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Intuitive understanding of molecules

H. Primas, Chemie in unserer Zeit, 19, 109 (1985), G. Ch. Mellau, in preparation
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Rovibrational states: What we understand
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[H,C,N] molecular system

Potential function form: Mourik et al. J. Chem. Phys., 2001, 115, 3706-3718  



barrier
anharmonicity

~harmonic

anharmonic

[H,C,N] Molecular Eigenenergies
Workshop on local mode vibrations, 
St. Flour, France 
10-12 September, 1999

45 000 Eigenstates
1000 Vibstates

95 000 Eigenstates
2000 Vibstates



Simulation : B. Eifert and G. Ch. Mellau, Potential function form: Mourik et al. J. Chem. Phys., 2001, 115, 3706-3718  

Isomerisation as bond-breaking “vibration”
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HCN, absorption, 200m, 2mbar

FTIR absorption spectroscopy

Wavenumber /cm-1
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HCN, absorption, 200m, 2mbar

HCN, emission, 2mbar, 1100 C

Absorption↔ Emission
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Hot gas infrared emission (HOTGAME) spectra are extremely rich in transitions in comparison 
with even very long path absorption measurements (G. Mellau and M. Winnewissser , 1997) 

Wavenumber /cm-1



Emission spectrum of a candle

CO2

H2O

CO

2000 3000 40001000 5000

Wellenzahl  (cm-1)Wavenumber (cm-1)



cell cooling

water cooling out

window cooling

sample in/out

window cooling
cell window
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Hot gas molecular emission (HOTGAME)



HOTGAME spectroscopy



HOTGAME spectroscopy



HCN Emission experiments

1997      1100 °C

2007      1300 °C. 



HCN/HNC emission spectra
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HOTGAME spectroscopy of CO2

2378.4479 cm
-1

R(198)

...

T=1923 K

R(146)

a)

c)

d)

b)

[c] D. Bailly, C. Camy-Peyret, R. Lanquetin, Temperature Measurement in Flames through CO2 and CO Emission: New Highly Excited Levels of CO2, J.Mol.Spectrosc.182,10 (1997). 



HOTGAME spectroscopy of H2O 

G. Ch. Mellau, S. N. Mikhailenko, V. G. Tyuterev, J. Mol. Spectr. 308-309, 6-19 (2015)



Analysis   
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I skipped this in fact very important part due to the time limit: To assign these spectra some very 
complex assignment program is needed where the (x,y) data points of the spectrum are linked 
directly to the eigenvalues of the Energy Matrix. In this way it is possible to achieve a perfect 
deconvolution of the overlapping lines. This is a screenshot of the analysis program.



HNC: The ν1 band system

G. Ch. Mellau, J. Mol. Spectrosc. 264, 2 (2010)
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Complete eigenenergy list

25.000 + 20.000
eigenstates

G.Ch. Mellau, J. Chem. Phys. 133, 164303 (2010), 
G.Ch. Mellau, J. Chem. Phys. 134, 234303 (2011),… 14 papers and some in preparation

From HOTGAME experiments



Complete eigenenergy list
From HOTGAME experimentsTHE JOURNAL OF CHEMICAL PHYSICS 134, 194302 (2011)

Rovibrational eigenenergy structure of the [H,C,N] molecular system
Georg Ch. Mellaua)

Physikalisch-Chemisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58,
D-35392 Giessen, Germany

(Received 17 March 2011; accepted 21 April 2011; published online 17 May 2011; corrected 23
May 2011)

The vibrational-rotational eigenenergy structure of the [H,N,C] molecular system is one of the key
features needed for a quantum mechanical understanding of the HCN⇀↽HNC model reaction. The
rotationless vibrational structure corresponding to the multidimensional double well potential energy
surface is well established. The rotational structure of the bending vibrational states up to the iso-
merisation barrier is still unknown. In this work the structure of the rotational states for low and high
vibrational angular momentum is described from the ground state up to the isomerisation barrier
using hot gas molecular high resolution spectroscopy and rotationally assigned ab initio rovibronic
states. For low vibrational angular momentum the rotational structure of the bending excitations
splits in three regions. For J < 40 the structure corresponds to that of a typical linear molecule, for
40 < J < 60 has an approximate double degenerate structure and for J > 60 the splitting of the e
and f components begins to decrease and the rotational constant increases. For states with high an-
gular momentum, the rotational structure evolves into a limiting structure for v2 > 7 – the molecule
is locked to the molecular axis. For states with v2 > 11 the rotational structure already begins to
accommodate to the lower rotational constants of the isomerisation states. The vibrational energy
begins to accommodate to the levels above the barrier only at high vibrational excitations of v2 > 22
just above the barrier whereas this work shows that the rotational structure is much more sensitive
to the double well structure of the potential energy surface. The rotational structure already experi-
ences the influence of the barrier at much lower energies than the vibrational one. © 2011 American
Institute of Physics. [doi:10.1063/1.3590026]

