The challenge of adapting HEP physics
software applications to run
on many-core CPUs

Alfio Lazzaro
Universita degli Studi di Milano & CERN

Vincenzo Innocente
CERN

1l W e \

| Workshop CCR e INFN-GRID 2009
" Hotel Cala di Lepre |
Palau, I'1-15 Magglo 2009

, 1 ‘;
1’ L S
Extracted fromV. l. talk @ CHEPO9: http.//|nd|co.cern.ch/contributionDisplay.py?
contribld=520&sessionld=| &confld=35523

Computing in the years

<

Transistors used to increase raw-power Increase global power

10,000,000

1,000,000
|
A
m
=]
=
100,000 #

10,000 '
m
1,000 F e =
sl
a
10

..'--

e s ="

=

a L / S > a 1

1 __r/ = Tr: nsistors (000) |
e Cl« ck Speed (MHz)

* oo a Po wer (W)

@« Pe fiClock (ILP)

o ! | !

1970 1975 1980 1985 1990 1995 2000 2005 2010

The ‘three walls’

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:

—The memory wall
—The power wall

—The instruction level parallelism (micro-
architecture) wall

The ‘memory wall’

— Processor clock rates have
been increasing faster than
memory clock rates

— larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

— Latency in memory access
is often the major
performance issue in
modern software
applications

32kBL1 32kBlL1 32kBL1 32kBlL1

Data Cache Inst. Cache

Data Cache Inst. Cache

Core 2 (45nm)

Main memory:
200-300 cycles

Core 2 (65nm)

0 10 20 30 40 50

Nanoseconds (lower is better)

H. HL2 WL

The ‘power wall’

— Processors consume more and more power the faster they go

— Not linear:
» 73% increase in power gives just |3% improvement in performance

» (downclocking a processor by about 13% gives roughly half the power
consumption)

— Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

— Green Computing!

CPU Power Consumption 1993 - 2005 CPU-Frequency 1993 - 2005

‘\o:m;warg AMD and Intel
quide

AMD and Intel

4000

= 30

2 2000
¥

1500
g
W 1000

—Initel —Intel

http://www.processor-comparison.com/power.html

The ‘Architecture walls’

— Longer and fatter parallel
instruction pipelines has been a
main architectural trend in "90s

— Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable

examples of techniques to boost NsTRucTIONS

Instruction level parallelism (ILP)

— In practice inter-instruction data
dependencies and run-time

branching limit the amount of
achievable |ILP

WAITING ‘ IN PIPELINE ‘COMPLETED

Y

/

CURRENT CYCLE

3

v
4 5 CPU CYCLE

IF

ID

EX

wB

IF

ID

EX

WB

IF

ID

EX | WB

IF

ID | EX | WB

IF | ID | EX || WB

IF

ID

EX

wB

IF || ID | EX || WB

FETCH NEXT INSTRUCTION

DISPATCH INSTRUCTION
TO FUNCTIONAL UNIT

EXECUTE INSTRUCTION
IN FUNCTIONAL UNIT

WRITE RESULT TO REGISTER

Go Parallel: many-cores!

— A turning point was reached and a new technology
emerged: multicore
» Keep low frequency and consumption

» Transistors used for multiple cores on a single chip: 2,4, 6, 8
cores on a single chip

— Multiple hardware-threads on a single core
» simultaneous Multi-Threading (Intel Core i7 2 threads per core
(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))
— Dedicated architectures:
» GPGPU: up to 240 threads (NVIDIA,ATI-AMD, Intel Larrabee)

» CELL
» FPGA (Reconfigurable computing)

The Challenge of Parallelization

Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC

—Inside a core (climb the ILP wall)

» Superscalar: Fill the ports (maximize instruction per cycle)
» Pipelined: Fill the stages (avoid stalls)
» SIMD (vector): Fill the register width (exploit SSE)

—Inside a Box (climb the memory wall)
» HW threads: Fill up a core (share core & caches)
» Processor cores: Fill up a processor (share of low level resources)
» Sockets: Fill up a box (share high level resources)

—LAN & WAN (climb the network wall)

» Optimize scheduling and resource sharing on the Grid

HEP has been traditionally good (only) in the latter

Where are VWE!?

See talks by P. EImer, G. Eulisse, S. Binet @ CHEPO9
— HEP code does not exploit the power of current processors
» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality
» Abuse of the heap

— Running N jobs on N=8 cores still efficient but:

» Memory (and to less extent cpu cycles) wasted in non sharing

* “static” condition and geometry data
* |/O buffers
* Network and disk resources

» Caches (memory on CPU chip) wasted and trashed

* LI cache local per core, L2 and L3 shared
* Not locality of code and data (thread/core affinity)

— This situation is already bad today, will become only worse in
future many-cores architectures

Code optimization

— Ample Opportunities for improving code performance

» Measure and analyze performance of current LHC physics
application software on multi-core architectures

» Improve data and code locality (avoid trashing the caches)
» Effective use of vector instruction (improve ILP)
» Exploit modern compiler’s features (does the work for you!)

