
Test comparativo soluzioni storage:
hardware, filesystem e SRM

Giacinto Donvito

INFN-BARI

Outlook
 Why this test (requirements and goals)
 Description of the hw used
 Description of the client used
 Local test typology:

 Serial Write, Serial Read, Random Read, Mixed Workload
 Final consideration
 CMS analysis job
 Test on Lustre

 Tests@Bari
 Tests@Torino

 Comparison between Lustre/StoRM and dCache
 Test on SSD:

 For metadata handling and as ZFS cache
 Linux Software Raid experience
 Tier2 Scenario

LHC Tier2
 typical LHC Tier2 activity is:

 50% MonteCarlo Production

 50% Analysis

 typical LHC Tier2 size is:
 ~600 CPU/core

 ~2-300 TB

 typical LHC Tier2 I/O requirements:
 Max 10MB/s per CPU/Core reading on the LAN (~5GB/s

aggregate)

 ~ 100MB/s writing aggregate

Goals of the test
 Testing hardware, software and storage system in order to achieve

the required performance for a typical tier2 site
 we choose to test medium size storage boxes (~40TB) as those better

fits the constraint for a tier2 site:
 The cost is affordable
 The number of box needed to achieve the aggregate bandwidth is

not too high as it could become if smaller boxes were used
 Testing different storage system software in order to find the most

efficient in dealing with the real CMS jobs
 We choose to test dCache and Lustre as the first is in production

since 5 years and the second is really promising
 We have kept into account also the electrical consumption and the

rack unit required by each of available solutions
 Trying to minimize those factor

Test storage
The results shown are referred to “local access”

through underling file-system: nor network or
application layer are involved

 several storage hardware has been tested, with few
operating systems and file-systems

 the reference chunk size used is 256 Kbyte (as this is
the default buffer for any dCache disk activity)

 the goal is to optimize the disk performance in order to
be sure that the storage system software is not limited
by the disk sub-system underneath

− the disk sub-system in the case of dCache
should provide the same performance of Lustre

Test storage
storage component under test

 Hardware:
− Server:

 SUN X2200: 4Core Opteron/16GB RAM/SUN SAS RAID/QLogic FC
− Disk subsystem:

 SUN J4500 48 dischi da 1TB (SAS attached)
 Xyratex JBOD SAS 2x24Dischi
 Nexsan SataBeast2 42 dischi 1TB 1x4Gbit FC

 Software:
− Operating System:

 OpenSolaris 2008.11
 Scientific Linux 5.3
 Debian Stable 5.0 (Lenny)

− File-System:
 XFS
 ZFS
 Lustre

x4 SAS channel

x4 SAS channel

Test storage
Hardware configuration

Xyratex 2x24 dischi

x4 SAS channel

SUN J4500

FC - 4 Gbit/s

Nexsan SataBeast2

SUN X2200

SUN X2200

SUN X2200

Test storage
Test description

 Test was performed with IOZone:
− Open source software that provides high flexibility; it can test

several aspects:
 Metadata access, random access, pseudo random access,

multi-threaded read/write, etc

− It is standard so it could be used to compare with other tests
and to evaluate also the application layer:

 If there is too many differences between real application and
the iozone test, this could mean that the application layer need
to be optimized

− It does not put so much load on the CPU and RAM sub-system
so it is only limited from the I/O performance

− All the tests are executed using 5GB files: this ensures that the
RAM on the machine it is not able to keep all the data cached

Test storage
serial write

 This test will measure the performance in writing files,
when increasing the number of parallel processing and
changing the HW or the file-system used

 Writing operations are sequential (from the beginning
of the file to the end). The chunk size is always
256Kbyte

 This test involves also the metadata modification
− especially with XFS and some hw it gives a significant

decrease of performance

− IOZone gives the possibility to measure the difference but
as writing files without changing metadata is not useful in
our environment (files are usually written one time and
never modified) we do not show these results

Serial Write
SUN J4500

0

100000

200000

300000

400000

0 37,5 75,0 112,5 150,0

J4500 - ZFS (6 Raidz)
J4500 - Lustre (over 8Raid5) MDT on Raid1
J4500 - Kernel 2.6.26 8Raid5HW - 1 Raid0 SW
J4500 - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - 4 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - LUSTRE

