



# Status of GINGERino

Jacopo Belfi



GINGER meeting @ DEI, 16-12-2016 Padova

## Outline



Introduction

Sagnac interferometry & Ring Lasers Gyroscopes

Earth rotation (ER) measurements ER in Geodesy

State of the art of Ring Laser Gyroscopes ER in Relativity (GINGER idea)

Ongoing research at LNGS

Deep Underground rotations: GINGERino (underground seismology)

Conclusion

## Sagnac interferometry







#### **Ring laser**

Internal generation, <u>Simple detection:</u> optical beat CW-CCW

#### No moving masses

- No signal for a linearly accelerating reference-frame (and gravity)
- L > 1 m  $\rightarrow$  Earth rotation is the bias!



#### **Ring Laser Gyroscopes**

Pure frequency measurement No need external space reference frame

## Earth rotation in Geodesy

#### Precise measurements of Earth rotation vector

- Link between ICRF (International Celestial Reference Frame) and ITRF (International Earth Reference Frame), → determination of the EOP (Earth Orientation Parameters)
- Earth's interior and atmospheric phenomena





#### Typical Observation are based on "stellar methods"

Navigation (GNSS), Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI), Doppler Orbitography and Radio-positioning Integrated by Satellite(DORIS)...

The measurement objects are defined in a **celestial frame of reference**, while the sensors are located on the Earth.

#### Earth rotation in Geodesy





Measured LOD and Atmospheric Angular Momentum from Weather Model

#### Direction variations



15 m

Polar Motion, moon and sun torque, free oscillation, geodynamics

#### Sub daily time scale?

- "Stellar" methods have typically lower time resolution
- Need to link: Earth based reference frame <--> Celestial reference frame

**Ring Laser Gyroscopes** can play this role [target resolution  $10^{-9} \Omega_{2}$ ]

## State of the art: "G" ring laser at Wettzell (Germany)



## Earth rotation and General Relativity



"The axis of a **gyroscope** will precess following the curvature of the **local** space-time due to: **Earth's Mass** (Geodetic precession) and **Earth's Rotation** (Lense-Thirring or Frame Dragging)"



**Results in Space**: Lageos+GRACE & Lares, Gravity Probe B

..on ground with a laser Gyroscope

$$\delta \vec{\Omega} \simeq \left( \frac{GM}{c^2 R} \Omega_E \sin \theta \, \hat{e_{\theta}} \right) + \left( \frac{G}{c^2 R^3} J_E \Omega_E [\, \hat{j}_E - 3(\, \hat{j}_E \cdot \hat{u}_r) \, \hat{e_r} ] \right)$$

$$(5.98 \, 10^{-10} \Omega_E) + \left( \frac{G}{c^2 R^3} J_E \Omega_E [\, \hat{j}_E - 3(\, \hat{j}_E \cdot \hat{u}_r) \, \hat{e_r} ] \right)$$



Relativistic corrections are on the meridian plane and depend on the latitude of the laboratory



## **GINGER** motivation

F. Bosi et al., Phys. Rev. Ø 84, (2011)

Satellites are in <u>geodetic motion</u> (free fall), while in ground laboratory the observer is in a <u>non inertial motion</u>.

Metric is tested on <u>different length scales</u> (planetary  $\rightarrow$  meter-scale)

The apparatus is more accessible in a terrestrial laboratory (the experiment can be repeated)

Different interpretation, no need of gravitational field models

 $\Omega_E^{}$  "Inertial-frame" E rotation measurement

Ouasars

3-axial Ring-Laser

 $ec{\Omega_E}$  ' Local rotation measurement

## GINGER key-points

Measure vector modulus + direct comparison with IERS

- Use one shared-mirrors octahedral array
- Minimize laser dynamics non-reciprocal effects (L>6m)+modeling

#### Multi site approach

- Exploit the dependence of GR terms on the latitude (differential measurement)
- Use 2 TWIN RINGS oriented at the maximum signal at different latitudes
- Calibrate the 2 TWIN RINGS when located at the same latitude (only mirrors defects)



#### Requirements

$$f_{Si} = \frac{4A_i}{P_i\lambda_i} \vec{\Omega} \cdot \hat{n}_i + syst \cdot \frac{\left|\delta f_{Si}\right|}{\left|f_i\right|} < 10^{-10}$$

Systematics are diluted if L>6 m

Strong requirements on GEOMETRY

Underground laboratory → low rotational noise

Multi axial approach

## **Ring Laser dynamics**



## GINGERino: deep underground ring laser

He-Ne laser at 633 nm Square cavity, L=3.6 m, Mirrors r.o.c= 4 m Earth rotation Sagnac bias: **fs=280.4 Hz** 



## Installation site

**Gran Sasso INFN Laboratory** 

The laboratory is located beneath 1 km of rock, Isolated from the other experiments

## Natural conditions: T=8 °C, Relative humidity>90%

• **TEMPERATURE** increased by IR-lamps Tint:--> 13°C, relative humidity--> 60%



GERino



## Seismic noise



<sup>30</sup> Flicker noise at long periods (east and north):

15

0

30

15

0

- Propagates along the tunnel direction 15
  - Possibly related to strong pressure variations.
- Better isolation from the experimental 30 halls will help. Pressure tight doors.



## Rotational noise (raw data)

7

#### Rotational sensitivity limit



### **GINGERino raw data**

GINGERino RAW Sagnac freq.



#### Data processing

#### Acquired optical signals (5 kS/s)

1

S(n) = Sagnac II(n) = CCW monobeam

- I2(n)= CW monobeam
- G(n) = Excitation level

#### Power Control

Analog PI circuit stabilizes the I2 (t >1 s)

#### **Backscattering correction**

#### Identified parameters

$$\widehat{r_1} = \frac{i_2\omega}{2(c/L)\sqrt{I_1I_2}}$$

$$\widehat{r_2} = \frac{i_1\omega}{2(c/L)\sqrt{I_1I_2}}$$

$$\widehat{\varepsilon} = \frac{\phi_1 - \phi_2}{2}$$

A. Beghi et al. Applied Optics 51, 31 (2012) D. Cuccato et al. Metrologia 51, 97, (2014)



#### Example: 24 h backscattering correction



-4

hours

lowpass Butterworth filter; BP, bandpass Butterworth filter; ZD, zoom and decimation routine; HT, Hilbert transform (see text).

#### Long period observations 2-13 june 2016

Sagnac frequency fluctuation 0.04 0.03 0.02 0.01 Hz 0 -0.01 -0.02 -0.03 2 4 6 8 10 12 0

Days from 2-06-2016

## Long period observations 2-13 june 2016



## Preliminary analysis of the November 2016 RUN



#### Losses monitor and Sagnac residuals



## Present stability determination is in progress...



## Conclusion

RING laser gyros are approaching the resolution of  $10^{-9}\Omega_{\rm E}$  (impact on GEODESY)

Ground based Tests of GR are under study (Multi axial / Multi-site approach are considered )