— See Paolo Calafiura’s talk @ CHEPQ9:

http://indico.cern.ch/contributionDisplay.py?contribld=517&sessionld=1&confld=35523

— All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures
» NEED some work on the code to have good parallelization

HEP software on multicore: a R&D effort

— Collaboration among experiments, I T-departments, projects such
as Openlab, Geant4, ROOT, Grid

— Target multi-core (8-24/box) in the short term, many-core (96+/
box) in near future

— Optimize use of CPU/Memory architecture

— Exploit modern OS and compiler features
» Copy-on-Write
» MPI, OpenMP
» SSE/AltiVec, Intel Ct, OpenCL

Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process!?

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data
Physics —> multi-process vs multi-threaded
processes
—> Read-only: Copy-on-write, Shared Libraries

—> Read-write: Shared Memory, sockets, files

Experience and requirements

— Complex and dispersed “legacy” software

» Difficult to manage/share/tune resources (memory, I/O): better to rely in
the support from OS and compiler

» Coding and maintaining thread-safe software at user-level is hard
» Need automatic tools to identify code to be made thread-aware

* Geant4: 10K lines modified! (thread-parallel Geant4)
* Not enough, many hidden (optimization) details

— “Simple” multi-process seems more promising
» ATLAS: fork() (exploit copy-on-write), shmem (needs library support)

» LHCb: python
» PROOF-lite

— Other limitations are at the door (I/O, communication, memory)
» Proof: client-server communication overhead in a single box
» Proof-lite: I/O bound >2 processes per disk
» Online (Atlas, CMS) limit in in/out-bound connections to one box

Exploit Copy on Write (COW)

See Sebastien Binet’s talk @ CHEPO9

— Modern OS share read-only pages among processes dynamically
» A memory page is copied and made private to a process only when
modified
— Prototype in Atlas and LHCb
» Encouraging results as memory sharing is concerned (50% shared)
» Concerns about I/O (need to merge output from multiple processes)

Memory (ATLAS)

One process: 700MBVMem and 420MB RSS
COW:

(before) evt O: private: 004 MB | shared: 310 MB
(before) evt I: private: 235 MB | shared: 265 MB

(before) evt50: private: 250 MB | shared: 263 MB

Exploit “Kernel Shared Memory”

— KSM is a linux driver that allows dynamically sharing identical memory pages
between one or more processes.

» It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.

» KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.

— Test performed “retrofitting” TCMalloc with KSM

» Just one single line of code added!

— CMS reconstruction of real data (Cosmics with full detector)

» No code change
» 400MB private data; 250MB shared data; | 30MB shared code

— ATLAS

» No code change
» In a Reconstruction job of 1.6GBVM, up to I GB can be shared with KSM

Algorithm Parallelization

— Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib
» Effort to provide basic thread-safe/multi-thread library components

* Random number generators
* Parallel minimization/fitting algorithms

* Parallel/Vector linear algebra

— Positive and interesting experience with MINUIT

» Parallelization of parameter-fitting opens the opportunity to enlarge the
region of multidimensional space used in physics analysis to essentially the
whole data sample.

Parallel MINUIT

— Minimization of Maximum Likelihood or y? requires iterative computation of
the gradient of the NLL function
AT 2 N AT A s N s j species (signals, backgrounds)
- NLL(6y +d) — NLL(6, — d) NLL = In (Z nJ) _ z\: (hlz n]PL> n, number of events for specie j
j=1

o 2d 7| P, probability density functions (PDFs)
N number total of events to fit

A. L. and Lorenzo Moneta

ONLL
00

i=1 j=1

— Execution time scales with number O free parameters and the number N of input
events in the fit

— Two strategies for the parallelization of the gradient and NLL calculation:

e Gradient or NLL calculation on

. Same work for Each process does Same work for
the same mu|t|-cores node (OpenMP) each process: the calculation of a each process:
o . . Initialization of the specific sub-sample Conclusion of the
* Distribute Gradient on different minimization step of derivates minimization step
. —_—— H —_— > pa—
nodes (MPl) and parallelize NLL e | : | B
:,—> H, —)i E—) H, —>i :,——> H, ‘>:r _____ >
calculation on each multi-cores i 5 ¥ 5 ¥ i
> B [Bt B |—--»
node (pthreads): hybrid solution Spltof Seatter-Gather of St
lteration parameters derivate values: new iteration

each process has
all values

Minuit Parallelization — Example

— Waiting time for fit to converge down from several days to a night (Babar
examples)

» iteration on results back to a human timeframe!

| 29 parameters |

% 20: T ! T T T ! T T T I T T T T T] %
T 18- —— MPI/(pthreads*4) —30 2
e F MPV/(pthreads*2) 60 coresi
o 16— —— MPI o5 2
- /A n)
14~ L 1 &
12 —20 §
- 7 [
105 O coresi E
8- .
6 —10
— /——_——. —
4]
: 5 coresis
2 1]
00 L1 1121 1 1141 1 116| 0
Nodes

