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Computing in the years
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The ‘three walls’

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:

—The memory wall
—The power wall

—The instruction level parallelism (micro-
architecture) wall




The ‘memory wall’

— Processor clock rates have
been increasing faster than
memory clock rates

— larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

— Latency in memory access
is often the major
performance issue in
modern software
applications
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The ‘power wall’

— Processors consume more and more power the faster they go

— Not linear:
» 73% increase in power gives just |3% improvement in performance

» (downclocking a processor by about 13% gives roughly half the power
consumption)

— Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

— Green Computing!
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The ‘Architecture walls’

— Longer and fatter parallel
instruction pipelines has been a
main architectural trend in "90s

— Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable

examples of techniques to boost NsTRucTIONS

Instruction level parallelism (ILP)

— In practice inter-instruction data
dependencies and run-time

branching limit the amount of
achievable |ILP
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Go Parallel: many-cores!

— A turning point was reached and a new technology
emerged: multicore
» Keep low frequency and consumption

» Transistors used for multiple cores on a single chip: 2,4, 6, 8
cores on a single chip

— Multiple hardware-threads on a single core
» simultaneous Multi-Threading (Intel Core i7 2 threads per core
(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))
— Dedicated architectures:
» GPGPU: up to 240 threads (NVIDIA,ATI-AMD, Intel Larrabee)

» CELL
» FPGA (Reconfigurable computing)



The Challenge of Parallelization

Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC

—Inside a core (climb the ILP wall)

»  Superscalar: Fill the ports (maximize instruction per cycle)
»  Pipelined: Fill the stages (avoid stalls)
»  SIMD (vector): Fill the register width (exploit SSE)

—Inside a Box (climb the memory wall)
»  HW threads: Fill up a core (share core & caches)
»  Processor cores: Fill up a processor (share of low level resources)
»  Sockets: Fill up a box (share high level resources)

—LAN & WAN (climb the network wall)

»  Optimize scheduling and resource sharing on the Grid

HEP has been traditionally good (only) in the latter



Where are VWE!?

See talks by P. EImer, G. Eulisse, S. Binet @ CHEPO9
— HEP code does not exploit the power of current processors
» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality
» Abuse of the heap

— Running N jobs on N=8 cores still efficient but:

» Memory (and to less extent cpu cycles) wasted in non sharing

* “static” condition and geometry data
* |/O buffers
* Network and disk resources

» Caches (memory on CPU chip) wasted and trashed

* LI cache local per core, L2 and L3 shared
* Not locality of code and data (thread/core affinity)

— This situation is already bad today, will become only worse in
future many-cores architectures



Code optimization

— Ample Opportunities for improving code performance

» Measure and analyze performance of current LHC physics
application software on multi-core architectures

» Improve data and code locality (avoid trashing the caches)
» Effective use of vector instruction (improve ILP)
» Exploit modern compiler’s features (does the work for you!)

— See Paolo Calafiura’s talk @ CHEPQ9:

http://indico.cern.ch/contributionDisplay.py?contribld=517&sessionld=1&confld=35523

— All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures
» NEED some work on the code to have good parallelization



HEP software on multicore: a R&D effort

— Collaboration among experiments, I T-departments, projects such
as Openlab, Geant4, ROOT, Grid

— Target multi-core (8-24/box) in the short term, many-core (96+/
box) in near future

— Optimize use of CPU/Memory architecture

— Exploit modern OS and compiler features
» Copy-on-Write
» MPI, OpenMP
» SSE/AltiVec, Intel Ct, OpenCL



Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process!?

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data
Physics —> multi-process vs multi-threaded
processes
—> Read-only: Copy-on-write, Shared Libraries

—> Read-write: Shared Memory, sockets, files




Experience and requirements

— Complex and dispersed “legacy” software

» Difficult to manage/share/tune resources (memory, I/O): better to rely in
the support from OS and compiler

» Coding and maintaining thread-safe software at user-level is hard
» Need automatic tools to identify code to be made thread-aware

* Geant4: 10K lines modified! (thread-parallel Geant4)
* Not enough, many hidden (optimization) details

— “Simple” multi-process seems more promising
» ATLAS: fork() (exploit copy-on-write), shmem (needs library support)

» LHCb: python
» PROOF-lite

— Other limitations are at the door (I/O, communication, memory)
» Proof: client-server communication overhead in a single box
» Proof-lite: I/O bound >2 processes per disk
» Online (Atlas, CMS) limit in in/out-bound connections to one box



Exploit Copy on Write (COW)

See Sebastien Binet’s talk @ CHEPO9

— Modern OS share read-only pages among processes dynamically
» A memory page is copied and made private to a process only when
modified
— Prototype in Atlas and LHCb
» Encouraging results as memory sharing is concerned (50% shared)
» Concerns about I/O (need to merge output from multiple processes)

Memory (ATLAS)

One process: 700MBVMem and 420MB RSS
COW:

(before) evt O: private: 004 MB | shared: 310 MB
(before) evt I: private: 235 MB | shared: 265 MB

(before) evt50: private: 250 MB | shared: 263 MB



Exploit “Kernel Shared Memory”

— KSM is a linux driver that allows dynamically sharing identical memory pages
between one or more processes.