I. INTRODUCTION

Fundamental understanding of the structure and dy-
namical evolution of molecules can be extracted from high
resolution spectra. The list of possible rovibrational eigenen-
ergies is the main result obtained from these experiments.
In principle, these eigenenergies could be determined to
any precision by theoretical calculations if the molecular
Schrödinger equation, which describes the correlated motions
of the electrons and nuclei could be solved exactly. This is,
however, not possible, because while this multi-dimensional
eigenvalue differential equation is extremely simple to for-
mulate, it is impossible to solve. For polyatomic molecules
we can obtain theoretical eigenenergies for the molecular
motion of the nuclei only within the Born-Oppenheimer ap-
proximation using a highly accurate potential energy surface
(PES). But even using such an exact PES the eigenenergies
observed do not reach the accuracy of the high resolution
experiments. In fact in high resolution spectroscopy we re-
verse the situation described: we use experiments to solve the
molecular Schrödinger equation. The analysis of the observed
line positions reveals the eigenenergy structure; the analysis
of the line intensities gives direct information about the wave
functions. From a theoretical point of view they are strongly
correlated through the assigned quantum numbers.

a)Electronic mail: georg@mellau.de. URL:http://www.georg.mellau.de.

Molecular vibrations and rotations are well understood at
low excitation energies around the equilibrium structure but
if the molecule gains energy in a quantity relevant to chem-
ical reactions there are still many open questions. H2O, H+

3
Acetylene, HCP, and HCN/HNC are the model molecules for
which experimental and theoretical studies have been done at
the most basic level. The HCN and HNC isomers correspond
to two global minima of the [H,C,N] molecular system with
the two stable linear isomers HCN and HNC. This system is
important because there is an overlap between the two basic
scientific tools that we can use to gain a fundamental under-
standing of molecular physics on a full quantum mechanical
basis. It is possible to do high-level ab initio theoretical calcu-
lations (only 17 particles) and high resolution spectroscopic
data can be obtained for highly excited rovibrational states.
The isomerisation reaction HCN⇀↽HNC is one of the impor-
tant model systems for the study of unimolecular reactions.
Figure 1 shows the one dimensional PES of the molecular
system along the isomerisation path as the hydrogen atom
bends from one side of the CN core to the other. To de-
scribe the relative positions of the nuclei in HCN and HNC
the Jacobi coordinates (R,r ,γ ) are used: R = rH−CN is the
distance between the H atom and the center-of-mass of the
molecule CN part, r = rCN is the distance between the N
and C atoms and γ the angle between R and the CN bond
axis. On the HCN–HNC potential curve, the γ coordinate
varies linearly between the HCN (γ = 0) and HNC (γ = π )
structures.

0021-9606/2011/134(19)/194302/10/$30.00 © 2011 American Institute of Physics134, 194302-1
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Accurate partition functions

where is the second radiation constant, is the rotational quantum number and g is the degeneracy factor.c J2 i i The relative
accuracy of th partition function at temperature T calculated by summing the high resolution eigenenergiese over isEi

where ( ) is the measurement uncertainty of energy levels given in cm . All levels up to ~16* excitation energy in cm
must be measured and included in the sum. For HCN the complete eigenenergy list is very accurate with ( )=0.0005 -
0.00001 cm resulting in

u E Ti

-1 −1

u Ei
−1

where the uncertainty has been calculated based on the specific mean uncertainty of each rovibrational data set. The
values published are 148.72 and 148.5(5). Theoretical first principle calculations are limited to u( )/ =10 -
10 is in fact related to the question up to which excitation energy is the measured eigenenergy list
complete.

best
before Q Qint int

−2

−4
.The accuracy of Qint

The internal partition function of a free molecule isQint



Ab initio  [H,C,N] eigenenergies: v1v2
lv3 ?

e, J=0
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2801.4591
3307.7458
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4176.2430
4181.4534
4686.2843
…
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18795.017
18817.187

e, J=1
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2117.2600
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…
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…
…
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…
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18091.6386
18102.6992

0000
0110
0200
0220



HCN/HNC eigenenergy and eigenvector data sets

60 000 HCN/HNC peaks!

25.000 + 20.000
eigenstates

e, J=0
0.0000

1414.9159
2100.5823
…
18754.768
18770.643

e, J=1
2.9100

718.7979
1417.8414
2103.4725
…
18150.834
18159.392

e, J=60       
5376.5455
6091.7720
6797.5744
6852.9351
…
18033.7293
18036.1204

f, J=60

6118.0706

6832.6549
…
18057.3009
18063.0370

0000
0110
0200
0220

?????
?????

Complete pattern based assignment of all 
168.110 ab initio rotation-vibration 
eigenenergies

G.Ch. Mellau, J. Chem. Phys. 133, 164303 (2010), 
G.Ch. Mellau, J. Chem. Phys. 134, 234303 (2011),… 14 papers

G.Ch. Mellau, J. Chem. Phys.,134, 234303 (2011)

from experiments

Source 1): UCL Exomol ab initio list

Source 2): extended 1) to higher energies 
with stored eigenvectors and improved 
convergence (A. Kyuberis, O. Polyansky, 
N. F. Zobov )

Complete (v1,v2,v3,l) assigned ab initio up to 
the isomerization barrier

Mourik et al. J. Chem. Phys. 115, 3706 (2001), G. J. Harris et al., 
MNRAS 367, 400 (2006)



Onset of isomerization: 0v20=>23 and 0v21=>21  
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G. Ch. Mellau, in preparation



Vibrational signature of the isomerization  
Vibrational signature of a transition state  

„barrier anharmonicity“

v2=24
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Morse classical to quantum correspondence

where v00 is the quantum number of the lower state and v0 is the quantum number of

the upper state.

