Shell Model, Level Density and Phase Transitions

Vladimir Zelevinsky

NSCL/FRIB Michigan State University

Padova, May 23, 2018

In collaboration with Mihai Horoi Sofia Karampagia Roman Sen'kov Antonio Renzaglia Alex Berlaga

Work in progress

- 20-24: quadrupole-quadrupole forces
 - in particle-hole channel = formation of the mean field

Large fluctuations of non-extensive nature (the same for 10 000 and 100 000 realizations)

R.Sen'kov, V.Z. PRC 93 (2016)

Generic shape (Gaussian)

Level density for different classes of states for 28Si

Full agreement between <u>exact shell model</u> and <u>moments method</u>

Problems: truncated orbital space, only positive parity in sd-model, ...

Level density (0+) on two sides of deformation shape transition

/"collective enhancement"/

EFFECTIVE TEMPERATURE of INDIVIDUAL STATES

From occupation numbers in the shell model solution (dots) From thermodynamic entropy defined by level density (lines)

d5/2, d3/2, s1/2

Single – particle occupation numbers Thermodynamic behavior identical in all symmetry classes FERMI-LIQUID PICTURE 28 Si

Level density and "constant temperature" fit L.D.(E) = (const) exp[E/T] – melting pairing?

$$T_{t-d} = \left(\frac{\partial S}{\partial E}\right)^{-1} = T\left(1 - e^{-E/T}\right)$$

Partition function = Trace{exp[-H/T(t-d)]} diverges at T > T(t-d)

Cumulative level number N(E) = exp(S),Entropy S(E)= In(N) Thermodynamic temperature T(t-d) = 1/[dS/dE] = T[1 - exp(-E/T)]Parameter T is *limiting temperature* (Hagedorn temperature in particle physics)

Pairing phase transition? (Moretto) - Chaotization

Effective temperature for the level density at low energy (up to 6 – 8 Mev) **Even-odd** staggering **Clear minima in** the vicinity of N=Z

Effective temperature **T**

for (sd) - nuclei

Eliminating pairing interaction

Sensitivity to the fit interval

Degenerate single-particle levels – smaller T (faster chaotization)

Degenerate single-particle levels – smaller T (faster chaotization)

- * Add random noise to the dynamics
- * Construct the density matrix by averaging for any individual wave function
- * Calculate the corresponding entropy
 - measurement of sensitivity of eigenstates
 - quantum phase transitions
 - basis-independent criteria

$H = h + \lambda U_1 + U_2.$

U(1) = matrix elements of the two-body interaction with change of orbital momentum of one particle by 2 units (the same parity) – way to deformation

N = 10

N = 11

N = 12N = 13

N = 14 N = 15 N = 16 N = 17N = 18

Invariant correlational entropy as signature of phase transitions

$$|\alpha(\lambda)\rangle = \sum_{k} C_{k}^{\alpha}(\lambda)|k\rangle.$$

Eigenstates in an arbitrary basis (Hamiltonian with random parameters)

$$\rho^{\alpha}_{kk'}(\lambda) = \overline{C^{\alpha}_k C^{\alpha*}_{k'}}$$

Density matrix of a given state (averaged over the ensemble)

$$S^{\alpha}(\lambda) = -\operatorname{Tr}\left\{\rho^{\alpha}\ln(\rho^{\alpha})\right\}$$
$$\lambda \in [\lambda, \lambda + \delta]$$

Correlational entropy has clear maximum at phase transition (extreme sensitivity)

Pure state: eigenvalues of the density matrix are 1 (one) and 0 (N-1),
S=0Mixed state: between 0 and 1,S up to ln NFor two discrete points $r_{\pm}^{\alpha} = \frac{(1 \pm |\langle \alpha(\lambda) | \alpha(\lambda') \rangle|)}{2}$

Model of two levels with pair transfer Capacity 16 + 16, N=16 Critical value 0.3 (in BCS ¹/₄) Averaging interval 0.01

First excited state "pair vibration"

No instability in the exact solution

Softening at the same point 0.3

²⁴Mg phase diagram

✦ realistic nucleus

Contour plot of invariant correlational entropy showing a phase diagram as a function of T=1 pairing ($\lambda_{T=1}$) and T=0 pairing ($\lambda_{T=0}$); three plots indicate phase diagram as a function of non-pairing matrix elements (λ_{np}). Realistic case is $\lambda_{T=1} = \lambda_{T=0} = \lambda_{np} = 1$

Occupancy of f7/2 shell

Correlation energy ~ 2 MeV

Single-particle decay in many-body system

Evolution of complex energies

Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21 – superradiant doorways

Examples of superradiance

Mechanism of superradiance Interaction via continuum Trapped states - self-organization

Narrow resonances and broad superradiant state in ¹²C in the region of Delta

> Bartsch *et.al.* Eur. Phys. J. A 4, 209 (1999) N. Auerbach, V.Z.. Phys. Lett. B590, 45 (2004)

- Optics
- Molecules
- Microwave cavities
- Nuclei
- Hadrons
- Quantum computing
- Measurement theory

Strong coupling, $\kappa > 1$

k open channels $\Rightarrow k$ nonzero eigenvalues of W.

Doorway representation:

$$egin{aligned} k &= 1 \Rightarrow \Gamma_d = \operatorname{Trace} W \ \mathcal{H} &= \left(egin{array}{ccc} ilde{\epsilon}_1 &- (i/2)\Gamma_d & h_2 & h_3 \ h_2 & ilde{\epsilon}_2 & 0 \ h_3 & 0 & ilde{\epsilon}_3 \end{array}
ight) \end{aligned}$$

Width collectivization:

broad super-radiant state $\Gamma_1 \approx \Gamma_d [1 - O(\kappa^{-2})],$

narrow (trapped) states $\Gamma_{2,3}\sim \Gamma_d/[(N-1)\kappa^2]$

Dynamics is determined by alignment to open decay channels A. Lehnarm et al./Nuclear Physics A 562 (1995) 223-255.

Super-radiant transition

in Random Matrix Ensemble

N=1000, m=M/N=0.25

Interaction between resonances

<u>Real V</u> **Imaginary W** V=0W≠0 Γ_{1} Γ_2 Έ₁ E_2 É V≠0 W=0Ē

 $\mathcal{H}=H^{0}+V-iW/2$

- Real V
 - Energy repulsion
 - Width attraction
- Imaginary W
 - Energy attraction
 - Width repulsion

P. Von Brentano

Interplay of collectivities

24 Mg

Low-lying levels in absolute (a) and rotational (b) units;

Ratio E(4)/E(2) (c)

Transition rates (d)

 $H = h + (1 - \lambda)V_1 + \lambda V_2$

15 15 ---- J=1/2 J=0 ²⁸Al ²⁶Al --- J=3/2 J=1 J=2 J=5/2 --- J=7/2 J=3E(J) (MeV) 1010J=9/2 J=4---- J=11/2 J=5 J=6 J=7 J=8 J=13/2 --- J=15/2 5 5 J=17/2 J=9 J=19/2 J=10 J=21/2 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 0 0 λ λ 1818 ⁵⁰Mn ³⁰P ²⁷Al 16 16 14 14 3 E(J) (MeV) 12 12 10 10 2 8 8 6 6 4 4 2 0 5 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0 0.2 0.4 0.6 0.8 0 λ λ λ

 $H = h + (1 - \lambda)V_1 + \lambda V_2,$

S. Karampagia et al. / Nuclear Physics A 962 (2017) 46-60

