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FIG. 1: Quantum networks from abstract to physical. (a) A quantum network composed of quantum nodes for processing and
storing quantum states and quantum channels for the distribution of quantum information. Such a network can alternatively be
viewed as a strongly correlated many-particle system. (b) Quantum interface between matter and light. Coherent interactions
within the node are characterized by the rate ⇤, while ⇥ specifies the rate for coupling between the node and photons in the
external channel. Parasitic losses occur at rate �. (c) Quantum state transfer and entanglement distribution from node A to
B within the setting of cavity QED [7]. At node A the control pulse �out

A (t) a⇥ects the transformation of atomic state |⌅�
to the state of a propagating optical field (i.e., a ‘flying photon’). At node B the pulse �in

B (t) is applied to map the state
of the flying photon into an atom within the cavity, thereby realizing the transfer of the state |⌅� from A to B [22]. (d)
Distribution of entanglement using ensembles of a large number of atoms [16]. A single-photon pulse at node A is coherently

split into two entangled components that propagate to nodes B, C and are there coherently mapped by control fields �(in)
B,C(t)

into an entangled state between ensembles at B, C. At later times, components of the entangled state can be retrieved from
the quantum memories by separate control fields �(out)

B,C (t) [23].

H. J. Kimble, Nature 453, 1023 (2008) 
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Separable states can be used to distribute entanglement
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(Dated: February 21, 2003)

We show that no entanglement is necessary to distribute entanglement; that is, two distant parti-
cles can be entangled by sending a third particle that is never entangled with the other two. Similarly,
two particles can become entangled by continuous interaction with a highly mixed mediating particle
that never itself becomes entangled. We also consider analogous properties of completely positive
maps, in which the composition of two separable maps can create entanglement.

PACS numbers: 03.67.Mn, 03.67.-a

Einstein associated entanglement with “spooky action-
at-a-distance”, a strange quantum effect that did not
tally with his ideas of how the universe ought to work [1].
Modern quantum information theory, however, takes a
different view: entanglement is a physical quantity. And
like other physical quantities, it can be used as a re-
source. The major successes in the field have come from
asking: “what new possibilities arise when entanglement
is available?”. The power of this quantum resource be-
came especially apparent after the discovery of quan-
tum teleportation [2], which showed that, if entanglement
and classical communication are available, global quan-
tum operations can be implemented locally. Since then,
huge progress has been made in describing the way en-
tanglement can be distributed and manipulated among
separated parties. As for other physical quantities, con-
servation laws have been formulated dictating e.g. that
the amount of entanglement can not be increased by lo-
cal operations and classical communication (LOCC) [3].
Specifically, this means entanglement can only be created
by an interaction between particles.

In this Letter, we investigate more closely the condi-
tions required to entangle two distant particles. Though
there is no unique way to quantify entanglement for
mixed states, the usual definition of an entangled state
– as one that can not be created by LOCC – is unam-
biguous. To create entanglement, then, a global quantum
operation is necessary. For separated particles, this must
be carried out by sending a mediating particle between
them (see Fig. 1), i.e. by communication via a quantum
channel. Note that fundamentally this is the only way
entanglement is created [19], as all interactions in nature
occur via mediating gauge bosons. It is clear that the
particles can be entangled if the mediating (or ‘ancilla’)
particle becomes entangled: entangle the first particle
with the ancilla, send the latter through the channel,
and swap it with the second particle. We can picture the
entanglement being sent through the channel. One would
expect that the ancilla necessarily becomes entangled, in
any scheme. Surprisingly, we will prove that this intuitive
picture is false, and that two particles can become entan-
gled without the ancilla ever becoming entangled. (Note

that this does not imply entanglement can be created by
LOCC since a quantum channel was used.)
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FIG. 1: Alice and Bob each have a particle they wish to en-
tangle with the other. (a) Alice interacts an ancilla c with her
particle a, sends c to Bob, (b) who interacts c with his particle
b. At the end they share some entanglement. Surprisingly, c
does not have to become entangled with a and b.

We demonstrate this fact in two different ways. First
we consider a process in which two particles interact con-
tinuously with an ancilla (Fig. 2). We prove that if it is
possible to entangle the particles while leaving the an-
cilla separable at all times, it is possible to turn this into
a discretized scheme in which an ancilla is sent between
Alice and Bob a number of times. Inspired by quantum
optical systems, we give an example of such a continuous
process in which the ancilla remains separable.

c

ba

FIG. 2: Particles a and b interact continuously via a mediating
particle c. For certain initial states, c remains separable from
a and b at all times during the evolution of the system, yet
at the end a and b are entangled.

As a second demonstration, we give an explicit discrete
procedure in which an ancilla is sent from Alice to Bob,
and the interactions are described by local unitary oper-
ations: a single use of a quantum channel is already suf-
ficient to distribute entanglement without sending entan-
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two particles can become entangled by continuous interaction with a highly mixed mediating particle
that never itself becomes entangled. We also consider analogous properties of completely positive
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Einstein associated entanglement with “spooky action-
at-a-distance”, a strange quantum effect that did not
tally with his ideas of how the universe ought to work [1].
Modern quantum information theory, however, takes a
different view: entanglement is a physical quantity. And
like other physical quantities, it can be used as a re-
source. The major successes in the field have come from
asking: “what new possibilities arise when entanglement
is available?”. The power of this quantum resource be-
came especially apparent after the discovery of quan-
tum teleportation [2], which showed that, if entanglement
and classical communication are available, global quan-
tum operations can be implemented locally. Since then,
huge progress has been made in describing the way en-
tanglement can be distributed and manipulated among
separated parties. As for other physical quantities, con-
servation laws have been formulated dictating e.g. that
the amount of entanglement can not be increased by lo-
cal operations and classical communication (LOCC) [3].
Specifically, this means entanglement can only be created
by an interaction between particles.

In this Letter, we investigate more closely the condi-
tions required to entangle two distant particles. Though
there is no unique way to quantify entanglement for
mixed states, the usual definition of an entangled state
– as one that can not be created by LOCC – is unam-
biguous. To create entanglement, then, a global quantum
operation is necessary. For separated particles, this must
be carried out by sending a mediating particle between
them (see Fig. 1), i.e. by communication via a quantum
channel. Note that fundamentally this is the only way
entanglement is created [19], as all interactions in nature
occur via mediating gauge bosons. It is clear that the
particles can be entangled if the mediating (or ‘ancilla’)
particle becomes entangled: entangle the first particle
with the ancilla, send the latter through the channel,
and swap it with the second particle. We can picture the
entanglement being sent through the channel. One would
expect that the ancilla necessarily becomes entangled, in
any scheme. Surprisingly, we will prove that this intuitive
picture is false, and that two particles can become entan-
gled without the ancilla ever becoming entangled. (Note

that this does not imply entanglement can be created by
LOCC since a quantum channel was used.)
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FIG. 1: Alice and Bob each have a particle they wish to en-
tangle with the other. (a) Alice interacts an ancilla c with her
particle a, sends c to Bob, (b) who interacts c with his particle
b. At the end they share some entanglement. Surprisingly, c
does not have to become entangled with a and b.

We demonstrate this fact in two different ways. First
we consider a process in which two particles interact con-
tinuously with an ancilla (Fig. 2). We prove that if it is
possible to entangle the particles while leaving the an-
cilla separable at all times, it is possible to turn this into
a discretized scheme in which an ancilla is sent between
Alice and Bob a number of times. Inspired by quantum
optical systems, we give an example of such a continuous
process in which the ancilla remains separable.
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FIG. 2: Particles a and b interact continuously via a mediating
particle c. For certain initial states, c remains separable from
a and b at all times during the evolution of the system, yet
at the end a and b are entangled.

As a second demonstration, we give an explicit discrete
procedure in which an ancilla is sent from Alice to Bob,
and the interactions are described by local unitary oper-
ations: a single use of a quantum channel is already suf-
ficient to distribute entanglement without sending entan-

T. S. Cubitt, F. Verstraete, W. Duer, and J. I. Cirac, Phys. Rev. Lett. 91, 037902 (2003)
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Einstein associated entanglement with “spooky action-
at-a-distance”, a strange quantum effect that did not
tally with his ideas of how the universe ought to work [1].
Modern quantum information theory, however, takes a
different view: entanglement is a physical quantity. And
like other physical quantities, it can be used as a re-
source. The major successes in the field have come from
asking: “what new possibilities arise when entanglement
is available?”. The power of this quantum resource be-
came especially apparent after the discovery of quan-
tum teleportation [2], which showed that, if entanglement
and classical communication are available, global quan-
tum operations can be implemented locally. Since then,
huge progress has been made in describing the way en-
tanglement can be distributed and manipulated among
separated parties. As for other physical quantities, con-
servation laws have been formulated dictating e.g. that
the amount of entanglement can not be increased by lo-
cal operations and classical communication (LOCC) [3].
Specifically, this means entanglement can only be created
by an interaction between particles.

In this Letter, we investigate more closely the condi-
tions required to entangle two distant particles. Though
there is no unique way to quantify entanglement for
mixed states, the usual definition of an entangled state
– as one that can not be created by LOCC – is unam-
biguous. To create entanglement, then, a global quantum
operation is necessary. For separated particles, this must
be carried out by sending a mediating particle between
them (see Fig. 1), i.e. by communication via a quantum
channel. Note that fundamentally this is the only way
entanglement is created [19], as all interactions in nature
occur via mediating gauge bosons. It is clear that the
particles can be entangled if the mediating (or ‘ancilla’)
particle becomes entangled: entangle the first particle
with the ancilla, send the latter through the channel,
and swap it with the second particle. We can picture the
entanglement being sent through the channel. One would
expect that the ancilla necessarily becomes entangled, in
any scheme. Surprisingly, we will prove that this intuitive
picture is false, and that two particles can become entan-
gled without the ancilla ever becoming entangled. (Note

that this does not imply entanglement can be created by
LOCC since a quantum channel was used.)
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FIG. 1: Alice and Bob each have a particle they wish to en-
tangle with the other. (a) Alice interacts an ancilla c with her
particle a, sends c to Bob, (b) who interacts c with his particle
b. At the end they share some entanglement. Surprisingly, c
does not have to become entangled with a and b.

We demonstrate this fact in two different ways. First
we consider a process in which two particles interact con-
tinuously with an ancilla (Fig. 2). We prove that if it is
possible to entangle the particles while leaving the an-
cilla separable at all times, it is possible to turn this into
a discretized scheme in which an ancilla is sent between
Alice and Bob a number of times. Inspired by quantum
optical systems, we give an example of such a continuous
process in which the ancilla remains separable.
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FIG. 2: Particles a and b interact continuously via a mediating
particle c. For certain initial states, c remains separable from
a and b at all times during the evolution of the system, yet
at the end a and b are entangled.

As a second demonstration, we give an explicit discrete
procedure in which an ancilla is sent from Alice to Bob,
and the interactions are described by local unitary oper-
ations: a single use of a quantum channel is already suf-
ficient to distribute entanglement without sending entan-

ar
X

iv
:q

ua
nt

-p
h/

03
02

16
8v

2 
 2

3 
M

ay
 2

00
3

Separable states can be used to distribute entanglement

T. S. Cubitt,1 F. Verstraete,1 W. Dür,2 and J.I. Cirac1

1Max Plank Institut für Quantenoptik, Hans–Kopfermann Str. 1, D-85748 Garching, Germany
2Sektion Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany

(Dated: February 21, 2003)

We show that no entanglement is necessary to distribute entanglement; that is, two distant parti-
cles can be entangled by sending a third particle that is never entangled with the other two. Similarly,
two particles can become entangled by continuous interaction with a highly mixed mediating particle
that never itself becomes entangled. We also consider analogous properties of completely positive
maps, in which the composition of two separable maps can create entanglement.

PACS numbers: 03.67.Mn, 03.67.-a

Einstein associated entanglement with “spooky action-
at-a-distance”, a strange quantum effect that did not
tally with his ideas of how the universe ought to work [1].
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and classical communication are available, global quan-
tum operations can be implemented locally. Since then,
huge progress has been made in describing the way en-
tanglement can be distributed and manipulated among
separated parties. As for other physical quantities, con-
servation laws have been formulated dictating e.g. that
the amount of entanglement can not be increased by lo-
cal operations and classical communication (LOCC) [3].
Specifically, this means entanglement can only be created
by an interaction between particles.

In this Letter, we investigate more closely the condi-
tions required to entangle two distant particles. Though
there is no unique way to quantify entanglement for
mixed states, the usual definition of an entangled state
– as one that can not be created by LOCC – is unam-
biguous. To create entanglement, then, a global quantum
operation is necessary. For separated particles, this must
be carried out by sending a mediating particle between
them (see Fig. 1), i.e. by communication via a quantum
channel. Note that fundamentally this is the only way
entanglement is created [19], as all interactions in nature
occur via mediating gauge bosons. It is clear that the
particles can be entangled if the mediating (or ‘ancilla’)
particle becomes entangled: entangle the first particle
with the ancilla, send the latter through the channel,
and swap it with the second particle. We can picture the
entanglement being sent through the channel. One would
expect that the ancilla necessarily becomes entangled, in
any scheme. Surprisingly, we will prove that this intuitive
picture is false, and that two particles can become entan-
gled without the ancilla ever becoming entangled. (Note

that this does not imply entanglement can be created by
LOCC since a quantum channel was used.)
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FIG. 1: Alice and Bob each have a particle they wish to en-
tangle with the other. (a) Alice interacts an ancilla c with her
particle a, sends c to Bob, (b) who interacts c with his particle
b. At the end they share some entanglement. Surprisingly, c
does not have to become entangled with a and b.

We demonstrate this fact in two different ways. First
we consider a process in which two particles interact con-
tinuously with an ancilla (Fig. 2). We prove that if it is
possible to entangle the particles while leaving the an-
cilla separable at all times, it is possible to turn this into
a discretized scheme in which an ancilla is sent between
Alice and Bob a number of times. Inspired by quantum
optical systems, we give an example of such a continuous
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FIG. 2: Particles a and b interact continuously via a mediating
particle c. For certain initial states, c remains separable from
a and b at all times during the evolution of the system, yet
at the end a and b are entangled.

As a second demonstration, we give an explicit discrete
procedure in which an ancilla is sent from Alice to Bob,
and the interactions are described by local unitary oper-
ations: a single use of a quantum channel is already suf-
ficient to distribute entanglement without sending entan-
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The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum

theory and numerous quantum information protocols. Two distant parties can increase the amount of

entanglement between them by means of quantum communication encoded in a carrier that is sent from

one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not

entangled with the parties. However, in light of the defining property of entanglement stating that it cannot

increase under classical communication, the carrier must be quantum. Here we show that, in general,

the increase of relative entropy of entanglement between two remote parties is bounded by the amount of

nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord.

We study implications of this bound, provide new examples of entanglement distribution via unentangled

states, and put further limits on this phenomenon.

DOI: 10.1103/PhysRevLett.109.070501 PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Hk

Introduction.—Entanglement is a trademark of quantum
physics and a powerful resource enabling faster-than-
classical computation, efficient quantum communication,
and secure cryptography [1]. For these reasons, the design
of efficient methods to distribute entanglement is one of
the key goals of mainstream quantum information science.
Of particular relevance for tasks of long-haul quantum
communication is the distribution of entanglement among
the remote noninteracting nodes of a quantum network [2].
In this case, two general architectures able to accomplish
this task have been identified: the first relies on the avail-
ability of a resource whose entanglement is transferred to
chosen nodes of the network [3]; the second is a quantum
communication scenario based on the exchange of a
carrier quantum system between two of such distant nodes
[4], which might be referred to as the sender and receiver
laboratory, respectively.

