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• Exceptional points (EP) 

• Lipkin model: A simple critical system with both 1st 

and 2nd order QPTs 

• EP distribution of randomly perturbed Hamiltonians 

Outline 



Exceptional points 

𝐻 𝜆 = 𝐻0 + 𝜆𝑉 𝐻0, 𝑉 ≠ 0 

In a generic situation: no real crossings 

(energies from the same 
symmetry subspace) 

𝐸 

l 

𝐸𝑖 𝜆 ≠ 𝐸𝑖+1 𝜆  
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Exceptional points 

𝐻 𝜆 = 𝐻0 + 𝜆𝑉 𝐻0, 𝑉 ≠ 0 

In a generic situation: no real crossings 

(energies from the same 
symmetry subspace) 

Re𝜆 

𝐸𝑖 𝜆 ≠ 𝐸𝑖+1 𝜆  

𝐸 

1 

Energy levels cross at 
1

2
𝑛 𝑛 − 1  complex conjugate pairs of exceptional points 𝜆𝐸𝑃 , 𝜆𝐸𝑃∗ ∈ ℂ 

Im 𝜆 

Nonhermitian extension 

of the Hamiltonian 



Lipkin(-Meshkov-Glick) model 

2 levels with capacity 𝑁 

𝑁 interacting fermions 

𝐽𝑧 =
1

2
 𝑎𝑖+
+ 𝑎𝑖+ − 𝑎𝑖−

+ 𝑎𝑖−

𝑁

𝑖=1

 

𝐽+ = 𝑎𝑖+
+ 𝑎𝑖−

𝑁

𝑖=1

 𝐽− = 𝐽+
+ 

SU(2) algebra 

Only 𝑗 =
𝑁

2
 subspace considered – 1 degree of freedom 

Quasispin 𝑗 is conserved 

H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965) 
N. Meshkov, A.J. Glick, H.J. Lipkin, Nucl. Phys. 62, 199 (1965) 
A.J. Glick, H.J. Lipkin, N. Meshkov, Nucl. Phys. 62, 211 (1965) 
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1st order QPT 

𝐻0 = 𝐽3 −
6

𝑁
𝐽1
2 𝑉 = −𝐽1 −

1

𝑁
𝐽1𝐽3 + 𝐽3𝐽1  

deformed ↔ deformed 

𝑁 = 15 3 

potential 

𝐸 

Re 𝐸 merges Im 𝐸 diverges 

at an individual EP 

when Im 𝜆 increased 



1st order QPT 

𝐻0 = 𝐽3 −
6

𝑁
𝐽1
2 𝑉 = −𝐽1 −

1

𝑁
𝐽1𝐽3 + 𝐽3𝐽1  𝐻0 = 𝐽3 𝑉 = −

1

𝑁
𝐽1 + 4 𝐽3 +

𝑁

2

2

 

deformed ↔ deformed spherical ⟷ deformed 

𝑁 = 15 3 

potential 

𝐸 𝐸 



1st order QPT 

𝐻0 = 𝐽3 −
6

𝑁
𝐽1
2 𝑉 = −𝐽1 −

1

𝑁
𝐽1𝐽3 + 𝐽3𝐽1  𝐻0 = 𝐽3 𝑉 = −

1

𝑁
𝐽1 + 4 𝐽3 +

𝑁

2

2

 

deformed ↔ deformed spherical ⟷ deformed 

𝑁 = 15 3 

potential 

𝐸 𝐸 exponential convergence 

towards the real axis 



2nd order QPT 

𝐻0 = 𝐽3 𝑉 = −
1

𝑁
𝐽1
2 

algebraic convergence 

towards the real axis 

Im 𝜆1
EP ∼ 𝑁−𝜅 

4 
W.D. Heiss, F.G. Scholz, H.B. Geyer, J. Phys. A: Math. Gen. 38, 1843 (2005) 

M. Šindelka, L.F. Santos, N. Moiseyev, Phys. Rev. A 95, 010103 (2017) 𝑁 = 15 even parity 



Critical Hamiltonians 𝐻0 

𝐸 

C1 C2 
... to be compared with 

the Harmonic Oscillator 

+ random perturbation 𝑉 

5 

(averaged over the whole 

ensemble of interactions 𝑉) 



Diagonal perturbation 
- corresponds to perturbations preserving all the symmetries of the original Hamiltonian 

𝐸 

l 

6 

real crossings 

𝑉 =
𝑁 0, 𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑁 0, 𝜎2

 𝑉 =
𝑅 0, 𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅 0, 𝜎2

 