K
B

/s

clients

Serial Write
XYRATEX 2x24 Disk

0

150000

300000

450000

600000

0 37,5 75,0 112,5 150,0

 XYRATEX - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
 XYRATEX - Kernel 2.6.26 8Raid5HW (256kbyte-stripe) - 8 XFS File-systems

K
B

/s

clients

Serial Write
Nexsan SataBeast2

0

105000

210000

315000

420000

0 37,5 75,0 112,5 150,0

Nexsan - Default config - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.22 Lustre 6HWRaid5

clients

K
B

/s

Test storage – Results
serial write

 The test shows that the usage of some raid card could have negative
impact on the writing performance when the number of writing
process increases

− Usually the number of concurrent writing process is not so high for a
typical tier2

− it should be enough to serve about 10-20 writing process per disk server

 This test highlights that the nexsan raid or software raid (both linux
and ZFS) are much more stable in dealing with increasing the number
of concurrent writing process

− It would be better to have separate device for containing metadata and
journaling

− the concurrency between writing data and metadata on the same device,
is the main problem in this use case

 Lustre in this case greatly reduces this problem as the metadata are
written on a dedicated device

 The test measures the perfomance in sequential
reading

 showing the behavior when the number of
concurrent processes increases

 all the access are executed using 256Kbyte of chunk
size

Test storage
serial read

Serial Read
SUN J4500

0

150000

300000

450000

600000

0 37,5 75,0 112,5 150,0

J4500 - ZFS (6 Raidz)
J4500 - Lustre (over 8Raid5) MDT on Raid1
J4500 - Kernel 2.6.26 8Raid5HW - 1 Raid0 SW
J4500 - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - 4 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - LUSTRE

clients

K
B

/s

Serial Read
XYRATEX 2x24 Disk

0

225000

450000

675000

900000

0 37,5 75,0 112,5 150,0

 XYRATEX - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
 XYRATEX - Kernel 2.6.26 8Raid5HW (256kbyte-stripe) - 8 XFS File-systems

clients

K
B

/s

Serial Read
Nexsan SataBeast2

0

112500

225000

337500

450000

0 37,5 75,0 112,5 150,0

Nexsan - Default config - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.22 Lustre 6HWRaid5

clients

K
B

/s

Test storage – Results
serial read

 The test shows that the Xyratex JBOD has a greater
bandwidth (as result of implementing a 2x24 disks arrays)

 Also in this case the nexsan controller provides a good
stability in performance when the number of processes
increases

 Using Lustre in this case do not provide a big improvement

 This test measures the performance in reading data
using a random pattern access

 showing the behavior when the number of
concurrent processes increase

 The chunk size also in this case is 256Kbyte

Test storage
Random read

Random Read
SUN J4500

0

125000

250000

375000

500000

0 37,5 75,0 112,5 150,0

J4500 - ZFS (6 Raidz)
J4500 - Lustre (over 8Raid5) MDT on Raid1
J4500 - Kernel 2.6.26 8Raid5HW - 1 Raid0 SW
J4500 - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - 4 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - LUSTRE

clients

K
B

/s

Random Read
XYRATEX 2x24 Disk

0

150000

300000

450000

600000

0 37,5 75,0 112,5 150,0

 XYRATEX - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
 XYRATEX - Kernel 2.6.26 8Raid5HW (256kbyte-stripe) - 8 XFS File-systems

clients

K
B

/s

Random Read
Nexsan SataBeast2

0

125000

250000

375000

500000

0 37,5 75,0 112,5 150,0

Nexsan - Default config - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.22 Lustre 6HWRaid5

clients

K
B

/s

Test storage – Results
random read

 This test shows that Lustre is able to increase the
overall performance for a given hardware

 It is evident that increasing the stripe size at the hw raid
level gives relevant improvement (look at the test with
the xyratex jbod)

 In this test it is needed a fine tuning of the cache
configuration for the nexsan controller in order to
improve the performance
 in this configuration it is possible to obtain similar

performance with the other hardware that are configured
with a larger number of devices

 This test measures the performance when there
are both writing and reading access concurrent
on the same server
 the chunk size (for both reading and writing

processes) is 256Kbyte
 The processes are 50% writing and 50%

reading
 This is not the real case for a typical tier2 as

the writing process have a minor role than
reading process in the analysis activity