Remarkably, Cubitt et al. [5] reported a scheme where
the carrier exchanged by sender and receiver remains
unentangled from them at all times. This result, which
was later extended to the continuous-variable scenario in
[6], intriguingly implies that the amount of distributed
entanglement is not bounded by the entanglement initially
shared by the carrier and the sender, given that in these
cases they are unentangled at all times. These observations
pave the way to some interesting considerations. First,
quite clearly, the carrier must display some quantum
features, otherwise the protocol would simply consist of
the exchange of classical communication aided by local

node-carrier operations, which cannot increase entangle-
ment [7]. Second, in Refs. [8] a link has been suggested
between the distribution of entanglement by separable
states and the presence of more general forms of quantum
correlations, as captured for example by quantum discord
[9,10], between nodes of the network and the carrier.
In light of such considerations, here we address the

following fundamental questions: How much can the
entanglement between sender and receiver laboratories
increase under the exchange of a carrier? Is there a quanti-
tative relation between such increase and the nonclassical
correlations between the carrier and the parties?
Our key finding is a general bound on the entanglement

gain between distant laboratories under local operations and
quantum communication, which is given by the quantum
discord between them and the carrier. In turn, this result
provides an operational interpretation of quantum discord
as the truly necessary prerequisite for the success of entan-
glement distribution as opposed to entanglement itself.
We show that the relation thus formulated generalizes the
subadditivity of entropy and can be quite naturally linked
to the possibility that quantum conditional entropy attains
negative values [11]. Finally, we study in detail the resour-
ces required for entanglement creation and increase via the
use of a separable carrier, and illustrate our findings with
some new concrete examples of such a phenomenon.
Definitions.—In order to treat entanglement and discord

on the same footing, throughout this Letter we consider
the former as measured by the relative entropy of

PRL 109, 070501 (2012) P HY S I CA L R EV I EW LE T T E R S
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Quantum Cost for Sending Entanglement

Alexander Streltsov,* Hermann Kampermann, and Dagmar Bruß
Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

(Received 20 March 2012; published 18 June 2012)

Establishing quantum entanglement between two distant parties is an essential step of many protocols

in quantum information processing. One possibility for providing long-distance entanglement is to create

an entangled composite state within a lab and then physically send one subsystem to a distant lab.

However, is this the ‘‘cheapest’’ way? Here, we investigate the minimal ‘‘cost’’ that is necessary for

establishing a certain amount of entanglement between two distant parties. We prove that this cost is

intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol

for entanglement distribution and show that quantum correlations are the essential resource for this task.

DOI: 10.1103/PhysRevLett.108.250501 PACS numbers: 03.67.Hk

Imagine that one wants to send a letter in the old-
fashioned way. The postage cost that the sender has to
invest depends on the amount of the transmitted substance,
quantified by the weight of the letter. If the receiver had
already provided some prepaid envelope, the sender may
have to add an appropriate stamp if he or she wants to send
a heavier letter. Naturally, the allowed weight of the letter
is smaller or equal to a limit which is linked to the total
postage.

Now, imagine that a sender wants to send quantum
entanglement to a receiver. How does the cost that the
sender has to invest depend on the amount of entanglement
sent, quantified by some entanglement measure? Is this
cost reduced when sender and receiver already shared
some preestablished entanglement? And what is the nature
of this cost—can one pay in classical quantities, or does
one have to invest a quantum cost?

One might be tempted to consider these questions and
their answers as obvious matters. However, quantum me-
chanics has often surprised us with puzzling features:
counterintuitively, as shown in [1], separable states (i.e.,
states without entanglement) can be used to distribute
entanglement. What is then the resource that makes this
process possible and enables entanglement distribution
without actually sending an entangled state?

In order to address this question in a well defined and
quantitative way wewill consider the following setting, see
Fig. 1: the sender is called Alice (A), and the distant
receiver Bob (B). Each of them has a quantum particle in
his or her possession. In addition, they have a third quan-
tum particle or ancilla (C) available, which is at the begin-
ning located in Alice’s lab, and then sent (via a noiseless
quantum channel) to Bob’s lab. This is a general model for
any interaction: one can consider the particle C as the
intermediate particle that realises the global interaction
between A and B. A similar scenario was also considered
in a different context in [2,3].

Initially, the total joint quantum state may or may not
carry entanglement. In the following, we will be only

interested in bipartite entanglement; i.e., two out of the
three particles A, B, and C are grouped together. We
quantify the initial entanglement between AC and B as
EACjB, and the final entanglement, after sending C to Bob,
as EAjBC. As a quantifier of entanglement we will first use
the relative entropy of entanglement, which is a well
established and widely studied measure of entanglement
for mixed states [4,5]. It is defined as the minimal relative
entropy Sð! k "Þ ¼ Tr½! log!% & Tr½! log"% between the
given state !XY for two parties X and Y and the set of
separable states S:

EXjYð!XYÞ ¼ min
"XY2S

Sð!XY k "XYÞ: (1)

Besides the fact that the relative entropy plays a crucial
role in quantum information theory [6], the significance of

FIG. 1 (color online). Entanglement distribution between
Alice and Bob. The upper figure shows the initial setup before
the transmission: Alice holds the particles A and C, while Bob is
in possession of the particle B. The middle figure shows the
transmission process: Alice uses a quantum channel to send C to
Bob. The final situation is shown in the lower figure. See also
main text.

PRL 108, 250501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

0031-9007=12=108(25)=250501(5) 250501-1 ! 2012 American Physical Society

Using Separable Bell-Diagonal States to Distribute Entanglement

Alastair Kay
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543,

Singapore and Keble College, Parks Road, Oxford OX1 3PG, United Kingdom
(Received 10 April 2012; published 21 August 2012)

One of the many bizarre features of entanglement is that Alice, by sending a qubit to Bob in a separable

state, can generate some entanglement between herself and Bob. This protocol is stripped down to the bare

essentials to better elucidate the key properties of the initial resource state that enable this entanglement

distribution. The necessary and sufficient conditions under which the correlations of a Bell-diagonal state

serve as a useful resource are proven, giving upper and lower bounds on the entanglement that can be

distributed when those conditions are met.

DOI: 10.1103/PhysRevLett.109.080503 PACS numbers: 03.67.Hk, 03.65.Ud, 03.67.Bg, 03.67.Mn

What is it about a given quantum state that activates any
one of a number of strange quantum features? This study of
the resources required to achieve different information
processing tasks is at the heart of quantum information.
Such tasks are naturally specified by the set of operations!
which can legally be implemented, and the corresponding
states that provide a resource for achieving said task. One
is particularly interested in the states "! which cannot
achieve the desired result, and quantifying how useful
other states are. This is naturally measured by the distance
from the set "!,

I! ¼ min
!2"!

Sð" k !Þ

which uses the relative entropy Sð" k !Þ ¼ Trð"log2"$
"log2!Þ. Common examples include the restriction to
local operations and classical communication (LOCC), in
which "LOCC are just the separable states, and the useful
resource is the entanglement of the state. Similarly, refer-
ence frames provide a resource for overcoming the restric-
tions imposed by superselection rules [1].

One of the more intriguing, counterintuitive protocols to
arise in recent years hints at a new classification of resources.
Two parties, who share a separable state, can distribute
entanglement between them by transmitting another sepa-
rable state [2]. This protocol starts from a state"ABCwhich is
initially partitioned between two parties, Alice and Bob, as
"ACjB. Alice then sends qubitC to Bob. During transmission,
it is required thatC is separable from everything else; i.e., the
bipartitioning "CjAB is separable. By the end, Alice and Bob
hold "AjBC, which we wish to be entangled. The correlations
of "ABC constitute a resource for entanglement distribution
by separable states (EDSS), and the protocol potentially
provides practical benefits—the correlations that constitute
the resource for EDSS may be less susceptible to noise than
the extremely fragile entanglement.

At this level, EDSS is a direct consequence of the
existence of multipartite bound entanglement [3]; i.e., a
state "ABC which is separable under the bipartitions CjAB

and BjAC may be entangled under the partition AjBC. In a
one parameter system (e.g., temperature of a thermal state
[4,5]), the existence of multipartite bound entanglement is
not surprising. Indeed, it would be quite remarkable if, for
every state, every possible bipartition were to become
separable at the same parameter value.
Unlike recent work [6,7], studying the general question

of bounding the entanglement change arising from a state
"ABC which may initially be entangled, in the present
Letter, we focus more specifically on what it is in the
correlations between Alice and Bob that permit EDSS.
To this end, we reduce the protocol to its bare essentials.
Protocol 1. EDSS.—(1) Alice and Bob start with a sepa-

rable state of two qubits, "AB. (2) Alice introduces an
ancilla, C, which is completely uncorrelated from "AB.
Without loss of generality, we take this to be "C ¼
1
2 ð1þ sXÞ (X is the Pauli-X matrix). (3) Alice performs a

unitaryUAC, producing "ABC ¼ UAC"AB & "CU
y
AC, but has

selected s to ensure that the bipartition CjAB remains sepa-
rable. (4) Alice sends the separable qubit C to Bob. All of
these steps are performedwithoutAlice communicating any-
thing to Bob. This ensures that the correlations in"AB, which
are going to contribute towards our ability to distribute en-
tanglement, are not unduly sullied (LOCC operations can
increase correlations). Nevertheless, once this stage is com-
plete, Alice and Bob are permitted to communicate in order
to distil entanglement from "ABC. In comparison to the
original protocol of Ref. [2], we have prevented the initial
resource state from having some correlations with qubit C,
meaning all the relevant information is containedwithin"AB.
Under the restriction of "AB being Bell-diagonal, we

describe the set of states "EDSS that cannot be used for
EDSS. The ability to distribute entanglement for all other
Bell-diagonal states is proven constructively, demonstrat-
ing the ubiquity of EDSS resources.
During this protocol, we only allow one qubit to be

transmitted from Alice to Bob. Allowing further commu-
nication obviates the need for a resource ("EDSS is an
empty set); with a two qubit protocol, one can always first
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Separable=classical?

Two non-orthogonal states are not perfectly distinguishable

A projective measurement still perturbs the state

The eigenstates of the density matrix could well be superpositions 
(even entangled, although this is not the case here..)

In general, separable states do not have classical nature
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We investigate quantum correlations versus global von Neumann entropy, focusing explicitly on two-qubit

states. We establish a hierarchy of non-classicality indicators, showing that the measurement-induced distur-

bance (MID) defined in [S. Luo, Phys. Rev. A, 77, 022301 (2008)] can be non-null and even maximal on

“classical” states. We thus consider an ameliorated version of MID, optimized over all local measurements, and

derive its expression for general two-qubit states. We then study the analytical relation between ameliorated

MID and quantum discord, characterizing the maximally non-classical two-qubit mixed states that simultane-

ously extremize both such non-classicality quantifiers at given von Neumann entropy.
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Determining the quantum nature of a state, identifying re-

liable signatures of non-classicality and quantifying the ex-

tent of such quantumness are nontrivial questions that lie at

the heart of research on the foundations of quantum mechan-

ics and are key to the advancements of quantum information

science. While the quantum character of a pure state is con-

clusively revealed by the violation of a Bell-type constraint,

or by its role as a resource for quantum communication tasks,

mixed states entail a more involved yet interesting case where

non-classicality, non-locality and entanglement do not nec-

essarily coincide. Even highly mixed states with little or no

entanglement can be useful for quantum computing, thus ex-

hibiting strong signatures of quantumness in the form of non-

classical correlations beyond entanglement [1]. In an attempt

to characterize such correlations and understand their role,

several measures have been proposed to pinpoint the various

facets of non-classicality [2–8]. Among them, the increas-

ingly popular quantum discord [2] and the more easily com-

putable measurement-induced disturbance (MID) [5] have at-

tracted considerable attention (for an incomplete list see [9]).

In this context, two independent studies have recently iden-

tified the two-qubit states achieving maximum discord at set

values of entanglement, classical correlations or global pu-

rity [10, 11], somehow following the lines of an analogous

earlier study that characterized maximally entangled mixed

states (or MEMS) [12]. Their findings revealed a non-trivial

relation between entanglement and quantum correlations, sug-

gesting a breakdown (in the low-purity region) of the intu-

itive expectation that larger entanglement would correspond

to larger quantum correlations.

While the theory of entanglement has been amply devel-

oped, leading to a set of well motivated requirements that any

bona fide entanglement measure should satisfy [13], a similar

formal backbone is missing for more general non-classicality

indicators. This leaves room for the drawing of physically in-

correct conclusions about the nature of correlations in a quan-

tum state, should inappropriate measures be employed. Moti-

vated by these premises, here we focus on the paradigmatic in-

stance of (generally mixed) two-qubit states and deploy a fully

quantitative benchmarking test of quantum discord and MID

as tools to investigate the interplay between quantum correla-

tions and global state mixedness. We find that, notwithstand-

ing its computational handiness, MID can overestimate quan-

tum correlations, being non-zero and even maximal on some

classical, zero-discord states. By ascribing such an effect to

the non-optimized nature of MID, we propose to employ an

ameliorated version of such a measure, which we dub AMID,

operationally associated to the minimal state disturbance upon

local measurements (in the spirit of Refs. [4, 6, 7]). AMID

provides a tighter upper bound to discord than MID and van-

ishes on all classical states, thus yielding a faithful quantifica-

tion of quantum correlations. We strengthen the role of AMID

by providing an analytical recipe for its evaluation on arbitrary

states of two qubits. Finally, reaching beyond the efforts of

Refs. [10, 11], we rigorously characterize the maximally non-

classical mixed states (MNCMS) of two qubits at given values

of the global von Neumann Entropy (vNE). We find that, in

the entropic plane, discord and AMID admit the same (rather

intricate) set of extremal states. Our investigation uses care-

fully derived analytics complemented by extensive numerics,

to shed unforeseen light onto a topic of vast theoretical and

potentially technological interest.

Quantum discord and MID.— We fist introduce two of

the main tools used in our investigation. Ollivier and

Zurek associate quantum discord to the difference be-

tween two classically equivalent versions of mutual in-

formation, which measures the total correlations within a

quantum state and is defined, for a bipartite state ϱAB, as

I(ϱAB)=S(ϱA)+S(ϱB)−S(ϱAB). Here, S(ϱ)=−Tr[ϱ log2 ϱ] is

the vNE of the arbitrary two-qubit state ϱ and ϱ j is the reduced

density matrix of party j=A, B. Alternatively, one can con-

sider the expression J←(ϱAB)=S(ϱA)−H{Π̂i}(A|B) (the one-

way classical correlation [3]) with H{Π̂i}(A|B)≡
∑

i piS(ϱi
A|B)

the quantum conditional entropy associated with the the post-

measurement density matrix ϱi
A|B=TrB[Π̂iϱAB]/pi obtained

upon performing the complete projective measurement {Πi}
on system B (pi=Tr[Π̂iϱAB]). Quantum discord is thus defined

as D←= inf{Πi}[I(ϱAB)−J←(ϱAB)], where the infimum is cal-= Total correlations  
(quantum+classical)

- Total amount of classical  
correlations

classical separable
The set of zero-discord states is zero-measure



Take-home message

The entanglement-gain in a quantum  
communication  protocol is bound by the degree  

of pre-available quantum discord
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Goal 1: discord is key

2

quantum optical platform based on the use of single-
photon polarisation qubits. Using the polarisation de-
gree of freedom of a three-photon quantum register, we
show that an initially separable, yet discorded, state of
two photons can be transformed into an entangled one
using only local operations that never generate entangle-
ment between themselves and the communicated carrier
photon. Our experiment proves the tantalising possibil-
ity to establish quantum channels among the nodes of a
quantum network without the need of previously avail-
able entangled resources.