𝜎2 fixed so that it is comparable 

with the variance of 𝐻0 spectrum 

EP distribution can be calculated analytically 

𝑑 = 16 

Sharp peak at small 𝜆  

EPs shifted towards smaller |𝜆| 



GOE perturbation 

𝑉 =
𝑁 0, 2𝜎2 ⋯ 𝑁 0, 𝜎2

⋮ ⋱ ⋮
𝑁 0, 𝜎2 ⋯ 𝑁 0,2𝜎2

∈ GOE 
eigenbasis = random rotation 

of the unperturbed basis 

EP distribution in the complex 𝜆 plane is 

rotationally symmetric around the origin 

𝜆 = 0 

𝑑 = 16, ∼ 106 EPs 

C1 C2 HO 

7 

B. Shapiro, K. Zarembo,  
J. Phys. A: Math. Theor. 50, 045201 (2017) 



Off-diagonal perturbation 

𝑉 =
0 ⋯ 𝑁 0, 𝜎2

⋮ ⋱ ⋮
𝑁 0, 𝜎2 ⋯ 0

 

- iInitial symmetries are violated 

in a maximal way 

- Expected results partly similar 

to the matrices from GUE 

𝑑 = 16, ∼ 106 EPs 

C1 C2 HO 

8 

EPs the furthest from the real axis 

Small 𝜆  behaviour similar with 

the diagonal and GOE perturbation 



Scaling with matrix dimension 𝑑 

Ensemble average of the distance 

of the closest EP from the origin 

Distance of the closest EP from the origin 

in an ensemble of 106 generated EPs 

Power-law behaviour 𝑑−𝑐, where 𝑐 is higher for the critical Hamiltonian 

9 



Conclusions 

THANKS FOR YOUR ATTENTION 

1st order QPT 2nd order QPT 

Connected with a single pair of EPs. 

Ground-state affected by several EPs 

located at comparable distances from 

the real axis. 

Exponential Algebraic 

• convergence of the EPs to the real axis 

when the system’s size grows 

• accumulation of the EPs near 𝜆 = 0 when 

the system is arbitrarily perturbed 

• EP distribution represents a strong signature of quantum criticality allowing 

us to discriminate between the first- and higher-order critical Hamiltonians 

• EP distribution may have consequences for the superradiance phenomenon 

in open quantum systems (work in progress) 

P. Stránský, M. Dvořák, P. Cejnar, Physical Review E 97, 012112 (2018)  





𝑃 𝐸, 𝜆 = det 𝐸 − 𝐻 𝜆 = 0 

𝑄 𝐸, 𝜆 =
𝜕𝑃 𝐸, 𝜆

𝜕𝐸
= 0 

Resultant 𝑅 𝜆  

- polynomial of degree 𝑁 𝑁 − 1  

- pairs of complex conjugate roots 

- no roots on the real axis 



𝜎2 adjustment 

𝐷𝐻 =
1

𝑑 − 1
 𝐸𝑛 −𝑀𝐸

2

𝑑

𝑛=1

=
Tr 𝐻𝐻+

𝑑 − 1
−
Tr 𝐻 Tr 𝐻+

𝑑 𝑑 − 1
 

- quadratic spread of the 

spectrum 𝐸𝑛 
- characterizes an average 

diameter of the cloud of 

complex eigenvalues 
𝑀𝐻 =
1

𝑑
 𝐸𝑛

𝑑

𝑛=1

=
Tr 𝐻

𝑑
 

- center of mass of 

the spectrum 

HO: 𝐷𝐸 ≈
𝜔𝑑

12
, 𝐸𝑛 = 𝜔𝑛 

C2: 𝐷𝐸 ≈
𝜔𝑑

11.23
, 𝐸𝑛 = 𝜔𝑛

4

3𝑑−
1

3 

𝐷𝑉 = 𝐷𝐻(0) 

• 𝜎2 = 𝐷𝐻(0) for the diagonal perturbation 

• 𝜎2 =
𝐷𝐻 0

𝑑+2
 for the GOE perturbation 

• 𝜎2 =
𝐷𝐻 0

𝑑
 for the offdiagonal perturbation 



Global properties of the spectrum 

𝑀𝐻 𝜆 = 𝑀𝐻 0 + 𝜆𝑀𝑉 - spectral mean value 

𝐷𝐻 𝜆 = 𝐷𝐻 0 + Re𝜆
2𝑑

𝑑 − 1
𝑀𝐻 0 𝑉 −𝑀𝐻 0 𝑀𝑉

𝐾

+ 𝜆 2𝐷𝑉 

- quadratic spread (quadratic dependence on 𝜆) 
Im𝜆 = 0 

parabola with a minimum at 𝜆0 = −
𝐾

2𝐷𝑉
  

(at this point the spectrum is maximally compressed) 