Using the inverse relation between the v quantum number and the E(v) eigenenergies

measured from the potential minimum

v =
4De!e � !2

e
� 4
p
D2

e
!2
e
� E (v)De!2

e

2!2
e

we obtain the eigenenergy dependence of the quantum frequency

�E (E 00) = E 0 � E 00 = !e

✓
1� E 00

De

◆ 1
2

� !2

e

4De

(1)

�E (E 0) = E 0 � E 00 = !e

✓
1� E 0

De

◆ 1
2

+
!2

e

4De

(2)

where E 00 is the eigenenergy of the lower state and E 0 is the eigenenergy of the upper

state measured from the potential minimum.

We obtained a quantum formula representing the discrete dependence of the quantum

frequency from the lower eigenenergy E 00 or upper eigenenergy E 0. The discrete depen-

dence is “hard wired” in this quantum mechanical description of the quantum frequency.

Equations 1 and 2 are equivalent forms depending on lower/upper discrete eigenenergies.

The single di↵erence between them is the di↵erent definition of the energy axis used to

display the energy dependence of the quantum frequency. Out of all such axis definitions,

one is very special. The existence of this axis is based on the observation that the Morse

potential parameters and eigenenergies fulfill the following ad hoc algebraic equation (it

seems that we report this relation for the Morse potential for the first time despite its

fundamental importance):

E 0
0
� E 00

0
= !e

 
1�

!e
2
+ E

0
0+E

00
0

2

De

! 1
2

. (3)

In Equation 3 the eigenenergies E0 = E � E(0) are given relative to the ground state

corresponding to eigenenergies we detect in spectroscopic experiments. The classical oscil-

lation frequency2 with total energy E in a Morse potential is

2

J. R. Nielsen (ed.),  Niels Bohr Collected Works, Vol. 3: The Correspondence Principle (1918–1923), Amsterdam: North-Holland Publishing(1976).

classical frequency
quantum frequency



Morse classical to quantum correspondence

De

classical frequency
quantum frequency

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Mg-NC bending potential

M. Fukushima and T. Ishiwata,  J.Chem.Phys. 13 ,124311 (2011)



Mg-NC bending potential

ab initio: O. Bludsky et al., 
J.Mol.Spectrosc. 13, 219 (2004)

Experiment: M. Fukushima & T. Ishiwata
J. Chem. Phys. 135,124311 (2011)

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Classical motion at the saddle point 

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Classical motion at the saddle point 

Y. Onodera, Prog. Theor. Phys. 44, 1477  (1970)

classical frequency



Classical to quantum correspondence at the saddle point 

E Ωæ En = E0,harm + EÕ
0 + EÕÕ

0
2

1

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Frequency  correspondence

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)

classical frequency
quantum frequency



The saddle point frequency pattern

The difference between the classical and quantum frequencies in the neighborhood of 
the saddle point for increasing barrier height. Black curves show the semiclassical 
case

n>0 above the saddle pointn<0 below the saddle point

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



The saddle point frequency pattern

8 9 10 11 12 13 14
0.0

0.5

1.0

1.5

2.0

E E/ 0

E
E

ħ
ω

E
E

n
0

/
,

(
)/

c
0

The eigenenergies and the classical frequencies for quartic potentials with Eb = i × E0 with i =11.0 
to 11.4. 
Eigenenergies at the saddle point change their position to avoid low quantum frequencies. 

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Vibrational signature of the isomerization  

„barrier anharmonicity“

Vibrational signature of a transition state  



Transition state spectroscopy ↔ “frequency analysis”
New methods to extract chemically relevant saddle point energies
from spectroscopically measured quantities

J. H. Baraban, P. B. Changala, G. C. Mellau, J. F. Stanton, A. J. Merer, and R. W. Field, Science, 350, 1338 (2015)

difference weff of adjacent level energies to obtain a
set of (E, weff) data points (25). Equivalently, time
domain spectroscopy may provide alternative
or more direct ways to obtain vibrational periods
or frequencies versus energy, especially for
larger systems. A plot of these (E, weff) data
reveals any dynamical trend in weff, whether
constant, linear, or nonlinear. If a stationary point
is present within the data range of E, the plot will
dip to a minimum as the energy of the stationary
point is approached, although in a boundquantum
system therewill never be a pointwithweff equal to
zero.
In principle, only this bare minimum of in-

formation is necessary to apply Eq. 4. A value
for ETS can then be obtained, which in favor-
able cases should have an uncertainty of 5 to
10% of the effective frequency, depending on
the extent and quality of the input data. High
resolution and detailed spectroscopic assign-
ments are not a requirement, nor are ab initio
calculations, although these can help to iden-
tify the active vibrations and the nature of the
transition state. Even in larger molecules, where
full spectroscopic and computational analyses
are impractical, the problem must simplify to a
very small number of vibrational modes that
form the reaction coordinate and lead to the
transition state. These active vibrations reveal
themselves by their isomerization dips.
To demonstrate the capabilities of our method,

we applied the model to two prototypical isom-
erizingmolecules, HCN and the S1 state of C2H2.
These systems have been spectroscopically char-
acterized in great detail, such thatwe can apply the
isomerization dipmethod and Eq. 4 to themwith
confidence.We emphasize that the levels of know-
ledge and quality of data available for these systems
are not necessary in general for the application of
ourmethod. Furthermore, despite the small sizes
of HCN and C2H2, they exhibit many of the
complications expected in larger molecules.