THEORY

A typical communication scenario is depicted in Fig. 1.
Each of two distant parties, Alice and Bob, holds a quan-
tum system, which we label A and B respectively. Under
the transmission of a carrier quantum system C, encod-
ing communication from Alice to Bob, the information
gain between their respective laboratories satisfies the
inequality [5]

I
final

� I
initial

 I
comm

, (1)

where I
final

is the information between Alice and Bob af-
ter Bob has received system C, I

initial

is the information
shared before the communication protocol, and I

comm

is the actual information carried by C. By introducing
the quantum mutual information I

X:Y

between two gen-
eral systems X and Y we can identify I

final

= I
A:CB

,
I
initial

= I
AC:B

, and I
comm

= I
AB:C

. As expected, the
gain I

final

�I
initial

cannot exceed the information carried
by system C, which is the communicated information.

A similar relation for quantum entanglement E cannot
be stated: the entanglement gain is not bounded by the
communicated entanglement but rather by the communi-
cated quantum discord, a more general type of quantum
correlations [5, 15]. In particular, we can write

E
final

� E
initial

 D
comm

, (2)

where, using a notation similar to the one introduced
before and indicating with E

X:Y

the relative entropy of
entanglement between systems X and Y [19], E

initial

=
E
AC:B

and E
final

= E
A:CB

refer to situations before and
after the communication process, respectively. With
these choices, in Eq. (2) the communicated discord
D

comm

=D
AB|C is quantified by the relative entropy of

discord [20], which is also known as the one-way quan-
tum deficit [21].

The fact that discord quantifies a more general type
of correlation opens up the possibility to create entangle-
ment between remote parties via separable states alone.
Indeed, the bound in Eq. (2) is achieved in the protocol
presented in Ref. [6], albeit in general the communicated
discord does not provide a tight bound on the entangle-
ment that is correspondingly gained [5, 18]. To the best

of our knowledges such a general tight bound is currently
unknown.
In the protocol realised here, the two-level particles A

and B are prepared in a separable state ↵
AB

that is a
mixture of the four Bell states | ±i = 1p

2

(|01i± |10i)
AB

(each occurring with probability p
 ±) and |�±i 1p

2

(|00i±
|11i)

AB

(with probability of occurrence p
�±). Such a

state is separable if and only if the highest probability
in the mixture does not exceed 50% [22]. The two-level
carrier system C is initially with Alice and is uncorrelated
from the other systems, so that the overall initial state
is taken as ↵ = ↵

AB

⌦ ↵
C

. Here ↵
C

= 1

2

(11 + c
x

�
x

)
with 11 the identity matrix, �

x

the Pauli x matrix, and
c
x

2 [�1, 1].

Alice now generates the state � = P
AC

↵P†
AC

by ap-
plying a controlled-phase gate P

AC

on her systems. The
carrier qubit should remain separable from the other sys-
tems, i.e. we require E

AB:C

(�) = 0, while system A
should become entangled with the subsystem composed
of B and C (that is, we should have E

A:CB

(�) > 0). Fi-
nally, system C is transmitted to Bob and in this way
the laboratories of Alice and Bob share entanglement.

The description so far leaves room for the choice of
the initial state, which should be taken as one that guar-
antees a sizeable degree of entanglement in the A|CB
bipartition, keeping C separable, after the protocol. A
possible instance is given by the AB separable state

↵
AB

=
1

4

1X

j=0

|z
j

z
j

i hz
j

z
j

|+ 1

8

1X

j=0

|x
j

x
j

i hx
j

x
j

|

+
1

8

1X

j=0

|y
j

y
1�j

i hy
j

y
1�j

| , (3)

which is a mixture of two-qubit states formed by the
eigenstates |k

j

i of Pauli operators �
k

, with eigenvalue
(�1)j . As a measure of entanglement we use the neg-
ativity N [23], which is defined as the most negative
eigenvalue of the matrix obtained from � under par-
tial transposition of system A [24]. Within the class
of initial states ↵ on which one applies controlled-phase
gate, the state built using Eq. (3) and c

x

= � 1

2

gives
N

A|BC

= �1/16 = �0.0625, which is the highest amount
of distributed entanglement via separable states. We
choose to focus on the negativity because its presence in
state � guarantees that (i) the entanglement established
between the sending and receiving laboratories can be
localised into entanglement between systems A and B
only using local operations performed at Bob’s site [5],
and (ii) such localised entanglement is distillable [25].
Therefore, by repeating this protocol a su�cient num-
ber of times and performing entanglement distillation,
one can in principle obtain maximally entangled pairs
between Alice and Bob, although no entanglement has
been shared between them.

Natural..

Expected...

entanglement [12] and the latter as quantified by the one-
way quantum deficit [13], also known as relative entropy
of discord [14]. The quantum relative entropy between
two states ! and " is defined as Sð! k "Þ: ¼ $Sð!Þ $
trð! log"Þ, where Sð!Þ ¼ $trð! log!Þ is the von Neumann
entropy of !. The relative entropy is monotonic under
any completely positive trace-preserving map M, that is
Sð! k "Þ % S½Mð!Þ k Mð"Þ'. The relative entropy of
entanglement in the bipartition X versus Y is defined as
the minimum relative entropy EX:Yð!Þ: ¼ min!X:Y

Sð! k
!X:YÞ between the joint state ! of X and Y and the set of
separable states !X:Y ¼ P

ipi!
i
X ( !i

Y [12]. Similarly, the
relative entropy of discord is defined as the minimum
relative entropy DXjYð!Þ :¼ min#XjYSð!jj#XjYÞ between

! and the set of quantum-classical states #XjY ¼P
jpj#

j
X ( jjihjjY , with fjjig an orthonormal basis for Y.

It can be shown that DXjYð!Þ corresponds to the minimal
entropic increase resulting from the performance of a
complete projective measurement !Y over Y: DXjYð!Þ ¼
min!Y

S½!Yð!Þ' $ Sð!Þ where !Yð!Þ describes the state
after the measurement !Y [14]. Finally, mutual informa-
tion between X and Y is defined as IX:Yð!Þ :¼ Sð!XY k
!X ( !YÞ, with !X and !Y the reduced states of X and Y.
Mutual information quantifies the total amount of correla-
tions present between X and Y [15]. It holds IX:Yð!Þ %
DXjYð!Þ % EX:Yð!Þ.

Entanglement distribution.—Consider two remote
agents, Alice and Bob, having access to local quantum
systems A and B, respectively. Their aim is to increase
the entanglement that they share by sending an auxiliary
quantum system—the carrier C—with which they interact
locally (see Fig. 1). The key step of any communication
scheme is the transfer of a carrier from one laboratory to
the other. The difference in entanglement across the bipar-
titions A:CB and AC:B, corresponding to the situation after
and before the transfer of the carrier, can be bound thanks
to the following (see the Appendix).

Theorem 1.—For any tripartite state ! ¼ !ABC it holds

jEA:CBð!Þ $ EAC:Bð!Þj ) DABjCð!Þ: (1)

We apply this relation to the scenario of Fig. 1. Let us call
$ the initial state of A, B, and C, and % ¼ MACð$Þ the
state obtained from it by means of a local encoding opera-
tion MAC. A local operation on AC cannot increase
entanglement in the AC:B cut, i.e., EAC:Bð%Þ ) EAC:Bð$Þ.
System C is then sent to Bob’s site, where it interacts
with B via a decoding operation meant to localize on
B the entanglement between the laboratories [16].
Combining the above description with Eq. (1) for % we get

E A:CBð%Þ ) EAC:Bð$Þ þDABjCð%Þ: (2)

This shows that the entanglement gain between distant
laboratories is bounded by the amount of quantum discord
as measured on the communicated system. In what follows

we discuss the meaning and the implications of the bounds
given in Eqs. (1) and (2).
Impossibility of entanglement distribution by local

operations and classical communication.—Let us first
address the case of DABjCð%Þ ¼ 0. This corresponds to
classical communication from Alice to Bob as it implies
that % has the quantum-classical structure % ¼ P

ipi!
i
AB (

jiihijC. The index i embodies classical information that
Alice may copy locally before sending C to Bob. After C
is transferred from Alice to Bob, both have access to this
information. Bob can then perform a local transformation
that depends on the index i originally held only by Alice.
The process just described is one communication step of a
general protocol based on the use of local operations and
classical communication (LOCC). The protocol may in-
clude several rounds of classical communication with C
that is sent back and forth between Alice and Bob; local
classical registers can be kept or erased at any stage of the
protocol. In this case, Eq. (2) reduces to the statement that
entanglement does not increase at any step of a protocol
based on LOCC [7]. If DABjCð%Þ does not vanish, the
transfer of C cannot be interpreted as classical communi-
cation, revealing the role of discord in general quantum
communication. Hence, Eq. (2) constitutes a nontrivial
relaxation of the condition of monotonicity of entangle-
ment under LOCC, bounding the increase of entanglement
under local operations and quantum communication.
Pure state case.—We now apply Eqs. (1) and (2) to a

tripartite pure state ! ¼ j&ih&jABC. For any bipartite pure
state, the relative entropy of entanglement and the relative
entropy of discord coincide with the entropy of the reduced
states of the parts. Thus, Eq. (1) becomes

jSð!AÞ $ Sð!BÞj ) Sð!ABÞ; (3)

which is the Araki-Lieb inequality [17] and is equivalent to
the subadditivity of entropy for subsystems AC and BC.
Accordingly, Eq. (1) can be seen as a generalization of the
subadditivity of entropy valid for tripartite mixed states.
When the carrier is sent from Alice’s lab to Bob’s, the

change in entanglement given in Eq. (2), becomes

(a) (b)

(c) (d) (e)

FIG. 1 (color online). Entanglement distribution. (a) The dis-
tribution protocol begins with systems A and C in Alice’s lab and
system B in Bob’s. (b) In the next step, Alice applies an encoding
operation to systems A and C. (c) System C is then sent to Bob’s
site. (d) The carrier C interacts with B via a decoding operation
meant to localize on B the entanglement between A and BC.
(e) Systems A and B are more entangled than in panel (a).
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entanglement [12] and the latter as quantified by the one-
way quantum deficit [13], also known as relative entropy
of discord [14]. The quantum relative entropy between
two states ! and " is defined as Sð! k "Þ: ¼ $Sð!Þ $
trð! log"Þ, where Sð!Þ ¼ $trð! log!Þ is the von Neumann
entropy of !. The relative entropy is monotonic under
any completely positive trace-preserving map M, that is
Sð! k "Þ % S½Mð!Þ k Mð"Þ'. The relative entropy of
entanglement in the bipartition X versus Y is defined as
the minimum relative entropy EX:Yð!Þ: ¼ min!X:Y

Sð! k
!X:YÞ between the joint state ! of X and Y and the set of
separable states !X:Y ¼ P

ipi!
i
X ( !i

Y [12]. Similarly, the
relative entropy of discord is defined as the minimum
relative entropy DXjYð!Þ :¼ min#XjYSð!jj#XjYÞ between

! and the set of quantum-classical states #XjY ¼P
jpj#

j
X ( jjihjjY , with fjjig an orthonormal basis for Y.

It can be shown that DXjYð!Þ corresponds to the minimal
entropic increase resulting from the performance of a
complete projective measurement !Y over Y: DXjYð!Þ ¼
min!Y

S½!Yð!Þ' $ Sð!Þ where !Yð!Þ describes the state
after the measurement !Y [14]. Finally, mutual informa-
tion between X and Y is defined as IX:Yð!Þ :¼ Sð!XY k
!X ( !YÞ, with !X and !Y the reduced states of X and Y.
Mutual information quantifies the total amount of correla-
tions present between X and Y [15]. It holds IX:Yð!Þ %
DXjYð!Þ % EX:Yð!Þ.

Entanglement distribution.—Consider two remote
agents, Alice and Bob, having access to local quantum
systems A and B, respectively. Their aim is to increase
the entanglement that they share by sending an auxiliary
quantum system—the carrier C—with which they interact
locally (see Fig. 1). The key step of any communication
scheme is the transfer of a carrier from one laboratory to
the other. The difference in entanglement across the bipar-
titions A:CB and AC:B, corresponding to the situation after
and before the transfer of the carrier, can be bound thanks
to the following (see the Appendix).

Theorem 1.—For any tripartite state ! ¼ !ABC it holds

jEA:CBð!Þ $ EAC:Bð!Þj ) DABjCð!Þ: (1)

We apply this relation to the scenario of Fig. 1. Let us call
$ the initial state of A, B, and C, and % ¼ MACð$Þ the
state obtained from it by means of a local encoding opera-
tion MAC. A local operation on AC cannot increase
entanglement in the AC:B cut, i.e., EAC:Bð%Þ ) EAC:Bð$Þ.
System C is then sent to Bob’s site, where it interacts
with B via a decoding operation meant to localize on
B the entanglement between the laboratories [16].
Combining the above description with Eq. (1) for % we get

E A:CBð%Þ ) EAC:Bð$Þ þDABjCð%Þ: (2)

This shows that the entanglement gain between distant
laboratories is bounded by the amount of quantum discord
as measured on the communicated system. In what follows

we discuss the meaning and the implications of the bounds
given in Eqs. (1) and (2).
Impossibility of entanglement distribution by local

operations and classical communication.—Let us first
address the case of DABjCð%Þ ¼ 0. This corresponds to
classical communication from Alice to Bob as it implies
that % has the quantum-classical structure % ¼ P

ipi!
i
AB (

jiihijC. The index i embodies classical information that
Alice may copy locally before sending C to Bob. After C
is transferred from Alice to Bob, both have access to this
information. Bob can then perform a local transformation
that depends on the index i originally held only by Alice.
The process just described is one communication step of a
general protocol based on the use of local operations and
classical communication (LOCC). The protocol may in-
clude several rounds of classical communication with C
that is sent back and forth between Alice and Bob; local
classical registers can be kept or erased at any stage of the
protocol. In this case, Eq. (2) reduces to the statement that
entanglement does not increase at any step of a protocol
based on LOCC [7]. If DABjCð%Þ does not vanish, the
transfer of C cannot be interpreted as classical communi-
cation, revealing the role of discord in general quantum
communication. Hence, Eq. (2) constitutes a nontrivial
relaxation of the condition of monotonicity of entangle-
ment under LOCC, bounding the increase of entanglement
under local operations and quantum communication.
Pure state case.—We now apply Eqs. (1) and (2) to a

tripartite pure state ! ¼ j&ih&jABC. For any bipartite pure
state, the relative entropy of entanglement and the relative
entropy of discord coincide with the entropy of the reduced
states of the parts. Thus, Eq. (1) becomes

jSð!AÞ $ Sð!BÞj ) Sð!ABÞ; (3)

which is the Araki-Lieb inequality [17] and is equivalent to
the subadditivity of entropy for subsystems AC and BC.
Accordingly, Eq. (1) can be seen as a generalization of the
subadditivity of entropy valid for tripartite mixed states.
When the carrier is sent from Alice’s lab to Bob’s, the

change in entanglement given in Eq. (2), becomes

(a) (b)

(c) (d) (e)

FIG. 1 (color online). Entanglement distribution. (a) The dis-
tribution protocol begins with systems A and C in Alice’s lab and
system B in Bob’s. (b) In the next step, Alice applies an encoding
operation to systems A and C. (c) System C is then sent to Bob’s
site. (d) The carrier C interacts with B via a decoding operation
meant to localize on B the entanglement between A and BC.
(e) Systems A and B are more entangled than in panel (a).
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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of total correlations between the labs is bounded by the cor-
relations between the systems that are kept stored in the labs
and the carrier – the communicated total correlations.

