
The challenge of adapting HEP physics
software applications to run

on many-core CPUs

Alfio Lazzaro
Università degli Studi di Milano & CERN

Vincenzo Innocente
CERN

Workshop CCR e INFN-GRID 2009
Hotel Cala di Lepre

Palau, 11-15 Maggio 2009

Extracted from V. I. talk @ CHEP09: http://indico.cern.ch/contributionDisplay.py?
contribId=520&sessionId=1&confId=35523

Computing in the years
2

Moore’s law

Transistors used to increase raw-power Increase global power

The ‘three walls’

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:
–The memory wall
–The power wall
–The instruction level parallelism (micro-
architecture) wall

3

The ‘memory wall’

– Processor clock rates have
been increasing faster than
memory clock rates

– larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

– Latency in memory access
is often the major
performance issue in
modern software
applications

4

Core 1 Core n …

Main memory:
200-300 cycles

The ‘power wall’
– Processors consume more and more power the faster they go
– Not linear:

» 73% increase in power gives just 13% improvement in performance
» (downclocking a processor by about 13% gives roughly half the power

consumption)

– Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

– Green Computing!

http://www.processor-comparison.com/power.html

5

The ‘Architecture walls’
– Longer and fatter parallel

instruction pipelines has been a
main architectural trend in `90s

– Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP)

– In practice inter-instruction data
dependencies and run-time
branching limit the amount of
achievable ILP

6

Go Parallel: many-cores!
– A turning point was reached and a new technology

emerged: multicore
» Keep low frequency and consumption
» Transistors used for multiple cores on a single chip: 2, 4, 6, 8

cores on a single chip

– Multiple hardware-threads on a single core
» simultaneous Multi-Threading (Intel Core i7 2 threads per core

(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))

– Dedicated architectures:
» GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel Larrabee)
» CELL
» FPGA (Reconfigurable computing)

7

8

The Challenge of Parallelization
Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC
–Inside a core (climb the ILP wall)

» Superscalar: Fill the ports (maximize instruction per cycle)
» Pipelined: Fill the stages (avoid stalls)
» SIMD (vector): Fill the register width (exploit SSE)

–Inside a Box (climb the memory wall)
» HW threads: Fill up a core (share core & caches)
» Processor cores: Fill up a processor (share of low level resources)
» Sockets: Fill up a box (share high level resources)

–LAN & WAN (climb the network wall)
» Optimize scheduling and resource sharing on the Grid

HEP has been traditionally good (only) in the latter

9

Where are WE?
– HEP code does not exploit the power of current processors

» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality
» Abuse of the heap

– Running N jobs on N=8 cores still efficient but:
» Memory (and to less extent cpu cycles) wasted in non sharing

• “static” condition and geometry data
• I/O buffers
• Network and disk resources

» Caches (memory on CPU chip) wasted and trashed
• L1 cache local per core, L2 and L3 shared
• Not locality of code and data (thread/core affinity)

– This situation is already bad today, will become only worse in
future many-cores architectures

See talks by P. Elmer, G. Eulisse, S. Binet @ CHEP09

10

Code optimization

– Ample Opportunities for improving code performance
» Measure and analyze performance of current LHC physics

application software on multi-core architectures
» Improve data and code locality (avoid trashing the caches)
» Effective use of vector instruction (improve ILP)
» Exploit modern compiler’s features (does the work for you!)

– See Paolo Calafiura’s talk @ CHEP09:
http://indico.cern.ch/contributionDisplay.py?contribId=517&sessionId=1&confId=35523

– All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures

» NEED some work on the code to have good parallelization

HEP software on multicore: a R&D effort

– Collaboration among experiments, IT-departments, projects such
as OpenLab, Geant4, ROOT, Grid

– Target multi-core (8-24/box) in the short term, many-core (96+/
box) in near future

– Optimize use of CPU/Memory architecture
– Exploit modern OS and compiler features

» Copy-on-Write
» MPI, OpenMP
» SSE/AltiVec, Intel Ct, OpenCL

11

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

 multi-process vs multi-threaded

 Read-only: Copy-on-write, Shared Libraries

 Read-write: Shared Memory, sockets, files

Event parallelism
12

13

Experience and requirements
– Complex and dispersed “legacy” software

» Difficult to manage/share/tune resources (memory, I/O): better to rely in
the support from OS and compiler

» Coding and maintaining thread-safe software at user-level is hard
» Need automatic tools to identify code to be made thread-aware

• Geant4: 10K lines modified! (thread-parallel Geant4)
• Not enough, many hidden (optimization) details

– “Simple” multi-process seems more promising
» ATLAS: fork() (exploit copy-on-write), shmem (needs library support)
» LHCb: python
» PROOF-lite

– Other limitations are at the door (I/O, communication, memory)
» Proof: client-server communication overhead in a single box
» Proof-lite: I/O bound >2 processes per disk
» Online (Atlas, CMS) limit in in/out-bound connections to one box

Exploit Copy on Write (COW)

– Modern OS share read-only pages among processes dynamically
» A memory page is copied and made private to a process only when

modified

– Prototype in Atlas and LHCb
» Encouraging results as memory sharing is concerned (50% shared)
» Concerns about I/O (need to merge output from multiple processes)

14

Memory (ATLAS)
One process: 700MB VMem and 420MB RSS
COW:
(before) evt 0: private: 004 MB | shared: 310 MB
(before) evt 1: private: 235 MB | shared: 265 MB
. . .
(before) evt50: private: 250 MB | shared: 263 MB

See Sebastien Binet’s talk @ CHEP09

Exploit “Kernel Shared Memory”
– KSM is a linux driver that allows dynamically sharing identical memory pages

between one or more processes.
» It has been developed as a backend of KVM to help memory sharing between virtual

machines running on the same host.

» KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.

– Test performed “retrofitting” TCMalloc with KSM
» Just one single line of code added!

– CMS reconstruction of real data (Cosmics with full detector)
» No code change
» 400MB private data; 250MB shared data; 130MB shared code

– ATLAS
» No code change
» In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM

15

16

Algorithm Parallelization
– Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib
» Effort to provide basic thread-safe/multi-thread library components

• Random number generators
• Parallel minimization/fitting algorithms
• Parallel/Vector linear algebra

– Positive and interesting experience with MINUIT
» Parallelization of parameter-fitting opens the opportunity to enlarge the

region of multidimensional space used in physics analysis to essentially the
whole data sample.

17

Parallel MINUIT
– Minimization of Maximum Likelihood or χ2 requires iterative computation of

the gradient of the NLL function

– Execution time scales with number θ free parameters and the number N of input
events in the fit

– Two strategies for the parallelization of the gradient and NLL calculation:
• Gradient or NLL calculation on

 the same multi-cores node (OpenMP)

• Distribute Gradient on different

 nodes (MPI) and parallelize NLL

 calculation on each multi-cores

 node (pthreads): hybrid solution

A. L. and Lorenzo Moneta

18

Minuit Parallelization – Example
– Waiting time for fit to converge down from several days to a night (Babar

examples)
» iteration on results back to a human timeframe!

– Improved version of the code (MPI parallelization of gradient AND NLL)
currently under test at CNAF (thanks to A. Fella for the support)

60 cores

30 cores

15 cores

Outlook
– Recent progress shows that we shall be able to exploit next

generation multicore with “small” changes to HEP code
» Exploit copy-on-write (COW) in multi-processing (MP)
» Develop an affordable solution for the sharing of the output file
» Leverage Geant4 experience to explore multi-thread (MT) solutions

– Continue optimization of memory hierarchy usage
» Study data and code “locality” including “core-affinity”

– Expand Minuit experience to other areas of “final” data analysis,
such as machine learning techniques
» Investigating the possibility to use GPUs and custom FPGAs solutions

(Mauro Citterio, A.L., students at Milano)

– “Learn” how to run MT/MP jobs on the grid
» workshop at CERN, Jume 25th-26th: http://indico.cern.ch/

conferenceDisplay.py?confId=56353

19

GPUs?

– A lot of interest is growing around GPUs
» Particular interesting is the case of NVIDIA cards using CUDA for

programming
» Impressive performance (even 100x faster than a normal CPU), but high

energy consumption (up to 200 Watts)
» A lot of project ongoing in HPC community. Some example in HEP (see M. Al-

Turany‘s talk at CHEP09 on GPU for event reconstruction at Panda
experiment)

» Great performance using single floating point precision (IEEE 754 standard): up
to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

» Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward…

» The situation can improve with OpenCL and Intel Larrabee architecture
(standard x86)

20

Explore new Frontier of parallel computing
– Hardware and software technologies may come to the

rescue in many areas
» We shall be ready to exploit them

– Scaling to many-core processors (96-core processors
foreseen for next year) will require innovative solutions

» MP and MT beyond event level
» Fine grain parallelism (OpenCL, custom solutions?)
» Parallel I/O

– Possible use of GPUs for massive parallelization
– But, Amdahl docet, algorithm concept have to change to

take advantages on parallelism: think parallel, write
parallel!

21

Backup slides

22

Handling Event Input/Output

Sub-process

Transient Event
StoreParent-process

Transient Event
Store

Algorithm
Algorithm

Algorithm

input

output

Event Serialization/
Deserialization

OutputStream

W
or

k
Q

ue
ue

O
ut

pu
t

Q
ue

ue

input

See talk by Pere Mato & Eoin Smith @ CHEP09

23

Reduce number of files (and I/O buffers)
by 1-2 orders of magnitude

PROOF Lite

 PROOF Lite is a realization of PROOF in 2 tiers
 The client starts and controls directly the workers
 Communication goes via UNIX sockets

 No need of daemons:
 workers are started via a call to ‘system’ and call back the

client to establish the connection

 Starts NCPU workers by default

C

W
W

W

24

See talk by Gerry Ganis & Fons Rademakers @ CHEP09

Scaling processing a tree, example (4core box)

 Datasets: 2 GB (fits in memory), 22 GB

22 GB, IO
bound

 CPU
bound

4 coes, 8 GB RAM, single HDD

2 GB, no
memory
refresh

25

 SSD vs HDD on 8 Node Cluster

 Aggregate (8 node farm) analysis rate as a function of number of workers
per node

 Almost linear scaling with number of nodes

Courtesy of S. Panitkin,
BNL

Solid State Disk:
120GB for 400Euro

26

See Sergey Panitkin’s talk @ CHEP09

Progress toward a thread-parallel Geant4
 Gene Cooperman and Xin Dong (NEU Boston)

» Master/Worker paradigm
» Event-level parallelism: separate events on different threads

• only 1 RAM : increase sharing of memory between threads

» Phase I : code sharing, but no data sharing Done
» Phase II : sharing of geometry, materials, particles, production cuts

Done, undergoing validation
» Phase III : sharing of data for EM physics processes In Progress

 Physics tables are read-only, but small caches and different API

» Phase IV : other physics processes Todo
» Phase V : General Software Schema: new releases of sequential Geant4

drive corresponding multi-threaded releases In Progress
• Patch parser.c of gcc to identify static and globals declarations in G4
• Currently 10,000 lines of G4 modified automatically + 100 lines by hand

27