— Improved version of the code (MPI parallelization of gradient AND NLL)
currently under test at CNAF (thanks to A. Fella for the support)

Outlook

— Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code
» Exploit copy-on-write (COW) in multi-processing (MP)
» Develop an affordable solution for the sharing of the output file
» Leverage Geant4 experience to explore multi-thread (MT) solutions

— Continue optimization of memory hierarchy usage
» Study data and code “locality” including “core-affinity”
— Expand Minuit experience to other areas of “final”’ data analysis,
such as machine learning techniques
» Investigating the possibility to use GPUs and custom FPGAs solutions
(Mauro Citterio,A.L., students at Milano)
— “Learn” how to run MT/MP jobs on the grid

» workshop at CERN, Jume 25%-26t: http://indico.cern.ch/
conferenceDisplay.py?confld=56353

GPUs?
el

»

»

»

»

»

»

20
ALU ALU
Control

CPU
— A lot of interest is growing around GPUs

Particular interesting is the case of NVIDIA cards using CUDA for
programming

&

Impressive performance (even 100x faster than a normal CPU), but high
energy consumption (up to 200 Watts)

A lot of project ongoing in HPC community. Some example in HEP (see M. Al-
Turany’s talk at CHEPO9 on GPU for event reconstruction at Panda
experiment)

Great performance using single floating point precision (IEEE 754 standard): up
to | TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward...

The situation can improve with OpenCL and Intel Larrabee architecture
(standard x86)

Explore new Frontier of parallel computing

— Hardware and software technologies may come to the
rescue in many areas
» WVe shall be ready to exploit them
— Scaling to many-core processors (96-core processors

foreseen for next year) will require innovative solutions
» MP and MT beyond event level

» Fine grain parallelism (OpenCL, custom solutions?)
» Parallel I/O

— Possible use of GPUs for massive parallelization
— But, Amdahl docet, algorithm concept have to change to

take advantages on parallelism: think parallel, write
parallel!

21

Backup slides

22

Handling Event Input/Output

See talk by Pere Mato & Eoin Smith @ CHEP0O9

input

]

]

Algorithm]

input
—
/ {1 Event \ M)
=-1 Anal o
({1 AxPartCandidates - 2
=1 Mc > ;O S
(L] MCParticles o
L] MCTrackerHits
(] MCVertices
(] Raw
Transslent Event | E*% <
tore / S5 3
\ o
\ 4 .

[OutputStream]
l Parent-process

output

Event Serialization/
Deserialization

_

=1 Anal
(1 AxPartCandidate
= Mc
(] MCParticles
{1 MCTrackerHits
(1 MCVertices

{1 Raw

Transient Event

Store

~

y

Sub-process

Reduce number of files (and I/O buffers)
by |-2 orders of magnitude

23

PROOF Lite

See talk by Gerry Ganis & Fons Rademakers @ CHEPO9
PROOF Lite is a realization of PROOF in 2 tiers

The client starts and controls directly the workers
Communication goes via UNIX sockets

No need of daemons:

workers are started via a call to ‘system’ and call back the

client to establish the connection

Starts Ngp, workers by default

-

\

Scaling processing a tree, example (4core box)

" Datasets: 2 GB (fits in memory), 22 GB

Processing rate (evts/sec)

2 GB, no
memory

refresh

eoooof
S CPU
— F bound
40000
20000 22 GB, IO
10000E ‘ bound
O

of workers

25

26

SSD vs HDD on 8 Node Cluster

Analysis rate vs number of PROOF workers per node I

See Sergey Panitkin’s talk @ CHEPO9

Rate, Mevents/s

60— n

- |=ssD .)

50— |+ HDD

: n
40—

n .
30— n

g Solid State Disk:
20— "

Z o Single variable scan. 340M events I2OGB fOI" 4OOEU ro
10— =

Number of workers

Aggregate (8 node farm) analysis rate as a function of number of workers
per node

Almost linear scaling with number of nodes

27

Progress toward a thread-parallel Geant4

»

»

»

»

»

»

»

Gene Cooperman and Xin Dong (NEU Boston)

Master/Worker paradigm

Event-level parallelism: separate events on different threads
* only | RAM :increase sharing of memory between threads

Phase | : code sharing, but no data sharing Done

Phase Il : sharing of geometry, materials, particles, production cuts

Done, undergoing validation

Phase Il : sharing of data for EM physics processes In Progress
[Physics tables are read-only, but small caches and different API

Phase |V : other physics processes Todo

PhaseV : General Software Schema: new releases of sequential Geant4
drive corresponding multi-threaded releases In Progress

* Patch parser.c of gcc to identify static and globals declarations in G4

* Currently 10,000 lines of G4 modified automatically + 100 lines by hand