However, whereas there is only one kind of correlations be-
tween classical random variables, quantum systems can share
different kinds of correlations [18]. In this work we proved a
relation analogous to Eq. (7) for the increase of quantum en-
tanglement between remote elements of a quantum network.
We showed that such increase is bounded from above by the
amount of non-classical correlations between the exchanged
carrier and the distant nodes as measured by quantum discord,
a quantifier for a more general type of non-classical correla-
tions than entanglement. It follows that, in contrast with what
one would expect extrapolating from Eq. (7), our bound for
the entanglement increase is in general larger than the entan-
glement between the carrier and the nodes; in particular, it can
be non-zero even when the latter vanishes. Indeed, this has to
be the case, as implied by the seminal example of entangle-
ment distribution using a separable carrier of Ref. [10].

Besides providing a natural operational interpretation of
quantum discord as the truly necessary prerequisite for the
success of entanglement distribution, our work identifies the
conditions for the occurrence of entanglement distribution
with a separable carrier. The scenario tackled by our study
is general enough to fit well with a few experimental settings,
including cavity/circuit-QED and trapped-ion technology and
we thus hope that our results will find a prompt experimental
demonstration.
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APPENDIX

In this Appendix we provide statements and proofs of the
theorems mentioned in the main text and present new exam-
ples of both the creation and the increase of entanglement be-
tween distant parties by the exchange of an unentangled car-
rier.

Theorems

We prove here Theorem 1 of the main text. It is a conse-
quence of the following Lemma.

Lemma 1. Given ⇢ = ⇢ABC , consider ⇧⇤
C , the optimal pro-

jective measurement on C for the sake of DAB|C(⇢). Let
pi be the probability of outcome i for such a measurement,
and ⇢

i
AB be the corresponding conditional states of AB; i.e.,

⇧

⇤
C(⇢ABC) =

P
i pi⇢

i
AB ⌦ |ii hi|C . Then

EA:CB(⇢)  DAB|C(⇢) +
X

i

piEA:B(⇢
i
AB)

= DAB|C(⇢) + EA:CB(⇧
⇤
C(⇢))

= DAB|C(⇢) + EAC:B(⇧
⇤
C(⇢))

(8)

Proof. Let ⇢i⇤A:B be the optimal separable state for the sake of
EA:B(⇢

i
AB). The state

P
i pi⇢

i⇤
A:B ⌦ |ii hi|C is fully separable

and a fortiori A : CB-separable; moreover it is invariant un-
der the action of ⇧⇤

C . Then the inequality (8) is obtained as
follows:

EA:CB(⇢)  S(⇢k
X

i

pi⇢
i⇤
A:B ⌦ |ii hi|C) (9a)

= �S(⇢)� Tr[⇢ log(

X

i

pi⇢
i⇤
A:B ⌦ |ii hi|C)]

= �S(⇢)� Tr[⇧

⇤
C(⇢) log(

X

i

pi⇢
i⇤
A:B ⌦ |ii hi|C)] (9b)

=

h
S(⇧

⇤
C(⇢))� S(⇢)

i
+

h
� S(⇧

⇤
C(⇢))

� Tr

⇣
⇧

⇤
C(⇢) log(

X

i

pi⇢
i⇤
A:B ⌦ |ii hi|C)

⌘i

= DAB|C(⇢)

+ S(

X

i

pi⇢
i
AB ⌦ |ii hi|C k

X

i

pi⇢
i⇤
A:B ⌦ |ii hi|C) (9c)

= DAB|C(⇢) +
X

i

piS(⇢
i
ABk⇢i⇤A:B) (9d)

= DAB|C(⇢) +
X

i

piEA:B(⇢
i
AB), (9e)

where the steps are justified as follows: for Eq. (9a), the fully
separable state

P
i pi⇢

i⇤
A:B⌦|ii hi|C cannot be better than opti-

mal for the sake of EA:CB(⇢); for Eq. (9b), Tr(� log⇧(⌧)) =

Tr(⇧(�) log⇧(⌧)) for all (complete or non-complete) pro-
jective measurements ⇧, and for all � and all ⌧ [35]; for
Eq. (9c), by the optimality of ⇧⇤

C for the sake of DAB|C(⇢);
for Eq. (9d), by the chain rule for relative entropy [37]; for
Eq. (9e), by the optimality of each ⇢

i⇤
A:B for the sake of

EA:B(⇢
i
AB). Finally, the two last lines of Eq. (8) are due to the

fact that relative entropy of entanglement satisfies the “flags”
condition of Ref. [38], i.e. EFX:Y

�P
i pi |ii hi|F ⌦ ⇢

i
XY

�
=P

i piEX:Y (⇢
i
XY ) = EX:Y F

�P
i pi⇢

i
XY ⌦ |ii hi|F

�
.

The statement of the above Lemma regards entanglement
redistribution. Nonetheless it is related to — and can be seen

Discord is key

Conclusions.—It is the very act of physical transmission
of a carrier system that changes the amount of correlations
between the remote laboratories. To illustrate this consider
total correlations, as captured by mutual information. One
expects from the principle of no-signaling that the increase
of mutual information is bounded by the amount of com-
municated correlations. Indeed, applying the chain rule
for mutual information and its monotonicity under local
operations [25] one finds

I A:CB ! IAC:B " IA:C " IAB:C: (7)

Both in classical and quantum information theory, the
increase of total correlations between the labs is bounded
by the correlations between the systems that are kept stored
in the labs and the carrier.

However, whereas there is only one kind of correlation
between classical random variables, quantum systems can
share different kinds of correlations [10]. In this Letter we
proved a relation analogous to Eq. (7) for the increase
of quantum entanglement between remote elements of
a quantum network. We showed that such increase is
bounded from above by the amount of nonclassical corre-
lations between the exchanged carrier and the distant nodes
as measured by quantum discord, a quantifier for a more
general type of nonclassical correlations than entangle-
ment. It follows that, in contrast withwhat onewould expect
extrapolating from Eq. (7), our bound for the entanglement
increase is in general larger than the entanglement between
the carrier and the nodes; in particular, it can be nonzero
evenwhen the latter vanishes. Indeed, this has to be the case,
as implied by the seminal example of entanglement distri-
bution using a separable carrier of Ref. [5].

Besides providing a natural operational interpretation
of quantum discord as the necessary prerequisite for the
success of entanglement distribution, our work identifies
the conditions for its occurrence with a separable carrier.
The scenario tackled by our study fits well with a few
experimental settings, including cavity or circuit-QED

and trapped-ion technology and we thus hope that our
results will find a prompt experimental demonstration.
M. Paternostro thanks the Centre for Quantum

Technologies, National University of Singapore and, to-
gether with J.M., the Institute for Quantum Computing,
University of Waterloo for the kind hospitality during the
early stages of this work. We acknowledge financial sup-
port from the National Research Foundation and Ministry
of Education in Singapore (T. K. C., K.M., and T. P.), the
John Templeton Foundation (K.M.), the United Kingdom
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APPENDIX

We prove here Theorem 1 of the main text. It is a
consequence of the following Lemma.
Lemma 1.—Given ! ¼ !ABC, consider !

$
C, the optimal

projective measurement on C for the sake ofDABjCð!Þ. Let
pi be the probability of outcome i for such a measurement,
and !i

AB be the corresponding conditional states of AB; i.e.,
!$

Cð!ABCÞ ¼
P

ipi!
i
AB ' jiihijC. Then

E A:CBð!Þ " DABjCð!Þ þ
X

i

piEA:Bð!i
ABÞ

¼ DABjCð!Þ þ EA:CB½!$
Cð!Þ*

¼ DABjCð!Þ þ EAC:B½!$
Cð!Þ*: (A1)

Proof.—Let !i$
A:B be the optimal separable state for the

sake of EA:Bð!i
ABÞ. The state

P
ipi!

i$
A:B ' jiihijC is fully

separable and a fortiori A:CB-separable; moreover it is
invariant under the action of !$

C. Then the inequality (A1)
is obtained as follows:

EA:CBð!Þ " S
!
! k

X

i

pi!
i$
A:B ' jiihijC

"
¼ !Sð!Þ ! Tr

#
! log

!X

i

pi!
i$
A:B ' jiihijC

"$
(A2a)

¼ !Sð!Þ ! Tr
#
!$

Cð!Þ log
!X

i

pi!
i$
A:B ' jiihijC

"$
(A2b)

¼ fS½!$
Cð!Þ* ! Sð!Þgþ

%
!S½!$

Cð!Þ* ! Tr
#
!$

Cð!Þ log
!X

i

pi!
i$
A:B ' jiihijC

"$&

¼ DABjCð!Þ þ S
!X

i

pi!
i
AB ' jiihijC k

X

i

pi!
i$
A:B ' jiihijC

"
(A2c)

¼ DABjCð!Þ þ
X

i

piSð!i
AB k !i$

A:BÞ ¼ DABjCð!Þ þ
X

i

piEA:Bð!i
ABÞ; (A2d)

where the steps are justified as follows: for Eq. (A2a), the
fully separable state

P
ipi!

i$
A:B ' jiihijC cannot be better

than optimal for the sake of EA:CBð!Þ; for Eq. (A2b),
Trð" log!ð#ÞÞ ¼ Trð!ð"Þ log!ð#ÞÞ for all (complete or
noncomplete) projective measurements !, and for all "

and all # [25]; for Eq. (A2c), by the optimality of !$
C for

the sake ofDABjCð!Þ; for the first equality of Eq. (A2d), by
the chain rule for relative entropy [26]; for the second
equality of Eq. (A2d), by the optimality of each !i$

A:B for
the sake of EA:Bð!i

ABÞ. Finally, the two last lines of
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.

Eq. (A1) are due to the fact that relative entropy of entan-
glement satisfies the ‘‘flags’’ condition of Ref. [27],
i.e., EFX:Yð

P
ipijiihijF " !i

XYÞ ¼
P

ipiEX:Yð!i
XYÞ ¼ EX:YF

ðPipi!
i
XY " jiihijFÞ. j

The statement of the above Lemma regards entangle-
ment redistribution. Nonetheless it is related to—and can
be seen as a generalization of—the results of Ref. [28],
where it was proven that the relative entropy of entangle-
ment is not lockable by dephasing any single qubit held by
one of the parties. In our context, it is further worth recall-
ing that the variation of a generic relative entropy-based
measure of correlations—not necessarily entanglement—
under the complete dephasing of one of the two parties was
considered in Ref. [13]. We notice that the total dephasing
of one of the two parties would simply destroy all entan-
glement. The bound given in Eq. (A1) is based on the
consideration of a hypothetical optimal complete von
Neumann measurement performed only on the subsystem
that is to be transferred from one party to the other.

Proof of Theorem 1.—Applications of Lemma 1 and the
monotonicity of the relative entropy of entanglement under
LOCC gives

E A:CBð!Þ % DABjCð!Þ þ EAC:B½!(
Cð!Þ)

% DABjCð!Þ þ EAC:Bð!Þ: (A3)

By inverting the roles of A and B, we obtain Eq. (1). j
We remark that Lemma 1, although less amenable to a

clear operational interpretation, is in general strictly
stronger than Theorem 1. Consider for example the case
of a pure tripartite state symmetric under the exchange ofA,
B and C. For such a case, Eq. (3) is clearly not tight as soon
as SðAÞ ¼ SðBÞ ¼ SðCÞ ¼ SðABÞ ¼ SðACÞ ¼ SðBCÞ> 0,
since the left-hand side of Eq. (3) would vanish but its right-
hand side would not. On the other hand, in the same case,
provided that!(

C [i.e., the measurement that is optimal for
the sake ofDABjCð!Þ] is such that all conditional states !i

AB

are separable, Eq. (A1) is tight. This happens, for example,
for the tripartite Greenberger-Horne-Zeilinger state ! ¼
jGHZihGHZj, with jGHZi ¼ ðj000iþ j111iÞ=

ffiffiffi
2

p
.
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Eq. (A1) are due to the fact that relative entropy of entan-
glement satisfies the ‘‘flags’’ condition of Ref. [27],
i.e., EFX:Yð

P
ipijiihijF " !i

XYÞ ¼
P

ipiEX:Yð!i
XYÞ ¼ EX:YF

ðPipi!
i
XY " jiihijFÞ. j

The statement of the above Lemma regards entangle-
ment redistribution. Nonetheless it is related to—and can
be seen as a generalization of—the results of Ref. [28],
where it was proven that the relative entropy of entangle-
ment is not lockable by dephasing any single qubit held by
one of the parties. In our context, it is further worth recall-
ing that the variation of a generic relative entropy-based
measure of correlations—not necessarily entanglement—
under the complete dephasing of one of the two parties was
considered in Ref. [13]. We notice that the total dephasing
of one of the two parties would simply destroy all entan-
glement. The bound given in Eq. (A1) is based on the
consideration of a hypothetical optimal complete von
Neumann measurement performed only on the subsystem
that is to be transferred from one party to the other.

Proof of Theorem 1.—Applications of Lemma 1 and the
monotonicity of the relative entropy of entanglement under
LOCC gives

E A:CBð!Þ % DABjCð!Þ þ EAC:B½!(
Cð!Þ)

% DABjCð!Þ þ EAC:Bð!Þ: (A3)

By inverting the roles of A and B, we obtain Eq. (1). j
We remark that Lemma 1, although less amenable to a

clear operational interpretation, is in general strictly
stronger than Theorem 1. Consider for example the case
of a pure tripartite state symmetric under the exchange ofA,
B and C. For such a case, Eq. (3) is clearly not tight as soon
as SðAÞ ¼ SðBÞ ¼ SðCÞ ¼ SðABÞ ¼ SðACÞ ¼ SðBCÞ> 0,
since the left-hand side of Eq. (3) would vanish but its right-
hand side would not. On the other hand, in the same case,
provided that!(

C [i.e., the measurement that is optimal for
the sake ofDABjCð!Þ] is such that all conditional states !i

AB

are separable, Eq. (A1) is tight. This happens, for example,
for the tripartite Greenberger-Horne-Zeilinger state ! ¼
jGHZihGHZj, with jGHZi ¼ ðj000iþ j111iÞ=

ffiffiffi
2

p
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as a generalization of — the results of Ref. [39], where it was
proven that the relative entropy of entanglement is not lock-
able by dephasing any single qubit held by one of the parties.
In our context, it is further worth recalling that the variation
of a generic relative entropy-based measure of correlations —
not necessarily entanglement — under the complete dephas-
ing of one of the two parties was considered in Ref. [23]. We
notice that the total dephasing of one of the two parties would
simply destroy all entanglement. The bound given in Eq. (8) is
based on the consideration of a hypothetical optimal complete
von Neumann measurement performed only on the subsystem
that is to be transferred from one party to the other.
Proof of Theorem 1. Applications of Lemma 1 and the mono-
tonicity of the relative entropy of entanglement under LOCC
gives

EA:CB(⇢)  DAB|C(⇢) + EAC:B(⇧
⇤
C(⇢))

 DAB|C(⇢) + EAC:B(⇢).
(10)

By inverting the roles of A and B, we obtain Eq. (1). 2

We remark that Lemma 1, although less amenable to a clear
operational interpretation, is in general strictly stronger than
Theorem 1. Consider for example the case of a pure tripar-
tite state symmetric under the exchange of A, B and C. For
such a case, Eq. (3) is clearly not tight as soon as S(A) =

S(B) = S(C) = S(AB) = S(AC) = S(BC) > 0, since
the left-hand side of Eq. (3) would vanish but its right-hand
side would not. On the other hand, in the same case, provided
that ⇧⇤

C [i.e. the measurement that is optimal for the sake of
DAB|C(⇢)] is such that all conditional states ⇢iAB are separa-
ble, Eq. (8) is tight. This happens, for example, for the tri-
partite Greenberger-Horne-Zeilinger state ⇢ = |GHZi hGHZ|,
with |GHZi = (|000i+ |111i)/

p
2.

