Seeing Physics, Comparing Theory and Experiment: Emergent Collectivity, Perspective/Correlations, Precision data, Theoretical accuracy, Parameters Comments from a PR C editor

Not much new but maybe useful....

R. F. Casten Yale and MSU-FRIB

Workshop on Transitional Nuclei

Padova, May 22-25, 2018

First: Physics is easy and fun!!

God-Grandaughter

The Evolution of Structure

Think about this: Chaos to order, emergent collectivity Challenge: how can these complex many-body systems exhibit such regular patterns?

Order from chaos: Single particle basis leading to emergent collectivity. Symmetries.

Single particle and collective motion

Single particle and collective behavior – common to many systems

Perspectives, correlations, and "fake news" correlations

Structural evolution: Look at data from different perspectives

Another example of different perspectives

Neutron capture MACS at 30 keV in the rare earth region Looking at data from different perspectives

A Couture, RF Casten and R. Burcu Cakirli, PRC 96, 061601R (2017)

Neutron capture MACS at 30 keV in the rare earth region Looking at data from different perspectives

A Couture, RF Casten and R. Burcu Cakirli, PRC 96, 061601R (2017)

Neutron capture MACS at 30 keV in the rare earth region Looking at data from different perspectives

A Couture, RF Casten and R. Burcu Cakirli, PRC 96, 061601R (2017)

B(E2) values and Q moments

Different perspectives, one more example

More false correlations

Age of Miss America

Murders by steam, hot vapours and hot objects

Data sources: Centers for Disease Control & Prevention and Internet Movie Database

 \equiv

Theoretical accuracy, precise data, weighting data, key observables, parameters

1400.000 0^+ 1200 (2) 1200.000 2, + 800 (2) 800.000 600.000 4⁺ 330.000 (1) 330.000 331.000 100.000(1) 2^+ 100.000 100.000 $\mathbf{0}^+$ Theory 2 Exp Theory 1 super-precise data can lead you astray

Observable-dependent uncertainties

Theoretical reliability estimates: Yrast: Few keV ; Vibrations ~ 100 keV

χ² ~1000 1

Not all observables equally important; many test same physics

What are the key observables for testing collective models?

12+

Parameters

Interpreting this level scheme with bandmixing How many parameters?

Beware of parameters

Summary

Look at data from different perspectives

Look at correlations of observables

Choose observables that select specific physics – e. g., emergent collectivity

Beware of blind statistical optimizations

Always include estimates (quantitative or qualitative) of theoretically expected reliability

Do not multi-fit the same physics

Be conscious of the number and nature of (often hidden) parameters.

PR C, NNDC opportunity, and NUDAT capabilities

Advice to PR C authors from a PR C editor:

Suggest referees (5-7) Name unwanted referees(no generic lists) Asking for a second referee (the good and the risky) NNDC vetting opportunity (new)

NUDAT – New features you might not be aware of

NNDC The format you may know--- UGH: WHY UGH?

		Ly [@]	γĆ	¹⁶⁸ Er)		
Elevel	Eγ ^ℓ		Mult.	δ [£]	α	Comments
79.804 264.0888 548.7470 821.1685	79.804 1 184.285 1 284.655 2 557.079 3	100 100 100 1.74 8	E2 E2 E2 E2		7.04 0.331 0.0811 0.01252	B(E2)(W.u.)=213 4 B(E2)(W.u.)=319 9 B(E2)(W.u.)=424 18 B(E2)(W.u.)=0.61 4
	741.356 3	100 2	E2+M1	>25	0.00639 9	B(M1)(W.u.)<1.6×10 ⁻⁵ ; B(E2)(W.u.)>8.0
	821.164 5	93.64	E2		0.005108	B(E2)(W.u.)=4.68 16
895.7947	74.626 3	0.04 1	M1+E2	+1.42 +4-5	8.35 13	B(M1)(W.u.)=0.0018 +5-7; B(E2)(W.u.)= $3.1\times10^{+2}$ +8-12 δ: sign from γγ(θ) (<u>1996A131</u>) in ε decay; magnitude from L1/L3 in (n,γ) E=thermal (<u>1980Sc15</u>).
http://www.nndc.br	631.703 3 al.gov/useroutput/AR	18.1 2 41076CBC6A6971E	M1+E2 A378FDDC7E8E1725	E_1.html	0.00965 14	B(M1)(W.u.)=0.000172 +18-51; 17/42
10/9/2015		Du	ta from AR_41076CB	C6A6971EA378FDD	C7E8E1729E_1.en	
				-4.8 ^ª 2		B(E2)(W.u.)=4.6 +3-14
	815.990 4	100 2	M1+E2	+17.7 ^b 23	0.00518 8	B(M1)(W.u.)=3.4×10 ⁻⁵ +9-13;