The examples of S0 HCN ↔ HNC
and S1 C2H2

The potential surface for the electronic ground
state of the [H,C,N] system has two minima: the

linear HCN and HNC isomers, separated by
approximately 5200 cm–1. The reaction coordi-
nate of the bond-breaking HCN-HNC isomer-
ization corresponds mainly to the n2 bending
vibration, and the barrier to isomerization is
nearly 17,000 cm–1 above the HCNminimum. Ex-
tensive experimental term values for both isomers
are available up to 10,000 cm–1 above the HCN
minimum (26). To continue the analysis up to and
beyond the barrier energy, we used spectroscop-
ically assigned ab initio eigenenergies (26–28). In
(26), levels with high bending excitation were
reported to deviate unexpectedly from effective
Hamiltonian predictions, reflecting the presence
of the double-well potential.
The S1 state of C2H2 supports cis and trans

conformers, with the cis conformer lying about
2672 cm–1 above the trans. As illustrated in Fig. 3,
the transition state is planar andnearly half-linear
(29). The bare saddle point energy is calculated to
be 4979 cm–1 above the transminimum, but with
an uncertainty of hundreds of cm–1, even for the
most accurate calculations to date (30). A torsional
isomerization path might have been expected on
the basis of cis-trans isomerizations in othermole-
cules, but this is not found here.
The height of the barrier relative to the fun-

damental frequencies leads us to expect at least
some normal vibrational structure, even in the
shallower cis well. Thus far, several cis vibra-
tional levels have been identified, in reasonable
agreement with ab initio calculations (31–33). In
the trans well, almost all of the vibrational levels
below the barrier have been assigned (33). Of the
six trans conformer vibrational modes, four are
fairly well behaved: the Franck-Condon active
vibrations n2 (CC stretch) and n3 (trans bend)
(34 ), and the CH stretching modes n1 and n5
(35, 36). On the other hand, a large portion of
the trans vibrational manifold can only be un-
derstood within the framework of bending
polyads Bn¼ðv4þv6Þ (37), because of the Darling-
Dennison and Coriolis interactions between the
low-frequency ungerade bending modes, n4 (tor-
sion) and n6 (cis bend).
Despite the success of the polyad model in

reproducing the level structures associated with

the bending vibrations, there are disturbing ex-
ceptions. As illustrated in figure 13 of (38), the
series of 3nB2 polyads exhibits a surprising trend,
with the energy of the lowest member of the
polyad decreasing rapidly relative to the ener-
gies of the other polyad members. Although in-
explicable by conventional models, this occurrence
turns out to be intimately related to the isom-
erization dynamics discussed here.

Determination of the barrier height

We now apply the isomerization dip concept,
and in particular Eq. 4, to the barrier proximal
energy levels discussed above. Figure 4 shows the
results of the pure bending (weff

2 ) effective fre-
quency analysis for HCN-HNC. The barrier heights
for both wells are found to be within 1% of the ab
initio values. To compare ETS to calculated barrier
heights, either the ab initio zero point energymust
be subtracted from the calculated barrier height, or
an effective zero point energymust be added to the
fitted ETS value (see supplementary text). A con-
sistency check of the HCN-HNC analysis stems
from another dynamical parameter that affects
weff
2 and the effective barrier height: the vibra-

tional angularmomentum, ‘. The fitted ETS barrier
heights are summarized in table S5 and, as ex-
pected, the barrier height increases approximately
quadratically with ‘.
Figure 5A shows plots of weff

3 and weff
6 for the

3n62 series of C2H2, where Eq. 4 can be seen to fit
the observed data very well (see tables S1 and S2
for details of the fits). The 3n62 levels experience
the effects of the barrier most strongly, whereas
the 3n levels are completely uninfluenced by it,
because a combination of q3 and q6 is required
to access the transition state geometry. Both weff

3
and weff

6 can be obtained as a function of n6 as
well, reading the array of term values in table
S2 horizontally rather than vertically. The same
{E , weff} data are obtained, but in different sets.