Theorem 2 (On entanglement localization). Let us denote the
dimensions of subsystems A and B by dA and dB , respec-
tively. If dB � dA and a tripartite state � = �ABC has nega-
tive partial transposition [40, 41] in the cut A : BC, then it is
possible to localize its entanglement onto subsystems A and
B using decoding operation on systems BC only.

Proof. We prove that there exists a unitary operation on sys-
tems BC followed by a measurement on C and post-selection
on a particular outcome, such that the post-selected state of
AB has negative partial transposition. By assumption there is
a pure state | i for which

h |�TA | i < 0, (11)

where TA denotes partial transposition on system
A. The Schmidt decomposition implies | i =PdA

j=1

aj |ajiA |ājiBC . By our dimensionality assump-
tion there exists a unitary transformation UBC such that
UBC |ājiBC ⌘ |jiB |0iC . Therefore, UBC | i = |�iAB |0iC
and we have:

0 > h |�TA | i = h0| h�|UBC�
TA

U

†
BC |�i |0i

= h�| (h0|UBC�U
†
BC |0i)TA |�i , (12)

where the last equality follows from commutativity of the op-
erations on A and BC. The expression in the bracket is given
by the (unnormalized) state p

0

¯

�AB|0 of AB after C observes
the measurement result corresponding to the projection on
|0i. Here p

0

is the probability to observe such outcome and
¯

� = UBC�U
†
BC . We conclude that ¯�AB|0 has negative partial

transposition.

Theorem 3 (On impossibility of entanglement creation via a
separable carrier under further restrictions). The creation of
entanglement through separable states is impossible starting
with a qubit A and a qudit B such that DB|A(↵) = 0, for C
initially in a pure state and unitary encoding.

Proof. By assumption, the initial AB state is of the form

↵AB =

1X

a=0

pa |ai ha|⌦ ↵B|a (13)

with {|ai} being two generic pure states of A. The state after
unitary AC encoding reads � =

P
a=0,1 pa | ai h a|AC ⌦

↵B|a. Note that↵B|0 must be different from↵B|1 as otherwise
distribution is impossible because the initial state is classical
on B. Therefore, there exists a POVM element 0  M  11
such that Tr(M↵B|0) 6= Tr(M↵B|1). This in turns implies
that we can choose a family of POVM elements M(q) (e.g.,
M(q) = (1 � q)M + q11) for which we obtain a family of
conditional states of AC

˜

�AC = p̃ | 
0

i h 
0

|+ (1� p̃) | 
1

i h 
1

| , (14)

with p̃ a probability varying in some finite range. Since by
assumption, C is separable from A in state �, they are also
separable after any measurement on B, i.e. ˜

�AC is separable
for all possible p̃.

For any separable ˜

�AC there exists an ensemble of pure
factorized states |ãii ⌦ |c̃ii with corresponding probabilities
si such that

˜

�AC =

X

i

si |ãic̃ii hãic̃i| . (15)

Since ˜

�AC has rank two, all these pure product states are
spanned by two pure product states, let us say |ã

0

c̃

0

i and
|ã

1

c̃

1

i, which span also | 
0

i and | 
1

i. It also follows that
˜

�AC can be seen as a state on C2 ⌦ C2.
We now use Theorem 1 of Ref. [42] stating that for any

plane in C2 ⌦ C2 defined by two product vectors, either all
the states in this plane are product vectors, or there is no other
product vector in it. It follows that either | 

0

i and | 
1

i are
product vectors or ˜

�AC can be written as convex mixture of
only |ã

0

c̃

0

i and |ã
1

c̃

1

i. Since the space spanned by | 
0

i and
| 

1

i is the same as that spanned by |ã
0

c̃

0

i and |ã
1

c̃

1

i, Eq. (14)
is equal to Eq. (15) where we sum only over i = 0, 1. Since
this should hold for a finite range of p̃, these two decompo-
sitions must coincide and therefore | 

0

i and | 
1

i are product
vectors. Finally, � is fully separable and entanglement distri-
bution is impossible.
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1

c̃

1

i. Since the space spanned by | 
0

i and
| 

1

i is the same as that spanned by |ã
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finally, invert the role of A and B
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.Using Theorem 1:
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
Then B is classical initially and therefore also in the state �
after the encoding: � =

P
i pi�

i
AC ⌦ |ii hi|B . In this case en-

tanglement between Alice and Bob can only be created if the
carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log

2

d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
than log

2

d.
Examples.—In order to make our result more concrete, in

Appendix we provide new examples of both the creation and
the increase of entanglement between distant parties by the
exchange of an unentangled carrier. The examples are based
on the fact that the state of a bipartite system of total dimen-
sions d

tot

having the form ⇢p = p | i h | + (1 � p)11/d
tot

is separable if and only if p  p

cr

= (1 + a

1

a

2

d

tot

)

�1,
where a

1

and a

2

are the two largest Schmidt coefficients of
the bipartite state | i, and 11/d

tot

is the maximally mixed state
of the total system [33]. Consider now a tripartite pure state
| i = | iABC . This state admits three Schmidt decomposi-
tions corresponding to the three bipartitions A : BC, B : AC,
and C : AB. One can choose | i such that p

cr

is the lowest
across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds

IA:CB � IAC:B  IA:C  IAB:C . (7)

Both in classical and quantum information theory, the increase
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
Then B is classical initially and therefore also in the state �
after the encoding: � =

P
i pi�

i
AC ⌦ |ii hi|B . In this case en-

tanglement between Alice and Bob can only be created if the
carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log

2

d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
than log

2

d.
Examples.—In order to make our result more concrete, in

Appendix we provide new examples of both the creation and
the increase of entanglement between distant parties by the
exchange of an unentangled carrier. The examples are based
on the fact that the state of a bipartite system of total dimen-
sions d

tot

having the form ⇢p = p | i h | + (1 � p)11/d
tot

is separable if and only if p  p

cr

= (1 + a

1

a

2

d

tot

)

�1,
where a

1

and a

2

are the two largest Schmidt coefficients of
the bipartite state | i, and 11/d

tot

is the maximally mixed state
of the total system [33]. Consider now a tripartite pure state
| i = | iABC . This state admits three Schmidt decomposi-
tions corresponding to the three bipartitions A : BC, B : AC,
and C : AB. One can choose | i such that p

cr

is the lowest
across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds

IA:CB � IAC:B  IA:C  IAB:C . (7)

Both in classical and quantum information theory, the increase
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
Then B is classical initially and therefore also in the state �
after the encoding: � =

P
i pi�

i
AC ⌦ |ii hi|B . In this case en-

tanglement between Alice and Bob can only be created if the
carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log

2

d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
than log

2

d.
Examples.—In order to make our result more concrete, in

Appendix we provide new examples of both the creation and
the increase of entanglement between distant parties by the
exchange of an unentangled carrier. The examples are based
on the fact that the state of a bipartite system of total dimen-
sions d

tot

having the form ⇢p = p | i h | + (1 � p)11/d
tot

is separable if and only if p  p

cr

= (1 + a

1
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2

d

tot

)

�1,
where a

1

and a

2

are the two largest Schmidt coefficients of
the bipartite state | i, and 11/d

tot

is the maximally mixed state
of the total system [33]. Consider now a tripartite pure state
| i = | iABC . This state admits three Schmidt decomposi-
tions corresponding to the three bipartitions A : BC, B : AC,
and C : AB. One can choose | i such that p

cr

is the lowest
across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds

IA:CB � IAC:B  IA:C  IAB:C . (7)

Both in classical and quantum information theory, the increase
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
Then B is classical initially and therefore also in the state �
after the encoding: � =

P
i pi�
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AC ⌦ |ii hi|B . In this case en-

tanglement between Alice and Bob can only be created if the
carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log

2

d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
than log

2

d.
Examples.—In order to make our result more concrete, in

Appendix we provide new examples of both the creation and
the increase of entanglement between distant parties by the
exchange of an unentangled carrier. The examples are based
on the fact that the state of a bipartite system of total dimen-
sions d

tot

having the form ⇢p = p | i h | + (1 � p)11/d
tot

is separable if and only if p  p

cr
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where a
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and a
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are the two largest Schmidt coefficients of
the bipartite state | i, and 11/d

tot

is the maximally mixed state
of the total system [33]. Consider now a tripartite pure state
| i = | iABC . This state admits three Schmidt decomposi-
tions corresponding to the three bipartitions A : BC, B : AC,
and C : AB. One can choose | i such that p

cr

is the lowest
across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds

IA:CB � IAC:B  IA:C  IAB:C . (7)

Both in classical and quantum information theory, the increase
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.
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in the initial state ↵. This is seen by applying Eq. (1) again, but
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a situation in which Bob, upon reading the index i encoded in
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AC he will end up sharing
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carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.
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On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log
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across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
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tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
Then B is classical initially and therefore also in the state �
after the encoding: � =
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tanglement between Alice and Bob can only be created if the
carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log

2

d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
than log
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d.
Examples.—In order to make our result more concrete, in

Appendix we provide new examples of both the creation and
the increase of entanglement between distant parties by the
exchange of an unentangled carrier. The examples are based
on the fact that the state of a bipartite system of total dimen-
sions d
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the bipartite state | i, and 11/d
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is the maximally mixed state
of the total system [33]. Consider now a tripartite pure state
| i = | iABC . This state admits three Schmidt decomposi-
tions corresponding to the three bipartitions A : BC, B : AC,
and C : AB. One can choose | i such that p
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is the lowest
across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds
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Entanglement distribution via separable system.—The
bound derived in Eq. (1) is tight in some cases; in particu-
lar, we have verified that it is tight for the three-qubit state
of the seminal example of entanglement creation with an un-
entangled carrier introduced in Ref. [10]. Motivated by this,
and in order to emphasize the significance of the appearance
of discord rather than entanglement on the right-hand side of
Eq. (1), here we focus on the general conditions for the suc-
cess of entanglement creation by means of a separable carrier.
In the present framework, this corresponds to requiring

EB:AC(↵) = 0 () EB:AC(�) = 0), (5a)
EC:AB(�) = 0, (5b)
EA:BC(�) > 0. (5c)

Eq. (5a) says that no entanglement between the distant sites
is present initially. The implication is due to the local nature
of the encoding operation MAC . Eq. (5b) encompasses our
prescription that the carrier must be separable from A and B.
Finally, Eq. (5c) ensures that non-vanishing entanglement is
established by exchanging the carrier. We remark that non-
vanishing A : BC entanglement does not necessarily imply
the possibility of creating A : B entanglement via the local de-
coding operation on BC mentioned above. Indeed, if this was
always possible, bound entanglement [28] would not exist, as
one could always map entanglement into two-qubit entangle-
ment, which is known to be distillable [29]. However, in many
relevant cases, including all our examples, entanglement can
be localized as shown by the Theorem 2 in the Appendix.

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side already
in the initial state ↵. This is seen by applying Eq. (1) again, but
with the roles of B and C interchanged, and using the fact that
discord does not increase under operations on the unmeasured
systems [30], arriving to

EA:CB(�)  EAB:C(�) +DAC|B(↵). (6)

If Eq. (5b) holds, we obtain the relation EA:BC(�) 
DAC|B(↵). Note that if C is initially not correlated with AB,
tha latter further simplifies to EA:BC(�)  DA|B(↵). Another
interesting limiting case of Eq. (6) is when DAC|B(↵) = 0.
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carrier is entangled with the sites and, in particular, only if at
least one �i

AC is entangled. Indeed, such � simply describes
a situation in which Bob, upon reading the index i encoded in
B, knows which of many states �i

AC he will end up sharing
with Alice.

On the other hand, entanglement creation with a separable
carrier is possible starting from a state with DBC|A(↵) = 0.
For instance, it is enough to consider the three-qubit exam-
ple given in Ref. [10], but starting with A and C interchanged
and using a step in the encoding operation MAC to undo the
change before proceeding with the original protocol. How-
ever, under further restrictions, the classicality of A may pre-

vent entanglement creation with a separable carrier, as shown
for instance in Theorem 3 in the Appendix.

Furthermore, we note that when the encoding operation
is restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [31] and the existence of discordant states
infinitesimally close to any non-discordant one [32]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.

Finally, for a fixed dimension of the carrier, it is more effi-
cient to use an entangled carrier rather than a separable one.
On one hand, by sending a d-dimensional system that is max-
imally entangled with a similar one that remains with the
sender, we can increase the shared entanglement by log
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d. On
the other hand, Theorem 4 of the Appendix shows that using
separable states the entanglement increase is strictly smaller
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across the A : BC bipartition, so that there is a finite range
for p such that ⇢p is A : BC-entangled but separable in the
remaining two splittings. Such a ⇢p is meant to play the role
of � in our scenario. We remark that the three-qubit example
of Ref. [10] uses a carrier system C that is initially classically
correlated with A and B. However, a scenario where C ini-
tially shares no correlation with the remote nodes is more rel-
evant from a practical point of view, as one can imagine that
the carrier is an independent system to be used to distribute
entanglement. Even with such a restriction, entanglement can
be established via a separable system, as proven explicitly by
our examples in the Appendix.

Conclusions.—It is the very act of physical transmission of
a carrier system that changes the amount of correlations be-
tween the remote laboratories. To illustrate this consider to-
tal correlations, as captured by mutual information. One ex-
pects from the principle of no-signaling or information causal-
ity [34] that the increase of mutual information is bounded
by the amount of communicated correlations. Indeed, apply-
ing the chain rule for mutual information and its monotonicity
under local operations [35] one finds
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Both in classical and quantum information theory, the increase
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FIG. 1: Entanglement distribution. (a) The distribution protocol be-
gins with systems A and C in Alice’s lab and system B in Bob’s.
(b) In the next step, Alice applies an encoding operation to systems
A and C. (c) System C is then sent to Bob’s site. (d) The carrier C
interacts with B via a decoding operation meant to localize on B the
entanglement between A and BC. (e) Systems A and B are more
entangled than in panel (a).

set of quantum-classical states �X|Y =

P
j pj �

j
X ⌦ |ji hj|Y ,

with {|ji} an orthonormal basis for Y . It can be shown that
DX|Y (⇢) corresponds to the minimal entropic increase result-
ing from the performance of a complete projective measure-
ment ⇧Y over Y : DX|Y (⇢)=min

⇧Y S(⇧Y (⇢))�S(⇢) where
⇧Y (⇢) describes the state after the measurement ⇧Y [24].
Finally, mutual information between X and Y is defined as
IX:Y (⇢) := S(⇢XY k⇢X ⌦ ⇢Y ), with ⇢X and ⇢Y the reduced
states of X and Y . Mutual information quantifies the total
amount of correlations present between X and Y [25]. It
holds IX:Y (⇢) � DX|Y (⇢) � EX:Y (⇢).