Test storage
Mixed workload

Mixed Workload
50% Read -- 50% Write -- SUN J4500

0

100000

200000

300000

400000

0 37,5 75,0 112,5 150,0

256Kbyte J4500 - ZFS (6 Raidz)
J4500 - Lustre (over 8Raid5) MDT on Raid1
37TB J4500 - Kernel 2.6.26 8Raid5HW - 1 Raid0 SW
37TB J4500 - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
37TB J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - 4 XFS File-systems
J4500 - Kernel 2.6.26 4Raid5SW Su Raid0HW - LUSTRE

clients

K
B

/s

Mixed Workload
50% Read -- 50% Write -- XYRATEX 2x24 Disk

0

125000

250000

375000

500000

0 37,5 75,0 112,5 150,0

 XYRATEX - Kernel 2.6.26 8Raid5HW - 8 XFS File-systems
 XYRATEX - Kernel 2.6.26 8Raid5HW (256kbyte-stripe) - 8 XFS File-systems

clients

K
B

/s

Mixed Workload
50% Read -- 50% Write -- Nexsan SataBeast2

0

75000

150000

225000

300000

0 37,5 75,0 112,5 150,0

Nexsan - Default config - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.26 4Raid5HW-4XFSFile-systems
Nexsan - Optimized Cache - Kernel 2.6.22 Lustre 6HWRaid5

clients

K
B

/s

Test storage – Results
Mixed Workload

 This test shows that the configuration with a larger
number of devices (and file-system) deals better
with concurrent writing and reading processes

 Lustre in this case seems non to overkill other
solutions, in the next slides we will show a real use
case of using lustre with a mixed access patterns

Final thoughts
HARDWARE

 Nexsan:
 Really a good controller: it is able to sustain the load of a

great number of concurrent writing processes -> good for a
“import buffer” (for example in front of a tape
infrastructure)

 It could be interesting to have a higher number of raid
devices in order to increase the random read performance (it
would require a “waste” of usable disk space)

 SUN J4500:
 The performances are good enough but it has the main

advances is the good ratio between TB provided and Rack
Unit and Watt required

 Xyratex:
 Great ratio between performance and price
 It requires twice the space of a J4500

 Software Raid:
 The performance achieved in the test shows that it

reaches good level
 Test executed on reliability in case of failure shows

good behaviour (see next slides)

Final thoughts

SOFTWARE
 XFS:

 a precise fine tuning was needed in order to improve the
performance (specially for the writing)
 blockdev --setbsz 4096 --setra 8192 /dev/sd$i ; mkfs.xfs -i

size=2048 -b size=4096 -s size=4096 -f /dev/sd$i
 it is still possible to improve the behaviour in writing (with a high

number of parallel processes) using a small dedicated device for
journaling

 OS:
 In all the cases in which it was possible we preferred the latest

Debian Stable 5.0 (Lenny) that proved to be greatly stable and
performant
 default kernel used: 2.6.26-x

Final thoughts

 Kernel:
 In all the cases in which Scientific Linux is required we have

recompiled a vanilla kernel 2.6.22 compiling all the needed
driver:
 This usually gives us the possibility to solve some

performance issues on some specific hw devices (SUN SAS
Raid controller for example)

 Lustre:
 Great scalability when the number of concurrent (random)

reading processes increases
 ZFS:

 It is very stable and show fairly good performance in all the
cases even if it does not overkill the other in none of the tests

Final thoughts

CMS analysis job
 The goal of the test is to measure the scalability of each configuration

(meaning starting from the hw to the software used to manage the storage)
 this will help to understand how to build a storage infrastructure for a CMS

Tier2 (this could be easily used for other LHC experiment too) in order to
achieve the requested performance for serving the chaotic end-user analysis

 As test hw a nexsan configured with 6 Raid devices will be shown
 The first step is to optimize the running time of a single job, tuning all the

parameters available (in dCache test, for example, it was of great help to
change the read-ahead buffer).
 we used this configuration in order to run the dCache test shown in the

next slides, while no tuning was performed in the case of Lustre test
 When using dCache was not possible to use “Vector read-ahead” as the

version of root used by CMS framework was still not able to use it.
 test are planned to measure which will be the improvement in case of a

“vector read-ahead” enabled root version
 The network is configured (bonding 4 different gigabit card) and tested in

order to be sure that it is not a bottleneck

CMS analysis Job

Network scaling on Lustre
1 to 16 jobs

10MB/s

150MB/s

0

37,5

75,0

112,5

150,0

1 8 16 24 56

I/O Time during job execution

Lustre I/O Time (min) dCache I/O Time (min)