Reaction path analysis

Several possibilities arise when the weff analysis
is extended to additional vibrational progressions.
The first, shown in Fig. 5C, is that of differen-
tiating between isomerization pathways. We
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abrupt changes in weff signal important changes
in the dynamics of the system.
In their quantum and semiclassical analysis of

highly excited states of HCP, Jacobson and Child
(14) mentioned a dip inweff as the signature of an
approach to a saddle point. Because the HCP ↔
HPC potential energy surface exhibits some un-
usual features (HPC is a saddle point rather than
a second minimum) and is not a true isomeri-
zation (15), the observed weff trend was catego-

rized as a peculiar “Dixon dip” rather than being
recognized as the universal signature proposed
here. Similarly, the onset of internal rotation in
the ground state of SiC2 (16) is not an isomer-
ization, although the ideas presented here are
applicable to it. More generally, the behavior of
systems as they encounter stationary points
has been investigated from other perspectives
as well (17–20). For our purposes, it suffices that
this dip in weff provides a marker of the chemi-
cally relevant transition state energy, as we dem-
onstrate below.

A model for measurement of the
transition state energy

To determine the transition state energy, we
propose the following semiempirical formula for
weff as a function of energy, E, defined as the
midpoint energy for each vibrational interval:

weffðEÞ ¼ w0 1 − E
ETS

! "1=m

w0;ETS ≥ 0; 2 ≤ m ≤ ∞; E ≤ ETS ð4Þ

where w0 is the effective frequency at E = 0 for
the progression being analyzed, ETS is the en-
ergy of the transition state, and m is a param-
eter related to the barrier shape. For the Morse
oscillator (Fig. 1B), m = 2 analytically (21–23),
ETS = De, and w0 = w, the harmonic frequency.
Equation 4 can be regarded as a generalization
of the Morse formula wherem is allowed to take
values greater than 2. The formula also satisfies

the required physical boundary conditions of a
limiting harmonic frequency w0 at E = 0 and
weff = 0 at E = ETS.
The dependence of the m parameter on po-

tential shape is illustrated in Fig. 2 (see sup-
plementary text for further details). The lower
limit is m = 2, the Morse oscillator, where the
asymptote is approached infinitesimally with r.
The other limit is a truncated harmonic oscil-
lator where the potential abruptly becomes con-
stant at ETS. In such a case, weff falls instantly to
zero and m = ∞.

Dissociation versus isomerization

The physical arguments presented here regard-
ing the behavior of weff versus E (and therefore
Eq. 4) pertain only up to E = ETS. Above that
energy, weff can either remain at zero for an un-
bound system (as with the Morse oscillator) or
rise again (in a bound system). The above-barrier
behavior of weff depends on the outer walls of the
potential and is not described by Eq. 4. Themth
root form of Eq. 4 suggests the presence of a
branch point at ETS, which separates the above-
barrier and below-barrier eigenspectra into two
distinct energy regions (19, 24).
A semiclassical analysis of long-range inter-

atomic potentials of the form D – (C/rn) was per-
formed by LeRoy and Bernstein (10) more than
40 years ago. They derived an expression that
relates the change in energy perquantumnumber
(i.e., the effective frequency) near the dissociation
limit to a quantity proportional to [1 – (E/D)](n+2)/2n.
This expression is clearly similar to our effective
frequency formula, but the two models treat
dynamically and mathematically distinct re-
gimes. For inverse power-law potentials where n =
{1, 2, 3, 4, …}, the corresponding m values are
2=3; 1; 6=5; 4=3; :::g

#
. In the limit n → ∞, the ef-

fective m value approaches 2 from below. In
contrast, our model has a lower limit ofm = 2. In
other words, these two similar effective frequency
expressions treat essentially disjoint classes of
potentials. The key difference is how the station-
ary point (or dissociation limit) is approached.
For long-range potentials with inverse power-
law forms, the stationary point at r → ∞ is
approached only polynomially. Our treatment
considers potentials where stationary points
are local maxima and are therefore approached
over a finite domain. The common system, the
Morse potential, has a stationary point at r→ ∞
but approaches it exponentially (i.e., faster than
any power law) and is in some sense simulta-
neously long-range and local. Graphically, the
dynamical distinction corresponds to positive
curvature (LeRoy-Bernstein) versus negative cur-
vature (our model) on a Birge-Sponer plot, with
the linear plot of the Morse oscillator dividing the
two regimes.

Practical application

What is the best way to extract the desired saddle
point energy from spectroscopically measured
quantities? From the frequency-domain spectrum
we measure the energies of a series of quantized
vibrational levels, and take the average E and
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Fig. 4. The weff
2 (ℓ = 0) effective frequency analysis for HCN and HNC. Shown are experimental

data points (blue), Dunham polynomial expansion predictions using only experimental data (green), and
the assigned ab initio data points (red) (26) (see supplementary text for details). The fitted ETS
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potential and weff plot near 5000 cm–1 result from interaction with a low-lying excited diabatic electronic
state (44).

Fig. 3. Salient features of the cis-trans isomer-
ization in S1 C2H2.The barrier height and energy
difference between the two conformers are shown,
as well as the combination of trans normal modes
(q3 and q6) that corresponds to the isomerization
coordinate.
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Cis-trans conformational change in the S1 state of C2H2



1/m frequency formula

R. W. Field group, MIT, Cambridge

susceptible than other states to the effects of
the isomerization barrier. Experimental evidence
for this concept is drawn from our studies of
two prototypical systems: the HCN ↔ HNC
isomerization and the cis-trans conformational
change in the first electronically excited singlet
state of acetylene.

