longleftrightarrow E_n = E_{0,harm} + \frac{E'_0 + E''_0}{2}$$

Frequency correspondence

The eigenenergies and the classical frequencies for quartic potentials with $E_b = i \times E_0$ with i =11.0 to 11.4.

Eigenenergies at the saddle point change their position to avoid low quantum frequencies.

Vibrational signature of the isomerization Vibrational signature of a transition state

THE JOURNAL OF CHEMICAL PHYSICS 134, 234303 (2011)

Complete experimental rovibrational eigenenergies of HCN up to 6880 cm⁻¹ above the ground state

Georg Ch. Mellau^{a)} Physikalisch-Chemisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany

(Received 17 March 2011; accepted 18 May 2011; published online 15 June 2011)

"barrier anharmonicity"

Transition state spectroscopy ↔ "frequency analysis"

New methods to extract chemically relevant saddle point energies from spectroscopically measured quantities

J. H. Baraban, P. B. Changala, G. C. Mellau, J. F. Stanton, A. J. Merer, and R. W. Field, Science, 350, 1338 (2015)

Frequencies for 0v₂1: CN stretch + bending series

Frequencies for 0v₂2: 2 x CN stretch + bending series

M. Joyeux et al. Adv. Chem. Phys. 136 267 (2005) Z. Bacic and J.C. Light, J. Chem. Phys. 86 3065 (1987)

The spectroscopic (v_1, v_2, l) isomerization barrier

Outline

Molecules in highly excited states

1. Intuitive understanding of molecules and the [H,C,N] molecular system

FT-IR spectroscopy of the highly excited states

- 1. FT-IR Hot GAs Molecular Emission (HOTGAME) spectroscopy
- 2. Analysis of the high resolution very dense emission spectra of HCN and HNC

Complete eigenenergy list

- 1. Complete eigenenergy structure of the [H,C,N] molecular system
- 2. "Spectroscopy" of the *ab initio* [H,C,N] eigenenergies

Classical to Quantum correspondence at the saddle point

- 1. Classical and quantum frequencies at the barrier for Morse and quartic potential
- 2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Saddle Point Localization

- 1. Saddle point localization of the wavefunctions for the quartic potential
- 2. Molecular saddle point localized states

Low barrier case 2.5 20000 $\nabla E^{\rm u}(E^{\rm u})/E^{\rm o}, \ \mu m^{\rm c}(E)/E^{\rm o}$ 1.5 1.0 0.5 15000 0.5 0.0 10 *E/E*₀ 15 20 0 5 E, V(x) /cm⁻¹ 10000 0.10 0.05 $(\hbar\omega_c(E){-}\Delta E_n(E_n))/E_0$ 5000 0.00 -0.05 $E_{\rm b}=5 \times E_{\rm 0}$ $E_{\rm 0}=2000 \text{ cm}^{-1}$ 0 -0.10

-10

-15

-5

0

Х

5

10

15

-2

0

2

n

4

6

Localization of the eigenstates at the barrier

Localization for 0v₂2: 2 x CN stretch + bending series

Acknowledgments

Spectroscopy and physical informatics G. Ch. Mellau *Justus-Liebig-Universität Gießen*

HCN/HNC line and band intensities from absorption and emission spectra J. Schostag

Hot H¹³CN B. Eifert, J. P. Hofmann

Physical Computer-Algebra-Systems B. Eifert, J. Schostag

Transition state.

MIT, USA R. Field B. Changala J. Baraban

[H,C,N] ab initio calculations

University College London IAP, Nizhny Novgorod O. L. Polyansky A. A. Kyuberis N. Zobov

> Hot H¹³CN, HC¹⁵N, H¹³C¹⁵N, D¹³C¹⁵N

Universität Leipzig W. Quapp Washington, USA A. Maki

Hot H₂O and isotopologues

Université de Reims, Reims, France V. Tyuterev

Institute of Atmospheric Optics, Tomsk, Russia S. Mikhailenko

Eötvös University, Budapest, Hungary A. Császár

Hot CO₂ Institute of Atmospheric Optics, Tomsk, Russia V. Perevalov Y. Borkov

Hot HC¹⁵N University of Lethbridge Lethbridge, Canada A. Predoi-Cross

Shown and explained the existence of the <u>saddle point localization</u> <u>effect and its application in molecular physics.</u>

Shown the full dimensional vibrational <u>angular momentum dependent dip</u> <u>of the vibrational energies</u> as the vibrational excitation approaches the saddle point.

Internal dynamic effect for HCN,HNC,DCN (and probably general to HAB linear molecules): *effect of highly excited vibrational momentum*

The first time a <u>complete</u> experimental/theoretical analysis of the rovibrational spectrum of a <u>polyatomic</u> molecule has been achieved in an extended excitation region.

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Dynamic degeneracy of *l***=0 states**