1

10

100

1000

1 8

I/O Time during job execution

LocalWasteTime (min)
LocalSSDWasteTime (min)

The plots shows the
time “wasted” in
making I/O during job
execution using local
disks (SATA or SSD)
and remote storage
(dCache or Lustre)

concurrent jobs

concurrent jobs

CMS analysis Job 380MB/s

Network (bridging
4 1Gbit/s interfaces)

440 MB/s
Ganglia on Debian is
double counting the

amount of byte
transferred => 220

MB/s

320MB/s

56 CMS job
requires ~560

MB/s

The network link between
server and clients has been

tested with “iperf”

CMS analysis job
results

 The result shows that:
 The network is not the bottleneck with this hw
 Using Lustre, the I/O achieved with the CMS jobs is about the 80% of the rate

achieved locally in random read test with IOzone
 It seems not so bad considering the network latency and the application layer

 Lustre is exploiting, with a good efficiency, the ability to cache data locally at
the client level

 This behaviour could still be tuned by configuring the buffer size at the client
level

 dCache suffers of lack of performance also when 24 jobs are running
concurrently

 We could expect that “vector read-ahead” will improve this behaviour but test
are still going on involving the developers

 The test with the local access shows that a single SATA disk does not have the
required performance for providing data to 8 cores machine, while once using
SSD we can easily be limited by the WN CPU

Typical Lustre
infrastructure

 Lustre file-system is a typical parallel file-system in which all the client are able
to use standard posix call to access files

 The architecture is designed in order to have 3 different function that can be
spitted among different host or joined in the same machine:

 MDS: this service hosts the metadata information about each file and its
location
 There could be basically one

active MDS per file-system
 OSS: is the service that hosts the

data
 There could be up to 1000

OSS
 Client: are the hosts that are able

to read lustre file-system
 There could be up to 20000

client in a cluster

More tests on Lustre

 In order to better understand the behaviour in the
mixed (reading and writing) pattern environment we
tried to measure the performance in a “real life” usage
through “dd”:
 we executed few test in which a given number of

concurrent “dd” (5 or 3) are performed in “read-
only” mode or “read-write” mode.

More tests on Lustre

0

75

150

225

300

5 Procs Reading 3 Procs Reading 3 Read + 2 Write 2 Read + 1 Write

Read - Read/Write Performance

MB/s Read Aggregate MB/s Write Aggregate

Lustre
MB/s Read
Aggregate

MB/s Write
Aggregate

5 Procs Reading

3 Procs Reading

3 Read + 2 Write

2 Read + 1 Write

300
279
230 115
215 102

M
B

/s

More tests on Lustre

 Calculating space occupancy:

 “du” on 1M of lustre files:
 14 min

 “du” on 300k of dCache (on PNFS) files:
 1 hour

More tests on Lustre
 The test measures the time needed to “untar” the kernel

tar.bz2
 it is a 54MB package resulting in ~30K files (368MB)

 The plot shows the behaviour while increasing the
number of concurrent running processes

0

175

350

525

700

1 procs 8 procs 16 procs

Untar kernel (sec)

Lustre NFS

se
c

Lustre tests@INFN-Torino

Servers:
IBM x3550 16GB RAM 2*E5420 (Lustre OST)
HP Proliant DL360G5 4GB RAM 2*E5130 (Lustre
MDS)

CentOS 5.3 (64bit) [2.6.18-92.1.17.el5_lustre.
1.6.7.1]

Storage:
Sun Storage 6580 con 96 HDD 1TB SATA 7k

Clients:
IBM Blade HS21 16GB RAM 2*E5420

CentOS 4.7 (32bit) [2.6.9-78.0.13.EL lustre 1.6.6]

Lustre tests@INFN-Torino
Preliminary Results (bonnie++)
Read/Write all file-system used

Lustre tests@INFN-Torino
Preliminary Results (bonnie++)

Read/Write Lustre

Testing Lustre 1.6.7

• All the operation are possible using few command
line utilities and the /proc/ file-system

• The interface is very “admin-friendly”
• It is quite easy to put an OST in read-only
• It is possible to make snapshot and back-up using

standard linux tool and features like LVM and rsync
• it is possible to define easily how many stripes should

be used to write each file and how big they will be
(this could be configured at a file or directory level)
•Using SAN it is possible to serve the same OST with

two servers and enable the automatic fail-over

• Very fast metadata handling

• FNAL presented at CHEP09 “few thousand of ops”