Effective frequency and the
isomerization dip

The effective frequency weff is the central quan-
tity in our model for the spectroscopic signature
of isomerizing systems. In a one-dimensional
system, the effective frequency is the derivative of
the energy with respect to the quantumnumber n,

weffðnÞ ¼ @E
@n

¼ DE
Dn

ð1Þ

where weff is evaluated discretely for quantized
systems.weff is a dynamic quantity that can change
as excitation increases, unlike quantities such as
harmonic frequency,w, or fundamental frequency,
n, which are often listed as molecular constants.
As such, it is a useful diagnostic of the behavior of
the system.

Applications of effective frequency date back a
long way. For example, the effective frequencies
weff(n) of a state of a diatomic molecule are its
vibrational intervals, which decrease to zero at
the dissociation limit. The sum of the effective
frequencies is therefore the dissociation energy.
In most cases it is not possible to observe weff(n)
all the way to the dissociation limit, but a linear
extrapolation to weff = 0 allows a very good esti-
mate of the dissociation energy, notwithstanding
nonlinearities in the trend of vibrational intervals
near dissociation. This is the basis of the Birge-
Sponer plot (9) where the area under a graph of
the vibrational intervals, weff(n), against n gives
the dissociation energy. Leroy and Bernstein
(10) have given a protocol for extrapolating the
effective frequencies, which takes account of the
exact long-range shape of the vibrational potential
near dissociation. This procedure is found to give
very accurate dissociation energies (11).
Effective frequencies also play a large part in

our understanding of quasi-linear molecules. A
quasi-linear molecule has a nonlinear equilibrium
geometry but a comparatively small potential bar-
rier to linearity. The pattern of the lowest vibra-
tional levels is that of a bent molecule, but with

increasing bending vibrational excitation, this
changes smoothly into the pattern for a linear
molecule, vibrating with large amplitude. Dixon
(12) modeled a quasi-linear potential as a two-
dimensional harmonic oscillator perturbed by a
Gaussian hump at the linear configuration, and
calculated its energy levels. These levels may be
assigned vibrational (v) and angular momentum
(K) quantum numbers (13). If the vibrational
intervals (effective frequencies) for a given K value
are plotted against v , they pass through a mini-
mum at the energy of the potential barrier,
thereby allowing determination of its value. The
depth of this “Dixon dip” is greatest for K = 0
and decreases with increasing K. The reason is
that the angular momentum results in a K-
dependent centrifugal barrier at the linear con-
figuration, which the molecule must avoid.
We now illustrate the concept of effective

frequency in more detail, with the four types of
potential shown in Fig. 1. For the harmonic
oscillator,

weff ¼ @

@n
w nþ 1

2

! "# $
¼ w ð2aÞ

and

@weff

@n
¼ 0 ð2bÞ

indicating that the dynamics of the system do
not change as a function of energy. For a Morse
oscillator, the potential is V(r) = De[1 – exp(–ar)]

2,
where De is the dissociation energy, a is a length
parameter, and r is the bond length displacement.
In this case,

weff ¼ @

@n
w nþ 1

2

! "
þ x nþ 1

2

! "2" #

¼ wþ x þ 2nx ð3aÞ

and

@weff

@n
¼ 2x ð3bÞ

where x is always negative. This linear decrease of
weff with n reflects the migration of the Morse
wave functions toward the softer outer turning
point. When weff reaches zero at the dissociation
limit, it becomes clear that the Morse and har-
monic oscillators display very different dynamics.
Simple expressions for weff and @weff/@n can-

not be derived for the other cases in Fig. 1, but
these illustrate the most important feature even
more clearly: The effective frequency goes to zero
at the energy of each stationary point on the
potential. Classically, this can be understood by
imagining a ball released to roll on a double-
minimum surface. If the ball starts on one side at
exactly the height of a local maximum, it will
reach that maximum with zero kinetic energy
and stop. Because the ball never returns, the oscil-
lation period is infinite and the frequency is
therefore zero. We see immediately that this ap-
plies to the Morse oscillator as well: weff reaches
zero at the dissociation limit, which is a hori-
zontal asymptote of V(r). It is clear that this
phenomenon is quite general and that zeros or

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1339

0

5

10

15

0 5 10 15
0

0.5

1

1.5

2

0

5

10

0 5 10
0

0.5

1

1.5

2

0

5

10

0 5 10
0

0.5

1

1.5

2

0

5

10

15

20

0 5 10 15 20
0

0.5

1

1.5

2

E
_

E
_

E
_

E
_

V
 (x

)
_

Fig. 1. Effective frequency plots below their associated model potentials. (A) Harmonic oscillator.
(B) Morse oscillator. (C) Symmetric double minimum potential. (D) Asymmetric double minimum potential. In
the top row, the quantized energy levels are marked with dashed lines. In the bottom row, the classical weff is
shown as a solid line, with the quantum level spacings plotted as open circles versus E (the midpoint energy
for each interval). In (C), the upper and lower series of circles correspond to the vibrational level spacings
and tunneling splittings, respectively. In (D), the weff curve and energy levels for the second minimum are
shown in red, and the quantum level spacings are overlaid on the weff curves as triangles and squares.