Main structural changes expected for Δ𝜆 ≈
𝐷𝐻 𝜆0
𝐷𝑉

 vicinity of 𝜆0  

Expectation values 

𝑀𝑉 = 𝐾 = 0 𝐷𝑉 = 𝐷𝐻 0  𝐾 = 0 



P 

Phase structure 
4 + 𝜒2

5 + 𝜒2
 

1st order QPT 

𝑥 

𝑉 

2nd order QPT 

𝑉 

𝑥 

DEFORMED phase 

DEFORMED phase 

SPHERICAL phase 



𝐸 

𝜒 

1st order QPT 

Level dynamics 

𝑁 = 10 
𝜂 = 0.4 

P. Cejnar, P. Stránský, Phys. Scr. 91, 083006 (2016) 



𝐸 

𝜒 

Exceptional points 

𝑁 = 10 
𝜂 = 0.4 

- tight connection between 

neighbouring levels 

1st order QPT 

Im
𝜒
 

Re𝜒 

𝐥𝐨
𝐠
Im
𝜒
 

Re𝜒 



𝐸 

𝜒 

Exceptional points 

𝑁 = 10 
𝜂 = 0.4 

1st order QPT 

- tight connection between 

neighbouring levels 
ln Im𝜒0,1

𝐸𝑃  

𝑁 

EPs approach real axis 

exponentially fast 

Im
𝜒
 

Re𝜒 

𝐥𝐨
𝐠
Im
𝜒
 

Re𝜒 



𝐸 

𝜒 

𝑁 = 10 
𝜂 = 0.4 

1st order QPT 

Im
𝜒
 

Re𝜒 

Spinodal 

region 

Excited-state quantum 

phase transitions 

M. Caprio, P. Cejnar, F. Iachello, Ann. Phys. 323, 1106 (2008) 
P. Stránský, P. Cejnar, Phys. Lett. A 380, 2637 (2016) 



𝐸 

𝜂 

2nd order QPT 

Already discussed in the literature, see for example 

W.D. Heiss, F.G. Scholtz and H.B. Geyer, J. Phys. A: Math. Gen. 38, 1843 (2005) 
W.D. Heiss, J. Phys. A: Math. Theor. 45, 444016 (2012) 
... 

𝑁 = 30 
𝜋+ states 



𝐸 

𝜂 

Re 𝜂 

Im
 𝜂

 

2nd order QPT 

Exceptional points 

𝑁 = 30 
𝜋+ states 



𝐸 

𝜂 

Re 𝜂 

Im
 𝜂

 

2nd order QPT 

Exceptional points 

𝑁 = 30 
𝜋+ states 

ln Im𝜒0,1
𝐸𝑃  

ln𝑁 

EPs approach real axis 

polynomially fast 

slope ∼ −0.4 



Re 𝜂 

Im
 𝜂

 
Exceptional points 

2nd order QPT 

𝐸 

𝜂 

- only the interaction of 

neigbouring levels shown 

Excited-state quantum 

phase transition 

M. Šindelka, L. Santos, N. Moiseyev, 
Phys. Rev. A 95, 010103(R) (2017) 



Specific heat analogy 

Latent heat analogy 

- approximated by 𝑄 ≈ 𝜒𝑚𝑖𝑛 ∗ 𝐶𝑚𝑎𝑥 =
3

2 𝑁−1

1

𝑰𝒎 𝝌𝟎,𝟏
𝑬𝑷 ∼
𝑵𝟎.𝟒

𝑁
→ 0 

𝐶𝑆𝑃,0 

𝐶𝐸𝑃,0 

𝐶0(𝜂) 

𝜂 

𝐶𝐸𝑃,0
𝐴𝑙𝑙  

Other EPs connected with 

the ground state included 

Re 𝜂 

Im
 𝜂

 

𝜂 



Quartic potential 

2nd order QPT 

Re 𝜆 

𝑃(𝜆) 

𝐻 = 𝐻𝑐 + 𝜆𝐻GOE 

M.R. Zirnbauer, J.J.M. Verbaarschot, H.A. 
Weidenmüller, Nucl. Phys. A411, 161 (1983) 

Harmonic oscillator 

Re 𝜆 

𝑃(𝜆) 

Double-well potential 

1st order QPT 

Re 𝜆 

𝑃(𝜆) 

Random perturbation at a critical point 

Preliminary results 



Thermal phase transitions 

Example: 2D Ising model 𝐻 = −
𝐴

2
 𝜎𝑖
𝑧𝜎𝑗
𝑧

{𝑖𝑗}

 = 𝜎𝑖
𝑧  

(order parameter) 

𝑢 = 𝑒−
1
𝑇 

Extended into the complex plane 𝑍 𝑇  can vanish – Yang-Lee zeros 

Their approaching the real 

axis in the TD limit indicates 

a TD phase transition. 