• we found that it is easy to create more than 1000
directories per second

• In case of an OST failure only the file (fully or partially)
contained in that partition becomes unavailable

• it is still possible to read partially the file in case it is split
on few devices

• It is possible to have a “live copy” of each device (for
example using DRDB and heartbeat)

• it is feasible for both data and metadata

• It is possible to use kerberos authentication instead of the
NFS-like one

Testing Lustre 1.6.7

• The client caches both data and metadata in kernel space
• (temporarily) failure of a server are not disruptive in case of

repetitive operation

• The cache buffer on the client is shared: this is an advanced if
several processes read the same file

• The size of this buffer could be tuned (by /proc/ file-system)

• It is easy to understand which pool hosts each file

• The performance obtained by the application do not
depend on the version of the library used (this could help
when old experiment framework is still used)

• It is possible to tune the algorithm used in order to
distribute the files over the pool, giving more or less
importance to the space available on the OST itself

Testing Lustre 1.6.7

• It is possible to enable quotas per user or group
• In the current version it is better to have OST smaller than

4TB

• Standard Posix ACLs are supported: it is possible to use
standard unix tool to manage them
•The ACLs should be enabled “system-wide” (on or off for the
whole cluster)

• SRM layer is not built-in with the file-system
• It is needed to install and manage srm/gridftp/xrootd

software together with lustre layer

• It is needed to recompile the kernel in order to install
lustre (also on client) or it is possible to use one of few
kernels provided from the official web-site
• Not all the kernel release are fully supported (<= 2.6.22)

Testing Lustre 1.6.7

• The latest version was released few days ago:
• A lot of bug fix and few very interesting new features:

• OSS Read Cache:
• It is now possible to cache read-only data on an OSS

• It uses a regular Linux “pagecache” to store the data
• OSS read cache improves Lustre performance when several

clients access the same data set

•OST Pools
• The OST pools feature allows the administrator to name a

group of OSTs for file striping purposes
• an OST pool could be associated to a specific directory or file

and automatically will be inherited by the files/directory
created inside it

News on Lustre 1.8.x

•Adaptive Timeouts:

• It is now possible to cache read-only data on an OS

• Automatically adjusts RPC timeouts as network
conditions and server load changes.

• Reduces server recovery time, RPC timeouts, and
disconnect/reconnect cycles.

•BUGFIX: The read performance will drop
a lot if the application does stride read
•We measured in our test this drop of performance, we

will retry again with the new version in order to
measure the increase of performance

News on Lustre 1.8.x

Comparison StoRM/dCache
Storm is available only on hw/sw architecture supported by glite
(Storm 1.3 is not available on x86_64 machine)
each of the dCache component could be installed on several different
hw/sw infrastructure (already tested on SL3/4/5, Debian 4/5,
OpenSolaris, SolarisOS)

In Storm it is needed to change the default configuration in order to
be able to write file on the underling file-system and read them back
from SRM
In dCache it is possible by default if all UID/GUID are correctly
configured within the farm

In Storm the quota management of the underling file-system could
not be used as the file, written by SRM, are always owned by the
same “admin” user.
quota support in dCache is still not planned

Comparison StoRM/dCache
SRM front-end in StoRM can be easily distributed and clusterized by
using DNS balanced round robin

At the moment SRM front-end in dCache could not be clusterized

The speed of the SRM interface is pretty good => 0.1 s for listing a single
file

The same operation inside dCache tooks => 0.6 s

The ACLs supported by the 1.4 will satisfy the SRM2.2 Addendum agreed
with the experiments

The same will happen with dCache 1.9.3 (to be released “soon”)

In StoRM the balancing between access doors (gridftp or other) is based on
DNS round robin, or could be done “manually” changing a configuration
file.

with StoRM 1.4 it could be possible but for the gridftp doors only

In dCache each port could be balanced dynamically and the algorithm used
could be easily tuned by the administrator

Comparison StoRM/dCache
In StoRM the information provider publishes information with the granularity of
file-system instead of directory so is not always possible to publish correct
information about VO space usage and it is not properly dynamic

with StoRM 1.4 will be improved: it would be capable to understand directory and
dynamically update the information

In dCache the information system available on the recent release is easy to be used
and dynamic
Using StoRM it is not possible to answer to this question: “how much disk space is
using that user, or that voms group?”