1000 500 0
0

5000

10000

E
(c

m
–1

)

V
(c

m
–1

)

ω0

ETS
m = 10
m = 5
m = 2

–1 0 1 2 3
µ1/2r(u1/2Å)

0

5000

10000

Fig. 2. Relationship between potential shape and weff. (A) Effective frequency curves. (B) The
corresponding potentials as a function of the shape parameter m in Eq. 4.

RESEARCH | RESEARCH ARTICLES
abrupt changes in weff signal important changes
in the dynamics of the system.
In their quantum and semiclassical analysis of

highly excited states of HCP, Jacobson and Child
(14) mentioned a dip inweff as the signature of an
approach to a saddle point. Because the HCP ↔
HPC potential energy surface exhibits some un-
usual features (HPC is a saddle point rather than
a second minimum) and is not a true isomeri-
zation (15), the observed weff trend was catego-

rized as a peculiar “Dixon dip” rather than being
recognized as the universal signature proposed
here. Similarly, the onset of internal rotation in
the ground state of SiC2 (16) is not an isomer-
ization, although the ideas presented here are
applicable to it. More generally, the behavior of
systems as they encounter stationary points
has been investigated from other perspectives
as well (17–20). For our purposes, it suffices that
this dip in weff provides a marker of the chemi-
cally relevant transition state energy, as we dem-
onstrate below.

A model for measurement of the
transition state energy

To determine the transition state energy, we
propose the following semiempirical formula for
weff as a function of energy, E, defined as the
midpoint energy for each vibrational interval:

weffðEÞ ¼ w0 1 − E
ETS

! "1=m

w0;ETS ≥ 0; 2 ≤ m ≤ ∞; E ≤ ETS ð4Þ

where w0 is the effective frequency at E = 0 for
the progression being analyzed, ETS is the en-
ergy of the transition state, and m is a param-
eter related to the barrier shape. For the Morse
oscillator (Fig. 1B), m = 2 analytically (21–23),
ETS = De, and w0 = w, the harmonic frequency.
Equation 4 can be regarded as a generalization
of the Morse formula wherem is allowed to take
values greater than 2. The formula also satisfies

the required physical boundary conditions of a
limiting harmonic frequency w0 at E = 0 and
weff = 0 at E = ETS.
The dependence of the m parameter on po-

tential shape is illustrated in Fig. 2 (see sup-
plementary text for further details). The lower
limit is m = 2, the Morse oscillator, where the
asymptote is approached infinitesimally with r.
The other limit is a truncated harmonic oscil-
lator where the potential abruptly becomes con-
stant at ETS. In such a case, weff falls instantly to
zero and m = ∞.

Dissociation versus isomerization

The physical arguments presented here regard-
ing the behavior of weff versus E (and therefore
Eq. 4) pertain only up to E = ETS. Above that
energy, weff can either remain at zero for an un-
bound system (as with the Morse oscillator) or
rise again (in a bound system). The above-barrier
behavior of weff depends on the outer walls of the
potential and is not described by Eq. 4. Themth
root form of Eq. 4 suggests the presence of a
branch point at ETS, which separates the above-
barrier and below-barrier eigenspectra into two
distinct energy regions (19, 24).
A semiclassical analysis of long-range inter-

atomic potentials of the form D – (C/rn) was per-
formed by LeRoy and Bernstein (10) more than
40 years ago. They derived an expression that
relates the change in energy perquantumnumber
(i.e., the effective frequency) near the dissociation
limit to a quantity proportional to [1 – (E/D)](n+2)/2n.
This expression is clearly similar to our effective
frequency formula, but the two models treat
dynamically and mathematically distinct re-
gimes. For inverse power-law potentials where n =
{1, 2, 3, 4, …}, the corresponding m values are
2=3; 1; 6=5; 4=3; :::g

#
. In the limit n → ∞, the ef-

fective m value approaches 2 from below. In
contrast, our model has a lower limit ofm = 2. In
other words, these two similar effective frequency
expressions treat essentially disjoint classes of
potentials. The key difference is how the station-
ary point (or dissociation limit) is approached.
For long-range potentials with inverse power-
law forms, the stationary point at r → ∞ is
approached only polynomially. Our treatment
considers potentials where stationary points
are local maxima and are therefore approached
over a finite domain. The common system, the
Morse potential, has a stationary point at r→ ∞
but approaches it exponentially (i.e., faster than
any power law) and is in some sense simulta-
neously long-range and local. Graphically, the
dynamical distinction corresponds to positive
curvature (LeRoy-Bernstein) versus negative cur-
vature (our model) on a Birge-Sponer plot, with
the linear plot of the Morse oscillator dividing the
two regimes.

Practical application

What is the best way to extract the desired saddle
point energy from spectroscopically measured
quantities? From the frequency-domain spectrum
we measure the energies of a series of quantized
vibrational levels, and take the average E and
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Fig. 4. The weff
2 (ℓ = 0) effective frequency analysis for HCN and HNC. Shown are experimental

data points (blue), Dunham polynomial expansion predictions using only experimental data (green), and
the assigned ab initio data points (red) (26) (see supplementary text for details). The fitted ETS
parameters using Eq. 4 (blue) are compared with the ab initio barrier heights (red). A one-dimensional
cut through the potential energy surface is shown as a red dashed line.The unusual shapes of the HNC
potential and weff plot near 5000 cm–1 result from interaction with a low-lying excited diabatic electronic
state (44).