Entanglement distribution.—Consider two remote agents,
Alice and Bob, having access to local quantum systems A and
B, respectively. Their aim is to increase the entanglement
that they share by sending an auxiliary quantum system—the
carrier C—with which they interact locally (see Fig. 1). The
key step of any communication scheme is the transfer of a
carrier system from one laboratory to the other. The difference
in entanglement across the two bipartitions A : CB and AC :

B, corresponding to the situation after and before the transfer
of the carrier, can be bound thanks to the following (see the
Appendix for a proof)

Theorem 1. For any tripartite state ⇢ = ⇢ABC it holds

|EA:CB(⇢)� EAC:B(⇢)|  DAB|C(⇢). (1)

We apply this relation to the scenario of Fig. 1. Let us
call ↵ the initial state of A,B and C, and � = MAC(↵) the
state obtained from it by means of a local encoding operation
MAC that does not increase entanglement in the AC : B cut,
i.e. EAC:B(�)  EAC:B(↵). System C is then sent to Bob’s
site, where it interacts with B via a decoding operation meant
to localize on B alone the entanglement between the labora-
tories [26]. As a side note, we mention that one could also
consider local encoding operations that add ancillary systems.
However, this is taken into account by including all ancillas
in A or C from the very beginning. Combining the above
description with Eq. (1) for � we arrive at

EA:CB(�)  EAC:B(↵) +DAB|C(�). (2)

This shows that the entanglement gain between distant labo-
ratories is bounded by the amount of quantum discord as mea-
sured on the communicated system – the communicated quan-
tum correlations. In what follows we discuss the meaning and
the implications of the bounds given in Eqs. (1) and (2).

Impossibility of entanglement distribution by local opera-
tions and classical communication.—Let us first address the
case of DAB|C(�)=0. This corresponds to classical com-
munication from Alice to Bob as it implies that � has the
quantum-classical structure � =

P
i pi⇢

i
AB ⌦ |ii hi|C . The

index i embodies classical information that Alice may copy
locally before sending C to Bob. After C is transferred from
Alice to Bob, both have access to this information. Bob can
then perform a local transformation that depends on the index
i originally held only by Alice. The process just described is
one communication step of a general protocol based on the
use of local operations and classical communication (LOCC).
The protocol may include several rounds of classical commu-
nication with C that is sent back and forth between Alice and
Bob; local classical registers can be kept or erased at any stage
of the protocol. In this case, Eq. (2) reduces to the statement
that entanglement does not increase at any step of a proto-
col based on LOCC [13]. If DAB|C(�) does not vanish, the
transfer of C cannot be interpreted as classical communica-
tion revealing the role of discord in general quantum commu-
nication. Hence, Eq. (2) constitutes a non-trivial relaxation of
the condition of monotonicity of entanglement under LOCC,
bounding the increase of entanglement under local operations
and quantum communication.

Subadditivity of entropy.—Let us now take a tripartite pure
state ⇢ = |�i h�|ABC . Since for a generic pure state | iXY
both the relative entropy of entanglement and the relative en-
tropy of discord coincide with the entropy of the reduced
states of X or Y , Eq. (1) becomes

|S(⇢A)� S(⇢B)|  S(⇢AB), (3)

which is the Araki-Lieb inequality for the von Neumann en-
tropy [27] and is equivalent to the subadditivity of entropy
for subsystems AC and BC. Accordingly, Eq. (1) can be in-
terpreted as a possible generalization of the subadditivity of
entropy, based on the concepts of entanglement and quantum-
ness of correlations and valid for tripartite mixed states.

Simple meaning of quantum conditional entropy.—
Consider the bipartite system composed of A and C, both held
at Alice’s location, and prepared in a state ⇢AC with condi-
tional entropy SC|A(⇢) := S(⇢AC)�S(⇢A). Let us introduce
a third system B being a purification of ⇢AC and let us place
it in a distant laboratory. The left-hand side of Eq. (1), written
for a pure tripartite system, reads

EA:CB(⇢)� EAC:B(⇢) = SC|B(⇢) = �SC|A(⇢). (4)

Therefore, the negative conditional entropy �SC|A of ⇢AC

gives the increase of entanglement between distant laborato-
ries caused by the transfer of C.
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FIG. 3: Real (left) and imaginary (right) parts of the output
state �ABC (a) Experimental density matrix, obtained via
three-qubit state tomography. (b) Ideal density matrix.

state tomography on the output state �

ABC

[24]. The
total integration time was 387 hours, during which we
counted ⇠30, 000 four-fold coincidence events. The re-
constructed density matrix has a large overlap with the
ideal state, quantified by a fidelity of F(�

exp

,�

ideal

) ⌘
Tr((�

1/2

exp

�

ideal

�

1/2

exp

)1/2)2=0.98, and is shown in Fig. 3. To
estimate the uncertainty, we perform a Monte Carlo anal-
ysis based on 10,000 Poissonian-distributed variations of
the measured photon counts. The corresponding popu-
lation of reconstructed density matrices is used to eval-
uate an average fidelity of F

est

=0.967±0.007, which is
extremely close to the experimental value.

In order to experimentally study the resilience of the
protocol against noise and to obtain an unambiguous
signature for entanglement distribution with separable
states, we add increasing amounts of white noise to the
initial state, thus obtaining ↵̃

ABC

= (1� p)↵
ABC

+ p

8

11.
Previously, this method has been used to assess the gen-
eration of bound-entangled states [25]. Theoretically,
↵̃

ABC

allows entanglement distribution over separable
states for all p <

1

3

, and in the Supplemental Mate-
rial [26] we assess the robustness of the resource state
against other types of noise.

In Fig. 4a we plot �min for all bipartitions of the mea-
sured states as a function of added white noise. For
p = 0 only bipartition A|BC is entangled, indicating a
successful demonstration of the protocol. However, as
shown in Fig. 4c, only 17.4% of the Monte Carlo popula-
tion have the required success signature. This proportion
rises rapidly with the addition of small amounts of white
noise: 96.5% of the population successfully demonstrate
the protocol for p=0.1667.

The measured negativity with the maximum added

noise (p=0.1667) is N exp

A|BC

=0.0172 with N exp

B|AC

and

N exp

C|AB

zero. In order to exclude the possibility that the

controlled phase gate introduces bound entanglement [27]
that is distributed by system C, we provide an explicit
decomposition of the experimental states in terms of con-
vex sums of product states of the C|AB bipartition in
Section I and II of the Supplemental Material [26].

A key question is the potential advantages of the pro-
tocol over other communication-based strategies for en-
tanglement distribution. Alice and Bob will always do
better by directly sharing maximally entangled states, if
those are available [15]. However, given noisy resources
to start with—a reasonable assumption in any practical
setting—distribution of entanglement via separable car-
riers is advantageous in some regimes. In Section V of
the Supplemental Material [26], we show that for depo-
larising and dephasing noise, the protocol demonstrated
here outperforms direct entanglement sharing, i.e. start-
ing with noisy Werner states the amount of distributed
entanglement is higher using the present protocol and
for certain noisy channels only the present protocol dis-
tributes entanglement.

We have experimentally demonstrated that distillable
entanglement can be distributed between remote parties
who exchange only unentangled systems. The success
of our protocol is confirmed by the unambiguously en-
tangled nature of the A|BC bipartition and the sep-
arability of the other two. An equally interesting al-
beit weaker statement on entanglement distribution via
bound-entangled states would be possible by having a
C|AB bipartition with positive partial transposition yet
not separable. We have shown the robustness of the pro-
tocol to noise and the existence of experimentally rele-
vant conditions under which distributing entanglement
using a separable information carrier is indeed more ad-
vantageous than communicating entanglement between
remote nodes of a network.
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became aware of an independent demonstration of the
phenomenon discussed here based on the use of continu-
ous variable systems [28, 29].
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the measured photon counts. The corresponding popu-
lation of reconstructed density matrices is used to eval-
uate an average fidelity of F
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rial [26] we assess the robustness of the resource state
against other types of noise.

In Fig. 4a we plot �min for all bipartitions of the mea-
sured states as a function of added white noise. For
p = 0 only bipartition A|BC is entangled, indicating a
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those are available [15]. However, given noisy resources
to start with—a reasonable assumption in any practical
setting—distribution of entanglement via separable car-
riers is advantageous in some regimes. In Section V of
the Supplemental Material [26], we show that for depo-
larising and dephasing noise, the protocol demonstrated
here outperforms direct entanglement sharing, i.e. start-
ing with noisy Werner states the amount of distributed
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who exchange only unentangled systems. The success
of our protocol is confirmed by the unambiguously en-
tangled nature of the A|BC bipartition and the sep-
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beit weaker statement on entanglement distribution via
bound-entangled states would be possible by having a
C|AB bipartition with positive partial transposition yet
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K. Życzkowski for discussions. MZ and TP are supported
by the National Research Foundation and Ministry of
Education in Singapore, and by the start-up grant of
Nanyang Technological University. MP thanks the UK
EPSRC for financial support through a Career Acceler-
ation Fellowship and a grant under the “New directions
for EPSRC research leaders” initiative; AF and MA for
support by Australian Research Council Discovery Early
Career Awards, DE130100240 and DE120101899, respec-
tively; AGW acknowledges support from a UQ Vice-
Chancellor’s Senior Research Fellowship.

Note added. During the completion of this work we
became aware of an independent demonstration of the
phenomenon discussed here based on the use of continu-
ous variable systems [28, 29].

4

0 00.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 400 800 1200
ï����

ï����

ï����

ï����

ï����

ï����

ï����

0

0.01

0.02

����

����

0.04

Noise parameter p n
 

C|AB
B|AC
A|BC

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1 1

����

0.9

����

Noise parameter p p

Pr
op

or
tio

n 
w

ith
 re

qu
ire

d 
si

gn
at

ur
e

 

Fi
de

lit
y

S ������
 

a

c d

b

������

M
in

im
um

 e
ig

en
va

lu
e

FIG. 4: (a) Minimum eigenvalue after partial transposition �min for each bipartition of �ABC , against white-noise admixture
p. The dash-dotted (dashed) black lines show the theoretical values for infinite counts for the A|BC (C|AB and B|AC)
bipartitions respectively. Error bars represent 1 standard deviation of the distributions described in (b). (b) �min for p =
0.1667, experimental data (solid lines) and Monte Carlo distribution (histogram) based on a population of 10, 000 tomographic
reconstructions with Poissonian variation of the measured counts. (c) Proportion of the Monte Carlo population for which
only bipartition �A|BC has �min < 0. Solid line is a guide to the eye constructed by ideally adding white-noise to the p = 0
experimental state. (d) Box-and-whisker plot representing the fidelity distribution of the theoretical state with the Monte Carlo
population for p = 0.1667, the whiskers indicate maximum and minimum values. The data point represents the fidelity of the
experimentally obtained state with the ideal one.
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FIG. 2: Entanglement distribution scheme. (a) Equivalent
quantum circuit diagram for our protocol. (b) Two pairs of
single photons are created via spontaneous parametric down-
conversion in a �-barium borate crystal (BBO) pumped by a
frequency-doubled femtosecond Ti:sapphire laser at 820 nm.
One photon serves as a trigger, while the other three are
initialised with polarising beamsplitters (PBS), half-wave
(HWP) and quarter-wave plates (QWP). The photons rep-
resenting systems A and C are subjected to a probabilistic
controlled-phase gate based on non-classical two-photon in-
terference on a partially polarising beamsplitter (PPBS) [26].
All photons are then analysed by a combination of HWP,
QWP and PBS, and detected by single-photon avalanche pho-
todiodes (APD) connected to a coincidence logic.

used e.g. in Ref. [27]). This approach guarantees that
the initial state is separable. Systems A and C are sub-
jected to a photonic controlled-phase gate [26] prior to
performing a full three-qubit quantum state tomography
on the output state �

ABC

[28]. The experimentally ob-
tained density matrix, whose fidelity with the ideal state
is F

exp

=0.98, is shown in Fig. 3. To estimate the uncer-
tainty, we generate 104 samples with Poisson-distributed
random noise added to the raw data. The corresponding
reconstructed density matrices are used to evaluate an
average fidelity of F

est

=0.967±0.007, which is extremely
close to the experimental value.

The next step is to use the density matrix to calcu-
late the entanglement in the relevant bipartitions: for
the bipartitions B|AC and C|AB, which are separable
according to the theoretical protocol, the smallest eigen-
values of the partially transposed density matrices should
be exactly zero. In practice, due to experimental imper-
fections and the statistics of limited photon count rates,
it is likely that such eigenvalues for the experimentally re-
constructed states could have a (small) negative nominal
value, which would make such instances compatible with
entangled bipartitions. To conclusively prove that the
bipartitions B|AC and C|AB are separable, we add in-
creasing amounts of white noise to the initial state, which
thus becomes ↵̃

ABC

= (1 � p)↵
ABC

+ p

8

11
3
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FIG. 3: (a) Experimental density matrix �ABC obtained via
three-qubit state tomography on the final state in the proto-
col. (b) Ideal density matrix �ABC .

White noise contributes no correlations, so this raises the
value of the smallest eigenvalues of partially transposed
density matrices, as shown in Fig. 4a. A similar method
was previously studied to assess the generation of bound-
entangled states [27]:

For no added noise, the smallest eigenvalues of the
partially transposed experimental states suggest that the
protocol is successful: N

A|BC

is clearly negative and both
N

B|AC

and N
C|AB

are non-negative. However, as shown
by the shaded bars in Fig. 4a, out of the 104 states sim-
ulated for the error estimation only 17.4% have the re-
quired features at the relevant bipartitions. Fig. 4b shows
that the proportion of such states rises rapidly with the
addition of only a small amount of white noise: 96.5%
of the sampled matrices fulfil the requirements for a suc-
cessful protocol already at p=0.1667. Note that this is a
conservative estimate: as the histograms in Fig. 4c make
clear, the data (indicated by the solid coloured bars)
consistently lie in the upper part of the estimated error
range. This skew can be understood by considering the
fidelity of the experimental state at p=0.1667 with the
ideal state, �

ABC

. As the nominal value of the fidelity is
very close to unity (F=0.98), simulating a Poisson dis-
tribution with limited count statistics is likely to lead to
lower fidelities, pushing the estimates to below the mea-
sured values [cf. Fig. 4d].

