EXCEPTIONAL POINTS FOR RANDOMLY PERTURBED CRITICAL HAMILTONIAN

Published in: Physical Review E 97, 012112 (2018)

Pavel Stránský

Institute of Particle and Nuclear Physics Charles University, Prague Czech Republic

Outline

- Exceptional points (EP)
- Lipkin model: A simple critical system with both 1 st and $2^{\text {nd }}$ order QPTs
- EP distribution of randomly perturbed Hamiltonians

Exceptional points

$$
H(\lambda)=H_{0}+\lambda V
$$

$$
\left[H_{0}, V\right] \neq 0
$$

In a generic situation: no real crossings

$$
E_{i}(\lambda) \neq E_{i+1}(\lambda)
$$

(energies from the same symmetry subspace)

Exceptional points

$$
H(\lambda)=H_{0}+\lambda V
$$

$$
\left[H_{0}, V\right] \neq 0
$$

In a generic situation: no real crossings

$$
E_{i}(\lambda) \neq E_{i+1}(\lambda)
$$

(energies from the same symmetry subspace)

Energy levels cross at $\frac{1}{2} n(n-1)$ complex conjugate pairs of exceptional points $\lambda^{E P}, \lambda^{E P *} \in \mathbb{C}$

Lipkin(-Meshkov-Glick) model

H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)
N. Meshkov, A.J. Glick, H.J. Lipkin, Nucl. Phys. 62, 199 (1965)
A.J. Glick, H.J. Lipkin, N. Meshkov, Nucl. Phys. 62, 211 (1965)

2 levels with capacity N

$$
\begin{aligned}
& J_{z}=\frac{1}{2} \sum_{i=1}^{N} a_{i+}^{+} a_{i+}-a_{i-}^{+} a_{i-} \\
& J_{+}=\sum_{i=1}^{N} a_{i+}^{+} a_{i-} \quad J_{-}=\left(J_{+}\right)^{+}
\end{aligned}
$$

SU(2) algebra Quasispin j is conserved

Only $j=\frac{N}{2}$ subspace considered - 1 degree of freedom

$1^{\text {st }}$ order QPT

$H_{0}=J_{3}-\frac{6}{N} J_{1}^{2} \quad V=-J_{1}-\frac{1}{N}\left(J_{1} J_{3}+J_{3} J_{1}\right)$

Re E merges
Im E diverges

$1^{\text {st }}$ order QPT

$H_{0}=J_{3}-\frac{6}{N} J_{1}^{2} \quad V=-J_{1}-\frac{1}{N}\left(J_{1} J_{3}+J_{3} J_{1}\right)$

$$
H_{0}=J_{3} \quad V=-\frac{1}{N}\left[J_{1}+4\left(J_{3}+\frac{N}{2}\right)\right]^{2}
$$

 potential
$\log _{10} \operatorname{lm} \lambda^{\mathrm{EP}}$

$N=15$

$1^{\text {st }}$ order QPT

$$
H_{0}=J_{3}-\frac{6}{N} J_{1}^{2} \quad V=-J_{1}-\frac{1}{N}\left(J_{1} J_{3}+J_{3} J_{1}\right)
$$

$$
H_{0}=J_{3} \quad V=-\frac{1}{N}\left[J_{1}+4\left(J_{3}+\frac{N}{2}\right)\right]^{2}
$$

exponential convergence towards the real axis
$\log _{10} \operatorname{Im} \lambda^{-5 P}$

$$
N=15
$$

$\underline{2}^{\text {nd }}$ order QPT

$$
H_{0}=J_{3} \quad V=-\frac{1}{N} J_{1}^{2}
$$

Critical Hamiltonians H_{0}

C1
 C2

\qquad

... to be compared with the Harmonic Oscillator

+ random perturbation V
(averaged over the whole ensemble of interactions V)

Diagonal perturbation

- corresponds to perturbations preserving all the symmetries of the original Hamiltonian

$$
V=\left(\begin{array}{ccc}
R\left(0, \sigma^{2}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R\left(0, \sigma^{2}\right)
\end{array}\right) \quad V=\left(\begin{array}{ccc}
N\left(0, \sigma^{2}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & N\left(0, \sigma^{2}\right)
\end{array}\right)
$$

GOE perturbation

$$
V=\left(\begin{array}{ccc}
N\left(0,2 \sigma^{2}\right) & \cdots & N\left(0, \sigma^{2}\right) \\
\vdots & \ddots & \vdots \\
N\left(0, \sigma^{2}\right) & \cdots & N\left(0,2 \sigma^{2}\right)
\end{array}\right) \in \mathrm{GOE}
$$

eigenbasis = random rotation of the unperturbed basis

EP distribution in the complex λ plane is rotationally symmetric around the origin $\lambda=0$
B. Shapiro, K. Zarembo,
J. Phys. A: Math. Theor. 50, 045201 (2017)

$$
d=16, \sim 10^{6} \mathrm{EPs}
$$

Off-diagonal perturbation

$$
V=\left(\begin{array}{ccc}
0 & \cdots & N\left(0, \sigma^{2}\right) \\
\vdots & \ddots & \vdots \\
N\left(0, \sigma^{2}\right) & \cdots & 0
\end{array}\right)
$$

