Post－K priority issue 9
＂Elucidation of the Fundamental Laws

Shell－model study in A～130 nuclei and chiral doublet of ${ }^{128} \mathrm{Cs}$

Noritaka Shimizu

Center for Nuclear Study

Center for Nuclear Study，University of Tokyo
Yutaka Utsuno（JAEA／CNS Tokyo）
Michio Honma（Aizu Univ．）
Takaharu Otsuka（RIKEN／Tokyo／Leuven／MSU）

Outline

- Introduction : Large scale shell model (LSSM) calculations in $A^{\sim} 130$ region
- Shell evolution of Sb isotopes
- High-spin states in the LSSM: ${ }^{136} \mathrm{Ba},{ }^{135} \mathrm{La}$
- ${ }^{128} \mathrm{Cs}$ as a candidate for chiral doublet band

- Shell-model study is a challenge in this region due to huge configuration space
- Exotic phenomena emerge such as triaxial deformation, chiral bands, isomers, etc.

Developments of shell-model calculations

- MCSM: awkward in high-spin states
- Developments of Lanczos shell-model code is required: ANTOINE, NuSHELL, BigStick, KSHELL, ...

KSHELL code for the LSSM calculations

- ${ }^{128}$ Cs calc. demands eigenvalue problem of 7.6×10^{10} dimension.
=> parallel computation
- M-scheme + "on the fly" computation of Hamiltonian matrix elements, code was written from scratch for OpenMP+MPI hybrid parallel
- KSHELL code is available on the web!
${ }^{56} \mathrm{Ni}$ in pf-shell One Lanczos iteration:: 25 min . (16cores) $\Rightarrow 3.8 \mathrm{sec}$. (7200cores)
We obtained ${ }^{56} \mathrm{Ni}$ ground state energy ($10^{9} \mathrm{dim}$) in 135 seconds

Large scale shell model (LSSM) calculations for A~130 nuclei

- Model space : $50<\mathbf{Z}, \mathrm{N}<82 \quad 0 g_{7 / 2}, 1 d_{5 / 2}, 1 d_{3 / 2}, 2 s_{1 / 2}, 0 h_{11 / 2}$
- Interaction : SNBG3 for $v v$, N82GYM for $\pi \pi$, fitted for $Z=50$ and $\mathrm{N}=82$ semi magic nuclei

M. Honma et al., RIKEN Accel. Prog. Rep. (2012).

M. Honma et al., RIKEN Accel. Prog. Rep. (2016).

Monopole-based universal interaction $V_{\text {MU }}$ for $\pi \nu$ interaction

Ref. T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).

- Central and tensor forces

We adopt V_{MU} interaction for $\pi-\nu$ channel

Shell evolution in Sb isotopes

- Shell evolution
- Important not only in single-particle energy levels but also in collectivity
- How to deduce?
- Follow the change of "single-particle energies" along a long isotope chain.
- Purity of single-particle (SP) states
- Controversial levels in $\mathrm{Sb}(Z=51)$ isotopes
- SP (Schiffer et al., 2004) or coupling to collective (Sorlin and Porquet, 2008)
- Absolute values of $C^{2} S$: ambiguous

Many-body calculations with a suitable shell-evolution mechanism are needed.

J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).

Sh $(7=51)$ isotonps. Utsuno et al., in preparation
 $\mathrm{Sb}(Z=51)$ isotopes

- Shell-model calculation in the $50 \leq N(Z) \leq 82$ space
- n-n interaction: semi-empirical SNBG3 by Honma et al. (good fit including 3^{-})
- $p-n$ interaction: $V_{\text {MU }}$ with a scaling factor 0.84 for the central (binding energy)

Shell evolution driven by the tensor force and configuration mixing

- Without tensor
- $11 / 2^{-} \approx 2 \mathrm{MeV}$
- Tensor effect + configuration mixing
- Good agreement with experiment
- almost perfect agreement if the tensor force is enhanced by a factor 1.3

${ }_{56}^{136} \mathrm{Ba}_{80}:$ Exp. vs. LSSM calc.

collab. with C. Petrache et al.

Exp. level scheme of ${ }^{135}{ }_{57} \mathrm{La}_{78}$

R. Garg et al., PRC 87, 034317 (2013), R. Leguillion et al., PRC 88, 044309 (2013)

${ }^{135}{ }_{57} \mathrm{La}_{78}$: LSSM calc.
 w/ R. Palit, E. Ideguchi et al.