The minimum eigenvalues of the partially trans-
posed experimental states at maximum amount of
added noise are N exp

A|BC

=�0.0172, N exp

B|AC

=0.0202, and

N exp

C|AB

=0.0271. By repeating the limited-count analysis
in an otherwise ideal case, in the Supplementary Informa-
tion (SI) we show that the skew and the clear splitting be-
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entanglement [12] and the latter as quantified by the one-
way quantum deficit [13], also known as relative entropy
of discord [14]. The quantum relative entropy between
two states ! and " is defined as Sð! k "Þ: ¼ $Sð!Þ $
trð! log"Þ, where Sð!Þ ¼ $trð! log!Þ is the von Neumann
entropy of !. The relative entropy is monotonic under
any completely positive trace-preserving map M, that is
Sð! k "Þ % S½Mð!Þ k Mð"Þ'. The relative entropy of
entanglement in the bipartition X versus Y is defined as
the minimum relative entropy EX:Yð!Þ: ¼ min!X:Y

Sð! k
!X:YÞ between the joint state ! of X and Y and the set of
separable states !X:Y ¼ P

ipi!
i
X ( !i

Y [12]. Similarly, the
relative entropy of discord is defined as the minimum
relative entropy DXjYð!Þ :¼ min#XjYSð!jj#XjYÞ between

! and the set of quantum-classical states #XjY ¼P
jpj#

j
X ( jjihjjY , with fjjig an orthonormal basis for Y.

It can be shown that DXjYð!Þ corresponds to the minimal
entropic increase resulting from the performance of a
complete projective measurement !Y over Y: DXjYð!Þ ¼
min!Y

S½!Yð!Þ' $ Sð!Þ where !Yð!Þ describes the state
after the measurement !Y [14]. Finally, mutual informa-
tion between X and Y is defined as IX:Yð!Þ :¼ Sð!XY k
!X ( !YÞ, with !X and !Y the reduced states of X and Y.
Mutual information quantifies the total amount of correla-
tions present between X and Y [15]. It holds IX:Yð!Þ %
DXjYð!Þ % EX:Yð!Þ.

Entanglement distribution.—Consider two remote
agents, Alice and Bob, having access to local quantum
systems A and B, respectively. Their aim is to increase
the entanglement that they share by sending an auxiliary
quantum system—the carrier C—with which they interact
locally (see Fig. 1). The key step of any communication
scheme is the transfer of a carrier from one laboratory to
the other. The difference in entanglement across the bipar-
titions A:CB and AC:B, corresponding to the situation after
and before the transfer of the carrier, can be bound thanks
to the following (see the Appendix).

Theorem 1.—For any tripartite state ! ¼ !ABC it holds

jEA:CBð!Þ $ EAC:Bð!Þj ) DABjCð!Þ: (1)

We apply this relation to the scenario of Fig. 1. Let us call
$ the initial state of A, B, and C, and % ¼ MACð$Þ the
state obtained from it by means of a local encoding opera-
tion MAC. A local operation on AC cannot increase
entanglement in the AC:B cut, i.e., EAC:Bð%Þ ) EAC:Bð$Þ.
System C is then sent to Bob’s site, where it interacts
with B via a decoding operation meant to localize on
B the entanglement between the laboratories [16].
Combining the above description with Eq. (1) for % we get

E A:CBð%Þ ) EAC:Bð$Þ þDABjCð%Þ: (2)

This shows that the entanglement gain between distant
laboratories is bounded by the amount of quantum discord
as measured on the communicated system. In what follows

we discuss the meaning and the implications of the bounds
given in Eqs. (1) and (2).
Impossibility of entanglement distribution by local

operations and classical communication.—Let us first
address the case of DABjCð%Þ ¼ 0. This corresponds to
classical communication from Alice to Bob as it implies
that % has the quantum-classical structure % ¼ P

ipi!
i
AB (

jiihijC. The index i embodies classical information that
Alice may copy locally before sending C to Bob. After C
is transferred from Alice to Bob, both have access to this
information. Bob can then perform a local transformation
that depends on the index i originally held only by Alice.
The process just described is one communication step of a
general protocol based on the use of local operations and
classical communication (LOCC). The protocol may in-
clude several rounds of classical communication with C
that is sent back and forth between Alice and Bob; local
classical registers can be kept or erased at any stage of the
protocol. In this case, Eq. (2) reduces to the statement that
entanglement does not increase at any step of a protocol
based on LOCC [7]. If DABjCð%Þ does not vanish, the
transfer of C cannot be interpreted as classical communi-
cation, revealing the role of discord in general quantum
communication. Hence, Eq. (2) constitutes a nontrivial
relaxation of the condition of monotonicity of entangle-
ment under LOCC, bounding the increase of entanglement
under local operations and quantum communication.
Pure state case.—We now apply Eqs. (1) and (2) to a

tripartite pure state ! ¼ j&ih&jABC. For any bipartite pure
state, the relative entropy of entanglement and the relative
entropy of discord coincide with the entropy of the reduced
states of the parts. Thus, Eq. (1) becomes

jSð!AÞ $ Sð!BÞj ) Sð!ABÞ; (3)

which is the Araki-Lieb inequality [17] and is equivalent to
the subadditivity of entropy for subsystems AC and BC.
Accordingly, Eq. (1) can be seen as a generalization of the
subadditivity of entropy valid for tripartite mixed states.
When the carrier is sent from Alice’s lab to Bob’s, the

change in entanglement given in Eq. (2), becomes

(a) (b)

(c) (d) (e)

FIG. 1 (color online). Entanglement distribution. (a) The dis-
tribution protocol begins with systems A and C in Alice’s lab and
system B in Bob’s. (b) In the next step, Alice applies an encoding
operation to systems A and C. (c) System C is then sent to Bob’s
site. (d) The carrier C interacts with B via a decoding operation
meant to localize on B the entanglement between A and BC.
(e) Systems A and B are more entangled than in panel (a).
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entanglement [12] and the latter as quantified by the one-
way quantum deficit [13], also known as relative entropy
of discord [14]. The quantum relative entropy between
two states ! and " is defined as Sð! k "Þ: ¼ $Sð!Þ $
trð! log"Þ, where Sð!Þ ¼ $trð! log!Þ is the von Neumann
entropy of !. The relative entropy is monotonic under
any completely positive trace-preserving map M, that is
Sð! k "Þ % S½Mð!Þ k Mð"Þ'. The relative entropy of
entanglement in the bipartition X versus Y is defined as
the minimum relative entropy EX:Yð!Þ: ¼ min!X:Y
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!X:YÞ between the joint state ! of X and Y and the set of
separable states !X:Y ¼ P
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Y [12]. Similarly, the
relative entropy of discord is defined as the minimum
relative entropy DXjYð!Þ :¼ min#XjYSð!jj#XjYÞ between

! and the set of quantum-classical states #XjY ¼P
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X ( jjihjjY , with fjjig an orthonormal basis for Y.

It can be shown that DXjYð!Þ corresponds to the minimal
entropic increase resulting from the performance of a
complete projective measurement !Y over Y: DXjYð!Þ ¼
min!Y

S½!Yð!Þ' $ Sð!Þ where !Yð!Þ describes the state
after the measurement !Y [14]. Finally, mutual informa-
tion between X and Y is defined as IX:Yð!Þ :¼ Sð!XY k
!X ( !YÞ, with !X and !Y the reduced states of X and Y.
Mutual information quantifies the total amount of correla-
tions present between X and Y [15]. It holds IX:Yð!Þ %
DXjYð!Þ % EX:Yð!Þ.

Entanglement distribution.—Consider two remote
agents, Alice and Bob, having access to local quantum
systems A and B, respectively. Their aim is to increase
the entanglement that they share by sending an auxiliary
quantum system—the carrier C—with which they interact
locally (see Fig. 1). The key step of any communication
scheme is the transfer of a carrier from one laboratory to
the other. The difference in entanglement across the bipar-
titions A:CB and AC:B, corresponding to the situation after
and before the transfer of the carrier, can be bound thanks
to the following (see the Appendix).

Theorem 1.—For any tripartite state ! ¼ !ABC it holds

jEA:CBð!Þ $ EAC:Bð!Þj ) DABjCð!Þ: (1)

We apply this relation to the scenario of Fig. 1. Let us call
$ the initial state of A, B, and C, and % ¼ MACð$Þ the
state obtained from it by means of a local encoding opera-
tion MAC. A local operation on AC cannot increase
entanglement in the AC:B cut, i.e., EAC:Bð%Þ ) EAC:Bð$Þ.
System C is then sent to Bob’s site, where it interacts
with B via a decoding operation meant to localize on
B the entanglement between the laboratories [16].
Combining the above description with Eq. (1) for % we get

E A:CBð%Þ ) EAC:Bð$Þ þDABjCð%Þ: (2)

This shows that the entanglement gain between distant
laboratories is bounded by the amount of quantum discord
as measured on the communicated system. In what follows

we discuss the meaning and the implications of the bounds
given in Eqs. (1) and (2).
Impossibility of entanglement distribution by local

operations and classical communication.—Let us first
address the case of DABjCð%Þ ¼ 0. This corresponds to
classical communication from Alice to Bob as it implies
that % has the quantum-classical structure % ¼ P

ipi!
i
AB (

jiihijC. The index i embodies classical information that
Alice may copy locally before sending C to Bob. After C
is transferred from Alice to Bob, both have access to this
information. Bob can then perform a local transformation
that depends on the index i originally held only by Alice.
The process just described is one communication step of a
general protocol based on the use of local operations and
classical communication (LOCC). The protocol may in-
clude several rounds of classical communication with C
that is sent back and forth between Alice and Bob; local
classical registers can be kept or erased at any stage of the
protocol. In this case, Eq. (2) reduces to the statement that
entanglement does not increase at any step of a protocol
based on LOCC [7]. If DABjCð%Þ does not vanish, the
transfer of C cannot be interpreted as classical communi-
cation, revealing the role of discord in general quantum
communication. Hence, Eq. (2) constitutes a nontrivial
relaxation of the condition of monotonicity of entangle-
ment under LOCC, bounding the increase of entanglement
under local operations and quantum communication.
Pure state case.—We now apply Eqs. (1) and (2) to a

tripartite pure state ! ¼ j&ih&jABC. For any bipartite pure
state, the relative entropy of entanglement and the relative
entropy of discord coincide with the entropy of the reduced
states of the parts. Thus, Eq. (1) becomes

jSð!AÞ $ Sð!BÞj ) Sð!ABÞ; (3)

which is the Araki-Lieb inequality [17] and is equivalent to
the subadditivity of entropy for subsystems AC and BC.
Accordingly, Eq. (1) can be seen as a generalization of the
subadditivity of entropy valid for tripartite mixed states.
When the carrier is sent from Alice’s lab to Bob’s, the

change in entanglement given in Eq. (2), becomes

(a) (b)

(c) (d) (e)

FIG. 1 (color online). Entanglement distribution. (a) The dis-
tribution protocol begins with systems A and C in Alice’s lab and
system B in Bob’s. (b) In the next step, Alice applies an encoding
operation to systems A and C. (c) System C is then sent to Bob’s
site. (d) The carrier C interacts with B via a decoding operation
meant to localize on B the entanglement between A and BC.
(e) Systems A and B are more entangled than in panel (a).

PRL 109, 070501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

070501-2

Revealing non-classicality of unmeasured objects

Tanjung Krisnanda,1 Margherita Zuppardo,1 Mauro Paternostro,2 and Tomasz Paterek1, 3, 4

1School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
2School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

3Centre for Quantum Technologies, National University of Singapore, Singapore
4MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

Some physical objects are not accessible to direct experimentation. An environment of an open
quantum system being a paradigmatic example. It is then desirable to infer the properties of these
objects based solely on their interactions with systems over which we have control. In this spirit,
here we propose a method for assessing non-classicality of the environment from the gain of quantum
entanglement between two systems individually interacting with the environment but not with each
other. The framework is general and in principle allows detection of non-classical features of any
inaccessible object able to mediate entanglement.

Positions and momenta of classical particles determine
their state. Since no limitation on the precision of po-
sition and momentum measurement is imposed by the
classical laws, all accessible classical states are in prin-
ciple distinguishable. On the contrary, there exists no
measurement able to distinguish quantum states rep-
resented by non-orthogonal Hilbert space vectors. We
therefore declare an object as non-classical if its de-
scription within quantum formalism requires such non-
orthogonal states. Quantum correlations necessitate this
form of non-classicality of certain subsystems, i.e. some
quantum states of the multipartite system are impossible
to represent with only orthogonal states for the subsys-
tem.

This idea is explicitly present in the definition of quan-
tum discord, which asserts that objects share quantum
correlations if there is no von Neumann measurement on
a subsystem that keeps the total state unchanged [1–
4]. Indeed, this only happens when the total state is
not so-called quantum-classical, meaning that some non-
orthogonal states must be used to represent the subsys-
tem. Our aim here is to reveal the non-classicality of a
subsystem, equivalently the presence of quantum discord
between this subsystem and others, without actually ac-
cessing it.

Consider the three-body scenario depicted in Fig. 1.
As a motivation for our study let the inaccessible ob-
ject C be the environment of the open quantum sys-
tem AB. A vast body of literature exists on the initial
system-environment correlations stressing their influence
on the evolution of the open system [5]. The signifi-
cant role of the initial correlations resulted in various
proposals for their detection by monitoring the dynam-
ics of distinguishability [6–10] or purity [11, 12] of the
whole accessible system. These schemes have been im-
plemented experimentally by means of quantum tomog-
raphy [13, 14]. Our scheme can also be used to detect
system-environment correlations with the advantage that
state tomography is not necessary. This is achieved by
dividing the open system into A and B parts and mon-
itoring presence of entanglement, which can be realised

with entanglement witnesses [15, 16].
Furthermore, the non-classicality of the initial correla-

tions was linked to the impossibility of describing dynam-
ics of the open system with completely positive maps [17].
Hence detection schemes of quantum discord in the initial
system-environment state have been proposed [18, 19]
and recently assessed experimentally [20–22]. We em-
phasise that these schemes detect the non-classicality of
the principal system, whereas our schemes ascertain the
non-classicality of the environment. The latter is usually
assumed to be inaccessible directly.
Our method is developed in the context of entangle-

ment distribution with continuos interactions [23], as
shown in Fig. 1. We first focus on the partition A : BC
and demonstrate a crucial result which will be instru-
mental to design our criterion for the inference of non-
classicality of C based on entanglement dynamics in AB
only. Previous studies on the resources allowing for en-
tanglement distribution showed that any three-body den-
sity matrix, i.e. at any moment of time t in the present
context, satisfies the following inequality [24, 25]:

|EA:BC(t)� EAC:B(t)|  DAB|C(t), (1)

where EX:Y is the relative entropy of entanglement in
the partition X : Y [26], and DX|Y is the relative en-
tropy of discord [27] also known as the one-way quantum
deficit [28]. Note that relative entropy of discord is in

FIG. 1. General framework. Particles A and B individually
interact with a mediator object C, but not with each other,
i.e. the interaction Hamiltonian is HAC +HBC . It is assumed
that C is inaccessible, i.e. no measurement can be conducted
on it and its state cannot be controlled. We show conditions
under which the gain of quantum entanglement in AB implies
non-classicality of C.
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Positions and momenta of classical particles determine
their state. Since no limitation on the precision of po-
sition and momentum measurement is imposed by the
classical laws, all accessible classical states are in prin-
ciple distinguishable. On the contrary, there exists no
measurement able to distinguish quantum states rep-
resented by non-orthogonal Hilbert space vectors. We
therefore declare an object as non-classical if its de-
scription within quantum formalism requires such non-
orthogonal states. Quantum correlations necessitate this
form of non-classicality of certain subsystems, i.e. some
quantum states of the multipartite system are impossible
to represent with only orthogonal states for the subsys-
tem.