- ilnitial symmetries are violated in a maximal way
- Expected results partly similar to the matrices from GUE

Small $|\lambda|$ behaviour similar with the diagonal and GOE perturbation

EPs the furthest from the real axis

$$
d=16, \sim 10^{6} \mathrm{EPs}
$$

Scaling with matrix dimension d

Ensemble average of the distance of the closest EP from the origin

Distance of the closest EP from the origin in an ensemble of 10^{6} generated EPs

Power-law behaviour d^{-c}, where c is higher for the critical Hamiltonian

Conclusions

$1^{\text {st }}$ order QPT

Connected with a single pair of EPs.

$\underline{2^{\text {nd }} \text { order QPT }}$

Ground-state affected by several EPs located at comparable distances from the real axis.

Exponential

Algebraic

- convergence of the EPs to the real axis when the system's size grows
- accumulation of the EPs near $\lambda=0$ when the system is arbitrarily perturbed
- EP distribution represents a strong signature of quantum criticality allowing us to discriminate between the first- and higher-order critical Hamiltonians
- EP distribution may have consequences for the superradiance phenomenon in open quantum systems (work in progress)
P. Stránský, M. Dvořák, P. Cejnar, Physical Review E 97, 012112 (2018)

Thanks for your attention

Resultant $R(\lambda)$

$$
\begin{aligned}
& P(E, \lambda)=\operatorname{det}[E-H(\lambda)]=0 \\
& Q(E, \lambda)=\frac{\partial P(E, \lambda)}{\partial E}=0
\end{aligned}
$$

- polynomial of degree $N(N-1)$
- pairs of complex conjugate roots
- no roots on the real axis

$\underline{\sigma^{2} \text { adjustment }}$

$$
\begin{aligned}
& D_{H}=\frac{1}{d-1} \sum_{n=1}^{d}\left|E_{n}-M_{E}\right|^{2}=\frac{\operatorname{Tr} H H^{+}}{d-1}-\frac{\operatorname{Tr} H \operatorname{Tr} H^{+}}{d(d-1)} \\
& M_{H}=\frac{1}{d} \sum_{n=1}^{d} E_{n}=\frac{\operatorname{Tr} H}{d} \quad \begin{array}{l}
\text { - center of mass of } \\
\text { the spectrum }
\end{array} \\
& \mathrm{HO}: \sqrt{D_{E}} \approx \frac{\omega d}{\sqrt{12}}, E_{n}=\omega n \\
& \mathrm{C} 2: \sqrt{D_{E}} \approx \frac{\omega d}{\sqrt{11.23}}, E_{n}=\omega n^{\frac{4}{3}} d^{-\frac{1}{3}}
\end{aligned}
$$

- quadratic spread of the spectrum E_{n}
- characterizes an average diameter of the cloud of complex eigenvalues
- $\sigma^{2}=D_{H(0)}$ for the diagonal perturbation
$\left\langle D_{V}\right\rangle=D_{H(0)}$
- $\sigma^{2}=\frac{D_{H(0)}}{d+2}$ for the GOE perturbation
- $\sigma^{2}=\frac{D_{H(0)}}{d}$ for the offdiagonal perturbation

Global properties of the spectrum

$$
M_{H(\lambda)}=M_{H(0)}+\lambda M_{V} \quad-\text { spectral mean value }
$$

$$
D_{H(\lambda)}=D_{H(0)}+\operatorname{Re} \lambda \underbrace{\frac{2 d}{d-1}\left[M_{H(0) V}-M_{H(0)} M_{V}\right]}_{K}+|\lambda|^{2} D_{V}
$$

- quadratic spread (quadratic dependence on λ)
parabola with a minimum at $\lambda_{0}=-\frac{K}{2 D_{V}}$
(at this point the spectrum is maximally compressed)

Main structural changes expected for $\Delta \lambda \approx \sqrt{\frac{D_{H\left(\lambda_{0}\right)}}{D_{V}}}$ vicinity of λ_{0}

Expectation values

$\left\langle M_{V}\right\rangle=\langle K\rangle=0$
$\left\langle D_{V}\right\rangle=D_{H(0)}$
$\langle K\rangle=0$

Phase structure

$1^{\text {st }}$ order QPT

$2{ }^{\text {nd }}$ order QPT

$\underline{2^{\text {nd }} \text { order QPT }}$

$\underline{2}^{\text {nd }}$ order QPT

$\underline{2}^{\text {nd }}$ order QPT

Specific heat analogy

Latent heat analogy

- approximated by $Q \approx \chi_{\min } * C_{\max }=\frac{\sqrt{3}}{2(N-1)} \frac{1}{\operatorname{Im}} \chi_{0,1}^{E P} \sim \frac{N^{0.4}}{N} \rightarrow 0$