In lustre itself it is not easy to find out this information but this procedure could not
be used at all (see what already discussed related to quotas)

Using Chimera in dCache it is possible to find this information writing some tricky
SQL query.
In StoRM there is no accounting system

A new component will be added into 1.4 release that will add much more
information in order to give the possibility to build some accounting system

Using Chimera in dCache it will be possible to have much more information than in
the past, but still there is some development work needed to have a complete system
in place

SSD Metadata I/O
Simulation

 The goal of test is to emulate the access pattern on a device
containing metadata for a parallel file-system (GPFS or
Lustre)
 For example in the case of Lustre I/O operation are

made in chunk of 4Kbyte reading/writing on ext3 file-
system

 During test the devices are formatted with the same
configuration used by lustre

 The test is executed with 10 concurrent processes on the
same devices
 We measured the rate for: sequential read, sequential

write, random read, random write, and mixed access
as for the other test

SSD Metadata I/O
Simulation

Disk Type Serial Write Serial Read Random Read Mixed Workload Random Write

SATA - Raid1

SAS - RAID01

SSD - Raid1

65639 54693 2233 4043 6963
53293 66710 4344 3917 4179
57169 186707 82758 82177 5587

4Kbyte - Chunck Size 10 Procs

0

50000

100000

150000

200000

Serial Write Serial Read Random Read Mixed Workload Random Write

SSD test

SATA - Raid1 SAS - RAID01 SSD - Raid1

K
B

/s

SSD as a ZFS cache
device

 The goals of the test is to measure the improvement in the
performance using an SSD device as a cache device using ZFS file-
system (on OpenSolaris 2008.11)

 The test performed are related to a 100 concurrent processes with
256Kbyte of chunk size

 The test performed are: serial read and write, stride read (pseudo
random read), random read and mixed workload

 The hardware configurations used were: 3 SAS drive (10Krpm) in a
RaidZ configuration, 1 single SSD drive, 2 SSD drive using ZFS
stripe, the RaidZ (3 SAS drive) with 1 SSD as device cache and the
same RaidZ with 2 SSD drive as a cache.

 the SSD drive was the 32GB 2.5-inch enterprise distributed by
SUN

SSD + ZFS
ZFS 100 procs

raidZ 3 SAS DISK
10KRPM 1 SSD

ZFS Stripe 2
SSD

Raidz + 1 SSD
(cache dev)

Raidz + 2 SSD
(cache dev)

Serial Write 93144 158748 156160 89159 94546

Serial Read 106891 150096 235975 102285 108654

Stride Read 57242 206830 252577 79735 79671

Random Read 35087 163984 213766 52551 54166

Mixed Workload 36254 182029 240419 73251 73936

0

75000

150000

225000

300000

Serial Write Serial Read Stride Read Random Read Mixed Workload
raidZ 3 SAS DISK 10KRPM 1 SSD  ZFS Stripe 2 SSD Raidz + 1 SSD (cache dev) Raidz + 2 SSD (cache dev)

K
B

/s

Linux Software Raid
 Test performed:

 On two Raid5 with 8 disk each:

 unplugging one disk during a I/O intensive operation
cause a freeze of all the I/O for about 12 seconds

 afterwards kernel highlight the missing device in the
“messages” log

 about 3 seconds later the I/O resumed with a degraded
device

 to start the rebuild of the raid it is enough a cli that
declare the device as available to the raid

 It is also possible to instantiate a service that monitor the sw
raidsets and react to event with action or mails

Possible scenario
dCache

SRM
door

Admin
node

PNFS
server

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node

Storage
node
Storage

node (and gridftp
door)

23 disk servers

Possible scenario
Lustre

SRM
Frontend

MySQL
server

StoRM
backend

Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage
node Lustre

MDS

16 disk servers

GridFTP
door

People involved

• Infrastructure and storage configuration, testing

• Donvito Giacinto, Vincenzo Spinoso

• CMS job building

• Alexis Pompili, Lucia Barbone

Back-up Slides

Hepix Tests

Lustre
Xrootd

GPFS

dCache

Client Load

dCache
client (16

jobs
running)

Lustre
client (16

jobs
running)

Server Load
Lustre server

(56 jobs running)