T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952) 
M.E. Fischer, Lecture Notes in Theoretical Physics 7C, 1 (1965) 

12 x 12 lattice 



2D electrostatics of EPs 

𝑅 𝜆 = 𝐸𝑖 𝜆 − 𝐸𝑗 𝜆
2
= 𝑎  𝜆 − 𝜆𝑘

𝐸𝑃 𝜆 − 𝜆 𝑘
𝐸𝑃

𝑁 𝑁−1
2

𝑘=1𝑖<𝑗

 Resultant 

𝑈𝑆𝑃 𝜆𝑅 = −
1

𝑁 − 1
 ln 𝐸𝑖 𝜆𝑅 − 𝐸𝑗 𝜆𝑅
𝑖<𝑗

 𝑈𝐸𝑃 𝜆𝑅 = −
ln 𝑎

2 𝑁 − 1
−
1

N − 1
 ln𝑅𝑘(𝜆𝑅)

𝑁 𝑁−1
2

𝑘=1

 

Coulomb energy of charges placed on 

energy levels at a given 𝜆𝑅 on the real axis 

(Shifted) Coulomb potential at the point 

𝜆𝑅 from charges placed in the EPs 

Partial resultant 

𝑅𝑗
𝑎 𝜆 = [𝐸𝑖 𝜆 − 𝐸𝑗 𝜆 ]

𝑖≠𝑗

 

𝑅𝑗
𝑏 𝜆 = 𝑎 𝜆 − 𝜆𝑘,𝑗

𝐸𝑃 𝜆 − 𝜆 𝑘,𝑗
𝐸𝑃

𝑘≠𝑗

 

(Product over EPs on 

𝑘-th Riemann sheet) 

Open question: Relation 

between 𝑅𝑗
𝑎 𝜆  and 𝑅𝑗

𝑏 𝜆 ? 



Specific heat 

Latent heat 

𝐶 𝑇 = −𝑇
𝜕2𝐹 𝑇

𝜕𝑇2
 

𝑄 𝑇 = lim
𝜖→0+
 𝐶 𝑇′ 𝑑𝑇′
𝑇+𝜖

𝑇−𝜖

 

Partition function 𝑍 𝑇 = 𝑒
−
𝐸𝑖
𝑇

𝑖

 Partial 

resultant 
𝑅𝑗 𝜆 = 𝐸𝑖 𝜆 − 𝐸𝑗 𝜆

2

𝑖≠𝑗

 

Free energy 𝐹 𝑇 = −𝑇 ln𝑍(𝑇) Coulomb energy 𝑈𝑗 𝜆 = −
1

Ω
ln𝑅𝑗(𝜆) 

𝐶𝑗 𝜆 = −
𝜕2𝑈𝑗 𝜆

𝜕𝜆2
 

𝑄 𝜆 = lim
𝜖→0+
 𝐶 𝜆′ 𝑑𝜆′
𝜆+𝜖

𝜆−𝜖

 

Yang-Lee zeros of the partition function 

Thermal PT Quantum PT 

Zeros of the resultant  

(non-Hermitian degeneracies) 

P. Cejnar, S. Heinze, J. Dobeš, Phys. Rev. C 71, 011304(R) (2005) 
P. Cejnar, S. Heinze, M. Macek, Phys. Rev. Lett. 99, 100601 (2007) 

Order of the PT is given by the density of zeros in the vicinity of the real axis: 

𝜌𝐸𝑃 ∝ Im 𝜆 𝛼 
𝛼 = 0 – 1st order 

0 < 𝛼 < 1 – 2nd order 
Re 𝜆 

𝜆𝑃𝑇 



Specific heat analogy 

𝐶0(𝜒) 

𝜒 

𝐶𝑆𝑃,0 𝜒 ≈
1

𝑁 − 1

𝑑2

𝑑𝜒2
ln 𝐸1 𝜒 − 𝐸0 𝜒  

𝐶𝐸𝑃,0 𝜒 ≈
1

𝑁 − 1

𝑑2

𝑑𝜒2
ln 𝜒 − Re 𝜒0,1

𝐸𝑃 2 + Im 𝜒0,1
𝐸𝑃 2 

EPs are well separated, therefore there is 

just one EP connected with the ground state 

𝐶𝑚𝑎𝑥 =
1

𝑁 − 1

1

𝐼𝑚 𝜒0,1
𝐸𝑃 2

 

We can neglect the influence of other EPs 

𝜒𝑚𝑖𝑛 =
3

2
Im 𝜒0,1
𝐸𝑃 

Latent heat analogy 

- approximated by 𝑄 ≈ 𝜒𝑚𝑖𝑛 ∗ 𝐶𝑚𝑎𝑥 =
3

2 𝑁−1

1

𝐈𝐦 𝝌𝟎,𝟏
𝑬𝑷 ∼
𝒆𝑵

𝑁
→ ∞ 