	815.990 4	100 2	M1+E2	+17.7 ^b 23	0.00518 8	$B(M1)(W.u.)=3.4\times10^{-5}+9-13;$ B(E2)(W.u.)=7.4+5.21
928.3029 994.7474	379.545 <i>3</i> (98.95)	100	E2		0.0346	B(E2)(W.u.)=7.4 + 5-27 B(E2)(W.u.)=354 13 B(E2)(W.u.)=505 + 122-40 B(E2)(W.u.): From measured B(E2) in Coulomb excitation. E _{γ} : from level energy difference. Existence implied in Coulomb excitation; possibly obscured in (n, γ) E=thermal by 99 γ from 1193 level.
	173.577 1	0.80 5	E2		0.406	B(E2)(W.u.)=92 20
	445.9954	1.1 1	[E2]		0.0222	B(E2)(W.u.)=1.13 25
	730.660 2	100 2	M1+E2	+13 +16-3	0.00664 10	B(M1)(W.u.)=6.×10 ⁻⁵ +15-6;

New format – YAAAY !!!!!

Adopted Levels, Gammas (continued)

γ(168Er)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\bf I}_{\gamma}{}^{\ddagger}$	\mathbf{E}_{f}	J_f^{π}	$Mult.^{\dagger}$	δ^{\dagger}	α	Comments
79.804	2+	79.804 1	100	0.0	0+	E2		7.04	B(E2)(W.u.)=213 4
264.0888	4+	184.285 I	100	79.804	2+	E2		0.331	B(E2)(W.u.)=319 9
548.7470	6+	284.655 2	100	264.0888	4+	E2		0.0811	B(E2)(W.u.)=424 18
821.1685	2+	557.079 <i>3</i>	1.74 8 ^f	264.0888	4+	$E2^{f}$		0.01252	B(E2)(W.u.)=0.61 4
		741.356 3	100 2 ^e	79.804	2+	E2+M1 ^e	>25 ^{ea}	0.00639 9	$B(E2)(W.u.) > 8.0; B(M1)(W.u.) < 1.6 \times 10^{-5}$
		821.164 5	93.6 4 ^g	0.0	0+	E2		0.00510 8	B(E2)(W.u.)=4.68 16
895.7947	3+	74.626 3	0.04 1	821.1685	2+	M1+E2	+1.42 +4-5	8.35 13	B(E2)(W.u.)= 3.1×10^2 +8-12; B(M1)(W.u.)=0.0018 +5-7 δ: sign from γγ(θ) (1996Al31) in ε decay; magnitude from L1/L3 in (n,γ) E=thermal (1980Sc15).
		631,703 3	$18.1 2^{g}$	264.0888	4+	M1+E2	$-4.8 2^{b}$	0.00965 14	B(E2)(W.u.)=4.6 +3-14; B(M1)(W.u.)=0.000172 +18-51
		815.990 4	$100 2^{g}$	79.804	2+	M1+E2	+17.7 23°	0.00518 8	$B(E2)(W.u.)=7.4 + 5-21; B(M1)(W.u.)=3.4 \times 10^{-5}+9-13$
928.3029	8+	379.545 3	100	548.7470	6+	E2		0.0346	B(E2)(W.u.)=354 13
994.7474	4+	98.95		895.7947	3+				B(E2)(W.u.)=505 +122-40
									B(E2)(W.u.): From measured B(E2) in Coulomb excitation.
									E_{γ} : from level energy difference. Existence implied in
									Coulomb excitation; possibly obscured in (n,γ)
									E=thermal by 99γ from 1193 level.
		173.577 I	0.80 5 ^g	821.1685	2+	E2		0.406	B(E2)(W.u.)=92 20
		445.995 4	1.1 I ^g	548.7470	6+	[E2]		0.0222	B(E2)(W.u.)=1.13 25
		730.660 2	100 2 ^g	264.0888	4+	M1+E2	+13 +16-3	0.00664 10	B(E2)(W.u.)=8.6 18; B(M1)(W.u.)= $6 \times 10^{-5} + 15 - 6$ Mult.,δ: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ from ce data in (n, γ).

Its not just convenience -- it reduces errors, enhances efficiency, enhances treating different data consistently.

New Features of NUDAT

Upcoming features: Choose category of nucleus Plot one observable against another??

Thanks !!!

Backups

Why do some models have so many and others so few parameters? Can be misleading.

Compare above 10-15 parameter calculation with the IBA which obtains comparable or better fits with 2-3 parameters.

Why? It's the same physical system both are describing.

The IBA makes an ansatz: truncate shell model -- s,d bosons. That saves many parameters. But that ansatz is itself a choice, an assumption – to set to zero the amplitudes of many shell model configurations. Be aware of such facets.