» It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.

» KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.

— Test performed “retrofitting” TCMalloc with KSM

» Just one single line of code added!

— CMS reconstruction of real data (Cosmics with full detector)

» No code change
» 400MB private data; 250MB shared data; | 30MB shared code

— ATLAS

» No code change
» In a Reconstruction job of 1.6GBVM, up to I GB can be shared with KSM



Algorithm Parallelization

— Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib
» Effort to provide basic thread-safe/multi-thread library components

* Random number generators
* Parallel minimization/fitting algorithms

* Parallel/Vector linear algebra

— Positive and interesting experience with MINUIT

» Parallelization of parameter-fitting opens the opportunity to enlarge the
region of multidimensional space used in physics analysis to essentially the
whole data sample.



Parallel MINUIT

— Minimization of Maximum Likelihood or y? requires iterative computation of
the gradient of the NLL function
AT 2 N AT A s N s j species (signals, backgrounds)
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— Execution time scales with number O free parameters and the number N of input
events in the fit

— Two strategies for the parallelization of the gradient and NLL calculation:
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Minuit Parallelization — Example

— Waiting time for fit to converge down from several days to a night (Babar
examples)

» iteration on results back to a human timeframe!
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— Improved version of the code (MPI parallelization of gradient AND NLL)
currently under test at CNAF (thanks to A. Fella for the support)



Outlook

— Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code
» Exploit copy-on-write (COW) in multi-processing (MP)
» Develop an affordable solution for the sharing of the output file
» Leverage Geant4 experience to explore multi-thread (MT) solutions

— Continue optimization of memory hierarchy usage
» Study data and code “locality” including “core-affinity”
— Expand Minuit experience to other areas of “final”’ data analysis,
such as machine learning techniques
» Investigating the possibility to use GPUs and custom FPGAs solutions
(Mauro Citterio,A.L., students at Milano)
— “Learn” how to run MT/MP jobs on the grid

» workshop at CERN, Jume 25%-26t: http://indico.cern.ch/
conferenceDisplay.py?confld=56353
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CPU
— A lot of interest is growing around GPUs

Particular interesting is the case of NVIDIA cards using CUDA for
programming

&

Impressive performance (even 100x faster than a normal CPU), but high
energy consumption (up to 200 Watts)

A lot of project ongoing in HPC community. Some example in HEP (see M. Al-
Turany’s talk at CHEPO9 on GPU for event reconstruction at Panda
experiment)

Great performance using single floating point precision (IEEE 754 standard): up
to | TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward...

The situation can improve with OpenCL and Intel Larrabee architecture
(standard x86)



Explore new Frontier of parallel computing

— Hardware and software technologies may come to the
rescue in many areas
» WVe shall be ready to exploit them
— Scaling to many-core processors (96-core processors

foreseen for next year) will require innovative solutions
» MP and MT beyond event level

» Fine grain parallelism (OpenCL, custom solutions?)
» Parallel I/O

— Possible use of GPUs for massive parallelization
— But, Amdahl docet, algorithm concept have to change to

take advantages on parallelism: think parallel, write
parallel!

21



Backup slides
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Handling Event Input/Output

See talk by Pere Mato & Eoin Smith @ CHEP0O9
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PROOF Lite

See talk by Gerry Ganis & Fons Rademakers @ CHEPO9
PROOF Lite is a realization of PROOF in 2 tiers

The client starts and controls directly the workers
Communication goes via UNIX sockets

No need of daemons:

workers are started via a call to ‘system’ and call back the

client to establish the connection

Starts Ngp, workers by default

-

\




Scaling processing a tree, example (4core box)

" Datasets: 2 GB (fits in memory), 22 GB

Processing rate (evts/sec)

2 GB, no
memory

refresh

eoooof
S CPU
— F bound
40000
20000 22 GB, IO
10000E ‘ bound
O

# of workers
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SSD vs HDD on 8 Node Cluster

Analysis rate vs number of PROOF workers per node I

See Sergey Panitkin’s talk @ CHEPO9
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per node

Almost linear scaling with number of nodes
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Progress toward a thread-parallel Geant4

»

»

»

»

»

»

»

Gene Cooperman and Xin Dong (NEU Boston)

Master/Worker paradigm

Event-level parallelism: separate events on different threads
* only | RAM :increase sharing of memory between threads

Phase | : code sharing, but no data sharing  Done

Phase Il : sharing of geometry, materials, particles, production cuts

Done, undergoing validation

Phase Il : sharing of data for EM physics processes  In Progress
[ Physics tables are read-only, but small caches and different API

Phase |V : other physics processes Todo

PhaseV : General Software Schema: new releases of sequential Geant4
drive corresponding multi-threaded releases  In Progress

* Patch parser.c of gcc to identify static and globals declarations in G4

* Currently 10,000 lines of G4 modified automatically + 100 lines by hand