Random perturbation at a critical point

$$
H=H_{c}+\lambda H_{\mathrm{GOE}}
$$

M.R. Zirnbauer, J.J.M. Verbaarschot, H.A. Weidenmüller, Nucl. Phys. A411, 161 (1983)

Thermal phase transitions

Example: 2D Ising model $\quad H=-\frac{A}{2} \sum_{\{i j\}} \sigma_{i}^{z} \sigma_{j}^{Z}$

Extended into the complex plane $Z(T)$ can yanish - Yang-Lee zeros

Their approaching the real axis in the TD limit indicates a TD phase transition.
M.E. Fischer, Lecture Notes in Theoretical Physics 7C, 1 (1965)

2D electrostatics of EPs

$\frac{N(N-1)}{2}$
Resultant

$$
\frac{\frac{N(N-1)}{2}}{2}
$$

$$
\begin{aligned}
& \text { Resultant } \quad R(\lambda)=\prod_{i<j}\left[E_{i}(\lambda)-E_{j}(\lambda)\right]^{2}=a \xrightarrow[\prod_{k=1}^{2}\left(\lambda-\lambda_{k}^{E P}\right)\left(\lambda-\bar{\lambda}_{k}^{E P}\right)]{\substack{\prod_{k P} \\
U_{S P}\left(\lambda_{R}\right)=-\frac{1}{N-1} \sum_{i<j} \ln \left|E_{i}\left(\lambda_{R}\right)-E_{j}\left(\lambda_{R}\right)\right|}} \begin{array}{l}
U_{E P}\left(\lambda_{R}\right)=-\frac{\ln a}{2(N-1)}-\frac{1}{\mathrm{~N}-1} \sum_{k=1}^{\frac{N(N-1)}{2}} \ln R_{k}\left(\lambda_{R}\right)
\end{array}
\end{aligned}
$$

Coulomb energy of charges placed on energy levels at a given λ_{R} on the real axis

(Shifted) Coulomb potential at the point λ_{R} from charges placed in the EPs

Partial resultant

$$
\begin{aligned}
& R_{j}^{a}(\lambda)=\prod_{i \neq j}\left[E_{i}(\lambda)-E_{j}(\lambda)\right] \\
& R_{j}^{b}(\lambda)=a \prod_{k \neq j}\left(\lambda-\lambda_{k, j}^{E P}\right)\left(\lambda-\bar{\lambda}_{k, j}^{E P}\right)
\end{aligned}
$$

(Product over EPs on k-th Riemann sheet)

Open question: Relation between $R_{j}^{a}(\lambda)$ and $R_{j}^{b}(\lambda)$?

Thermal PT

Quantum PT

Yang-Lee zeros of the partition function
Zeros of the resultant (non-Hermitian degeneracies)

Partition function $Z(T)=\sum_{i} e^{-\frac{E_{i}}{T}}$

Free energy $\quad F(T)=-T \ln Z(T)$
Partial resultant

$$
R_{j}(\lambda)=\prod_{i \neq j}\left[E_{i}(\lambda)-E_{j}(\lambda)\right]^{2}
$$

Specific heat

$$
C(T)=-T \frac{\partial^{2} F(T)}{\partial T^{2}}
$$

Coulomb energy $U_{j}(\lambda)=-\frac{1}{\Omega} \ln R_{j}(\lambda)$

$$
C_{j}(\lambda)=-\frac{\partial^{2} U_{j}(\lambda)}{\partial \lambda^{2}}
$$

Latent heat

$$
Q(T)=\lim _{\epsilon \rightarrow 0+} \int_{T-\epsilon}^{T+\epsilon} C\left(T^{\prime}\right) d T^{\prime}
$$

$$
Q(\lambda)=\lim _{\epsilon \rightarrow 0+} \int_{\lambda-\epsilon}^{\lambda+\epsilon} C\left(\lambda^{\prime}\right) d \lambda^{\prime}
$$

Order of the PT is given by the density of zeros in the vicinity of the real axis:

$$
\begin{array}{ll}
\rho^{E P} \propto(\operatorname{Im} \lambda)^{\alpha} & \begin{array}{l}
\alpha=0-1^{\text {st }} \text { order } \\
0<\alpha<1-2^{\text {nd }} \text { order }
\end{array}
\end{array}
$$

Specific heat analogy

EPs are well separated, therefore there is just one EP connected with the ground state

We can neglect the influence of other EPs

Latent heat analogy

- approximated by $Q \approx \chi_{\text {min }} * C_{\max }=\frac{\sqrt{3}}{2(N-1)} \frac{1}{\operatorname{Im} \chi_{0,1}^{E D}} \sim \frac{e^{N}}{N} \rightarrow \infty$