Chiral doublet bands of ${ }^{128} \mathrm{Cs}$

(1) $\left(v h_{11 / 2}\right)^{-1}$

(2) $\left(\pi h_{11 / 2}\right)^{+1} L$

R

- First proposed by Frauendorf and Meng in 1997
- $A \sim 130$ region: the region of most extensive study
- Triaxiality favored
$-\pi\left(h_{11 / 2}\right)^{1} v\left(h_{11 / 2}\right)^{-1}$ config. favored
- Theoretical tools
- Tilted axis cranking (TAC)
- Particle-rotor model (PRM)
- PSM, IBFFM, DFT, ...
- Aim of the LSSM study for chiral bands
- Including various degrees of freedom, e.g. γ-vibration

${ }^{128} \mathrm{Cs}$: energy levels

 $\pi\left(h_{11 / 2}\right)^{1} v\left(h_{11 / 2}\right)^{-1}$ configuration Remarkable agreement with exp. Level spacing suppressed by $\sim 20 \%$

Exp. arrow width : intensity

E. Grodner et al., IJMPE 14, 347 (2005)

Doublet bands = Chiral bands

- Selection rule
- Symmetry consideration

T. Koike, K. Starosta, I. Hamamoto, Phys. Rev. Lett. 93, 172502 (2004).

Experiment

${ }^{128} \mathrm{Cs}$: a best candidate
E. Grodner et al.,

Phys. Rev. Lett 97, 172501 (2006).

${ }^{128} \mathrm{Cs}$: transitions

LSSM calc.

Expt. (Grodner et al.)

${ }^{128} \mathrm{Cs}:$ moments

- Worth calculating to see whether the doublet bands are the partners.
g factors
- Exp. $g=+0.59(1)$ for the 9^{+}state
(Grodner 2018)
- Similar between yrast and side
- Nearly constant around 0.4-0.5
- Seems consistent with chiral
- Q moments
- Similar between yrast and side
- Rather stable for yrast
- Fluctuating by $\pm 25 \%$ for side

Chiral band or not?

- To investigate the nature of the doublet bands in ${ }^{128} \mathrm{Cs}$
- Calculating the overlaps $\left.\left\langle{ }^{128} \mathrm{Cs}, \operatorname{In} 1\right|\left[a_{\pi h 11 / 2}^{\dagger} \times a_{v h 11 / 2}\right]^{\lambda} \mid{ }^{128} \mathrm{Xe}, R n_{2}\right)$, where $I n_{1}$ and $R n_{2}$ denote the states of ${ }^{128} \mathrm{Cs}$ and ${ }^{128} \mathrm{Xe}$, respectively, and λ stands for the coupling of a proton particle and a neutron hole.
- If $\overrightarrow{j_{p}}$ and $\overrightarrow{j_{n}}$ are orthogonal, λ of large
(1) $\left(v h_{11 / 2}\right)^{-1} \rightarrow$ overlaps should be $\sqrt{2} \times \frac{11}{2} \sim 8$.
(3) ${ }^{128} \mathrm{Xe}$ core J_{i}

(2) $\left(\pi h_{11 / 2}\right)^{+1} \quad L$
R

One-body reduced matrix element between ${ }^{128} \mathrm{Cs}$ and ${ }^{128} \mathrm{Xe}$

- analogy to Two-Nucleon Amplitude
- OBRME for the $J_{f}=14^{+}$states of ${ }^{128} \mathrm{Cs}$
$\left\langle{ }^{128} \mathrm{Cs} ; J_{f} n_{f}\left\|\left[c_{\pi h 11 / 2}^{\dagger} \otimes c_{\nu h 11 / 2}\right]^{(\lambda)}\right\|{ }^{128} \mathrm{Xe} ; J_{i} n_{i}\right\rangle$

${ }^{128} \mathrm{Cs} 14^{+}$yrast state

${ }^{128}$ Cs 14^{+}chiral partner

c.f. $\lambda=\sqrt{2} \times \frac{11}{2} \sim 8$ If $\overrightarrow{j_{p}}$ and $\overrightarrow{j_{n}}$ are orthogonal.

Further investigations are ongoing.

Summary

- $\mathrm{A}^{\sim} 130$ mass nuclei is interesting for triaxial deformation are described by the LSSM calculations
- shell-model code developments : $10^{11} \mathrm{M}$-scheme dimension is feasible
- Shell evolution of Sb isotopes: driven by tensor force with a certain configuration mixing
- High-spin states of ${ }^{134} \mathrm{Ba}$ and ${ }^{135} \mathrm{La}$ are well understood by the LSSM calc. including collective states
- ${ }^{128} \mathrm{Cs}$ as a candidate of chiral doublet bands :
- Fully correlated LSSM successfully reproduces the experimental behaviors
- ${ }^{128} \mathrm{Xe}$ core plus $\pi \mathrm{h}_{11 / 2}{ }^{+1} \mathrm{vh}_{11 / 2}{ }^{-1}$ configuration while further investigations are required to confirm the chiral doublet bands