Fig. 3. Salient features of the cis-trans isomer-
ization in S1 C2H2.The barrier height and energy
difference between the two conformers are shown,
as well as the combination of trans normal modes
(q3 and q6) that corresponds to the isomerization
coordinate.
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Baraban et al.9 studied the semiclassical pattern of eigenenergies at the saddle point based on the concept of 
the effective frequency ω = ∂ ∂n E n n( ) ( )/eff . The knowledge of the analytical form E(n) of the eigenenergies for a 
one-dimensional potential allows to obtain the analytical model for the quantum number dependence of the 
effective frequency. In the absence of such a formula for a potential with a saddle point region they propose an 
ansatz type effective frequency formula expressed in the excitation energy. The formula is based on the analysis of 
the physical mechanism of the diatomic potentials and their typical effective frequency dependence. In this work, 
we use this as an ansatz type quantum frequency formula in a slightly changed form

ω ω=
⎛

⎝

⎜⎜⎜⎜⎜⎜
−

+ ⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
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E
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( ) 1

(0)

(7)
c

E E

b

m

0
0 2

1
0 0

where we included the classical to quantum frequency correspondence 2; = × ωE (0) 20 2
0  is the zero level energy 

calculated for the twofold degenerate pure harmonic bending oscillations. For a simple comparison with spectro-
scopic parameters of the fit results we adjusted the model to the quantum frequencies divided by two. We used the 
analytical solutions (4) and (5) with the classical to quantum correspondence 2 as a second model for the func-
tional form of the quantum frequency in the neighborhood of the saddle point.

The three-parameter dependent ansatz type model has been tested9 with an acetylene experimental data set 
containing four data points, and with a slightly extended experimental and ab initio HCN/HNC data set reported 
previously6. Our analysis of the HCN and HNC eigenenergy data shows a model precision between a few wave-
numbers and a few tens of wavenumber for at least twenty pure bending and bending plus CN stretch quantum 
frequency series. For the bending plus CH stretch eigenenergies, this formula is less suitable to describe the 
quantum frequencies in the saddle point region. The two parameter dependent quantum frequency model (4) 
combined with the correspondence relation 2 is globally a less precise model for HCN and HNC but gives the 
potential related quantum frequency dependence at the saddle point. This model can be extended with additional 

Figure 4. The H-C/H-N and C-N stretch excitation dependence on the (ν1 , ν3 , ℓ = 0) dynamic isomerization 
barrier heights for HCN and HNC. The data points joined with red lines correspond to the barrier heights of 
the ν νV ( , )1 3

 bending pseudopotentials calculated by Joyeux et al.19; the potentials for the (ν1, 0) and (0, ν3) are 
shown as inlets. The data points joined with blue lines are the barrier heights determined from the eigenenergy 
based quantum frequency correspondence analysis. The upper curve corresponds to C-N stretch spectator 
excitation; the barrier height is practically constant. The lower curve corresponds to H-C/H-N stretch excitation 
coupled with the bend isomerization mode. The two barrier heights agree within 1–2%, this agreement allows 
us to define pseudopotentials from pure spectroscopic experiments. The transition state can thus be considered 
a well defined pure quantum mechanical concept defined through molecular eigenstates.

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)
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2. New approximate analytical model and the [H,C,N] eigenenergies at the barrier

Classical to Quantum correspondence at the saddle point 

Complete eigenenergy list
1. Complete eigenenergy structure of the [H,C,N] molecular system
2. “Spectroscopy”  of the ab initio [H,C,N] eigenenergies



Low barrier case



Localization of the eigenstates at the barrier

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Localization of the eigenstates at the barrier

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)

Case of Eb=11xE0 and Eb=2911xE0 

P. Dutta, SP. Bhattacharyya, Phys. Lett. A 163, 193 (1992) 
J.R. Henderson, H.A. Lam, J. Tennyson J. Chem. Soc.Faraday Trans.88, 3287 (1992)



Localization for 0v20 pure bending series

spectroscopic predicted
measured

ab initio

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Localization for 0v21: CN stretch + bending series



Localization for 0v22: 2 x CN stretch + bending series



Quantum number dependence of the localization

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)



Quantum number dependence of the localization

Mellau et al., Saddle point localization of molecular wavefunctions, Scientific Reports 6, 33068 (2016)
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The first time a complete experimental/theoretical analysis of the
rovibrational spectrum of a polyatomic molecule has been achieved in an
extended excitation region.
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of the vibrational energies as the vibrational excitation approaches the
saddle point.



Interaction between stretch and internal rotation
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Dynamic degeneracy of l=0 states
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HCN 0v20 l=3… bending series



Potential kinks



HCN→HNC delocalization ↔Width of the dynamic barrier

V1=0,1,2,3V3=0,1,2,3,4,5