This idea is explicitly present in the definition of quan-
tum discord, which asserts that objects share quantum
correlations if there is no von Neumann measurement on
a subsystem that keeps the total state unchanged [1–
4]. Indeed, this only happens when the total state is
not so-called quantum-classical, meaning that some non-
orthogonal states must be used to represent the subsys-
tem. Our aim here is to reveal the non-classicality of a
subsystem, equivalently the presence of quantum discord
between this subsystem and others, without actually ac-
cessing it.

Consider the three-body scenario depicted in Fig. 1.
As a motivation for our study let the inaccessible ob-
ject C be the environment of the open quantum sys-
tem AB. A vast body of literature exists on the initial
system-environment correlations stressing their influence
on the evolution of the open system [5]. The signifi-
cant role of the initial correlations resulted in various
proposals for their detection by monitoring the dynam-
ics of distinguishability [6–10] or purity [11, 12] of the
whole accessible system. These schemes have been im-
plemented experimentally by means of quantum tomog-
raphy [13, 14]. Our scheme can also be used to detect
system-environment correlations with the advantage that
state tomography is not necessary. This is achieved by
dividing the open system into A and B parts and mon-
itoring presence of entanglement, which can be realised

with entanglement witnesses [15, 16].
Furthermore, the non-classicality of the initial correla-

tions was linked to the impossibility of describing dynam-
ics of the open system with completely positive maps [17].
Hence detection schemes of quantum discord in the initial
system-environment state have been proposed [18, 19]
and recently assessed experimentally [20–22]. We em-
phasise that these schemes detect the non-classicality of
the principal system, whereas our schemes ascertain the
non-classicality of the environment. The latter is usually
assumed to be inaccessible directly.
Our method is developed in the context of entangle-

ment distribution with continuos interactions [23], as
shown in Fig. 1. We first focus on the partition A : BC
and demonstrate a crucial result which will be instru-
mental to design our criterion for the inference of non-
classicality of C based on entanglement dynamics in AB
only. Previous studies on the resources allowing for en-
tanglement distribution showed that any three-body den-
sity matrix, i.e. at any moment of time t in the present
context, satisfies the following inequality [24, 25]:

|EA:BC(t)� EAC:B(t)|  DAB|C(t), (1)

where EX:Y is the relative entropy of entanglement in
the partition X : Y [26], and DX|Y is the relative en-
tropy of discord [27] also known as the one-way quantum
deficit [28]. Note that relative entropy of discord is in

FIG. 1. General framework. Particles A and B individually
interact with a mediator object C, but not with each other,
i.e. the interaction Hamiltonian is HAC +HBC . It is assumed
that C is inaccessible, i.e. no measurement can be conducted
on it and its state cannot be controlled. We show conditions
under which the gain of quantum entanglement in AB implies
non-classicality of C.
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The dynamical setting
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:
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where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+
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2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
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where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial
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where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p
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As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
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ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
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AC:B  D0
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(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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Entanglement gain in partition A : BC mediated by C
Non-classicality of C entails an entanglement gain
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Some physical objects are not accessible to direct experimentation. An environment of an open
quantum system being a paradigmatic example. It is then desirable to infer the properties of these
objects based solely on their interactions with systems over which we have control. In this spirit,
here we propose a method for assessing non-classicality of the environment from the gain of quantum
entanglement between two systems individually interacting with the environment but not with each
other. The framework is general and in principle allows detection of non-classical features of any
inaccessible object able to mediate entanglement.

Positions and momenta of classical particles determine
their state. Since no limitation on the precision of po-
sition and momentum measurement is imposed by the
classical laws, all accessible classical states are in prin-
ciple distinguishable. On the contrary, there exists no
measurement able to distinguish quantum states rep-
resented by non-orthogonal Hilbert space vectors. We
therefore declare an object as non-classical if its de-
scription within quantum formalism requires such non-
orthogonal states. Quantum correlations necessitate this
form of non-classicality of certain subsystems, i.e. some
quantum states of the multipartite system are impossible
to represent with only orthogonal states for the subsys-
tem.

This idea is explicitly present in the definition of quan-
tum discord, which asserts that objects share quantum
correlations if there is no von Neumann measurement on
a subsystem that keeps the total state unchanged [1–
4]. Indeed, this only happens when the total state is
not so-called quantum-classical, meaning that some non-
orthogonal states must be used to represent the subsys-
tem. Our aim here is to reveal the non-classicality of a
subsystem, equivalently the presence of quantum discord
between this subsystem and others, without actually ac-
cessing it.

Consider the three-body scenario depicted in Fig. 1.
As a motivation for our study let the inaccessible ob-
ject C be the environment of the open quantum sys-
tem AB. A vast body of literature exists on the initial
system-environment correlations stressing their influence
on the evolution of the open system [5]. The signifi-
cant role of the initial correlations resulted in various
proposals for their detection by monitoring the dynam-
ics of distinguishability [6–10] or purity [11, 12] of the
whole accessible system. These schemes have been im-
plemented experimentally by means of quantum tomog-
raphy [13, 14]. Our scheme can also be used to detect
system-environment correlations with the advantage that
state tomography is not necessary. This is achieved by
dividing the open system into A and B parts and mon-
itoring presence of entanglement, which can be realised

with entanglement witnesses [15, 16].
Furthermore, the non-classicality of the initial correla-

tions was linked to the impossibility of describing dynam-
ics of the open system with completely positive maps [17].
Hence detection schemes of quantum discord in the initial
system-environment state have been proposed [18, 19]
and recently assessed experimentally [20–22]. We em-
phasise that these schemes detect the non-classicality of
the principal system, whereas our schemes ascertain the
non-classicality of the environment. The latter is usually
assumed to be inaccessible directly.
Our method is developed in the context of entangle-

ment distribution with continuos interactions [23], as
shown in Fig. 1. We first focus on the partition A : BC
and demonstrate a crucial result which will be instru-
mental to design our criterion for the inference of non-
classicality of C based on entanglement dynamics in AB
only. Previous studies on the resources allowing for en-
tanglement distribution showed that any three-body den-
sity matrix, i.e. at any moment of time t in the present
context, satisfies the following inequality [24, 25]:

|EA:BC(t)� EAC:B(t)|  DAB|C(t), (1)

where EX:Y is the relative entropy of entanglement in
the partition X : Y [26], and DX|Y is the relative en-
tropy of discord [27] also known as the one-way quantum
deficit [28]. Note that relative entropy of discord is in

FIG. 1. General framework. Particles A and B individually
interact with a mediator object C, but not with each other,
i.e. the interaction Hamiltonian is HAC +HBC . It is assumed
that C is inaccessible, i.e. no measurement can be conducted
on it and its state cannot be controlled. We show conditions
under which the gain of quantum entanglement in AB implies
non-classicality of C.
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in

EA:BC(�t)� EA:BC(0)  DAB|C(0) +D0
AB|C
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general not symmetric, i.e. DX|Y 6= DY |X . Inequal-
ity (1) shows that the change in entanglement due to
relocation of particle C is bounded by the non-classical
correlations in the form of discord carried by C.

We consider the situation where particles A and B in-
dividually interact with C. However, they are not in
direct interaction between them. We call HAC (HBC)
the interaction Hamiltonian between the mediator C and
particle A (B). We assume first that [HAC , HBC ] = 0,
and hence the evolution operator from the initial time,
t = 0, to some finite time, ⌧ , is just U = UBCUAC , with
UX = exp (�iHX⌧), where we set ~ = 1. This situation
is mathematically equivalent to first interacting C with
A and then C with B (or in reversed order). However,
note that the density matrix ⇢0 = UAC⇢0U

†
AC , obtained

by “evolving” the initial state by only one unitary, does
not describe the state of the system at time ⌧ . Such
states are obtained by application of the whole evolution
U for suitable duration. Nevertheless, we now show that
the properties of the instrumental state ⇢0 are relevant to
entanglement gain.

Consider the following forms of Eq. (1) written for the
initial state ⇢0 and the instrumental state ⇢0, respectively

EAC:B(0)� EA:BC(0)  DAB|C(0),

E0
A:BC � E0

AC:B  D0
AB|C .

(2)

Note that EAC:B(0) = E0
AC:B , because interaction UAC

is local in this partition. The state at time ⌧ is given
by ⇢⌧ = UBC⇢0U

†
BC and thus EA:BC(⌧) = E0

A:BC , this
time due to interaction UBC being local. Summing the
above inequalities we obtain the following bound on the
entanglement gain

EA:BC(⌧)� EA:BC(0)  DAB|C(0) +D0
AB|C . (3)

This opens up a possibility of creating entanglement at
time ⌧ without producing discord at time ⌧ and without
initial discord, but rather by utilising non-classicality in
the instrumental state. In other words, entanglement
gain in partition A : BC could be mediated by object
C which gets non-classically correlated by evolution UAC

and then decorrelated by UBC , so that object C is only
classically correlated at times t = 0 and ⌧ . We now give
a concrete example of this type of entanglement creation.

Consider the interaction Hamiltonian:

H = �x
A ⌦ 11⌦ �x

C + 11⌦ �x
B ⌦ �x

C , (4)

where �x is the Pauli x matrix. As initial state we choose
the classically correlated state

⇢0 = 1
2 |011ih011|+

1
2 |100ih100|, (5)

where e.g. |0i is the eigenstate of the Pauli z matrix with
eigenvalue +1. One can now readily check that the rel-
ative entropy of entanglement EA:BC grows from 0 to 1
in the timespan from t = 0 to ⌧ = ⇡/4, whereas discord

DAB|C remains zero at these two times. The gain is in-
deed due to non-classical correlations of the instrumental
state: applying only UAC for a time ⌧ produces discord
D0

AB|C = E0
AB:C = 1.

For general Hamiltonians HAC and HBC , which do not
commute, one can pursue a similar analysis with the help
of Trotter expansion. The evolution operator U is now
discretised into successive short time interactions of C
with A and C with B (or in reversed order)

U = lim
n!1

�
e�iHBC�te�iHAC�t

�n
, (6)

where �t = ⌧/n ! 0. Accordingly, Eq. (3) holds with
⌧ replaced by �t. It is now natural to ask if a scenario
exists where entanglement could be increased via inter-
actions with classical object C at all times by exploiting
the discord in the instrumental state. The example given
below Eq. (4) is not of this sort because, although quan-
tum discord DAB|C is zero initially and at time ⌧ , it is
non-zero for t 2 (0, ⌧). It turns out that for short evolu-
tion times the discord of the instrumental state cannot
be exploited as the following theorem demonstrates.

Theorem. For a three party system with Hamiltonian
HAC +HBC , entanglement EA:BC is constant if discord
DAB|C = 0 at all times.

Proof. While the formal proof of this statement is pre-
sented in Appendix A, a good intuition of the lines of
thought that lead to it comes from considering only terms
up to order �t in the evolution.

This theorem extends the result of no entanglement
gain via local operations and classical communication
(LOCC) [29] to the case of continuous interactions. In
general, zero-discord states are natural models for clas-
sical communication as they allow for continuous projec-
tive measurement on C that does not disturb the whole
multiparty state, and therefore make entanglement gain
impossible.
We are now in a position to study the non-classicality

of C from observing AB only. Due to the Theorem above,
a promising candidate observable is the entanglement
gain. However, we now show that some knowledge of
the initial state of the whole tripartite system needs to
be supplied.
Let us consider again Eq. (4) and choose the initial

state

⇢0 = 1
2 | +i h +|⌦ |+i h+|+ 1

2 |�+i h�+|⌦ |�i h�| , (7)

where |±i are the eigenstates of the Pauli x operator
with eigenvalues ±1, and | +i = 1p

2
(|01i + |10i) and

|�+i = 1p
2
(|00i + |11i) are two orthogonal Bell states.

As the initial state in Eq. (7) contains the eigenstates of
HC , the system remains classical, as measured on C, at
all times. Furthermore, the classical basis is the same
at all times. Yet, as seen in Fig. 2, the entanglement in
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FIG. 1: Sketch of the system considered. Fields a and b
interact with a movable mirror. The two cavities are driven
by input fields with power Pa,b. Input (output) fields are
indicated as ĵin (ĵout) with j = a, b. ξ̂ describes the Brownian
motion of the mirror at temperature T .

any resulting non-linear term. This is a well-established
tool allowing for the exact reconstruction of the quantum
statistical properties of the system, as far as the fluctu-
ations of the operators are small compared to the mean
values [8]. By defining the equilibrium position of the
mirror qs =

∑

j G̃0j |αs,j |2/ωm, the stationary amplitudes

of the intracavity fields αs,j = |Ej |/(κ2
j + ∆2

j )
1/2 [9] and

the effective detunings ∆j = ∆0j − G̃0jqs, the linearized
Langevin equations for fluctuations read

∂tδq̂ = ωmδp̂, (2)

∂tδp̂ = −ωmδq̂ − γmδp̂ +
∑

j=a,b

√
2G̃0jαs,jδx̂j + ξ̂,

∂tδx̂j = −κjδx̂j + ∆jδŷj + (−1)δjbδX̂ in
j ,

∂tδŷj = −κjδŷj − ∆jδx̂j +
√

2G̃0jαs,jδq̂ + (−1)δjbδŶ in
j .

We have introduced the quadrature operators asso-
ciated with the input noise to the cavities δQ̂in

j =
√

2κjδq̂in
j , (Q = X, Y ; q = x, y) and the operator ξ̂ ac-

counting for the zero-mean Brownian noise. The input
noise is correlated as ⟨δâin,j(t)δâ

†
in,k(t′)⟩ = δjkδ(t − t′)

with δâin,j = (δx̂in,j + iδŷin,j)/
√

2. Moreover, for

γm ≪ ωm we have ⟨ξ̂(t)ξ̂(t′) + ξ̂(t′)ξ̂(t)⟩ ∝ δ(t − t′) [10].
The linearity of Eqs. (2) preserves the Gaussian char-
acter of the system. We can define the vector f̂T =
(δx̂a, δŷa, δx̂b, δŷb, δq̂, δp̂), the kernel K (Gj =

√
2αs,jG0j)

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−κa ∆a 0 0 0 0
−∆a −κa 0 0 Ga 0

0 0 −κb ∆b 0 0
0 0 −∆b −κb −Gb 0
0 0 0 0 0 ωm

Ga 0 −Gb 0 −ωm −γm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

and the noise correlation matrix ⟨n̂p(t)n̂q(t′) +
n̂q(t′)n̂p(t)⟩/2 = Npqδ(t − t′) associated with the

noise vector n̂T (t) = (δX̂ in
a , δŶ in

a ,−δX̂ in
b ,−δŶ in

b , 0, ξ̂).
Here N =κa1l2 ⊕κb1l2⊕Ξ where Ξ ≃ Diag[0, γm(2n+1)]
with n = (eβωm − 1)−1 and 1l2 the 2 × 2 identity matrix.

Eqs. (2) are solved as f̂(t) = eKtf̂(0) +
∫ t
0 dτeKτ n̂(t− τ).

We aim at studying the entanglement properties of the
steady state, which is guaranteed to exist if the real parts
of the eigenvalues of K are negative. For the purposes
of our work it is sufficient to state that this requirement
is equivalent to the positivity of two functions, named
C1 and C2, the latter of which can be constructed as de-
scribed in Ref. [11]. We assume the numbers in the cap-
tion of Figs. 2 for cavity a, which are very close to those
of recently performed experiments on micromechanical
systems [6] and, to simplify the calculations, κb = κa

and G0b = G0a (which can be easily relaxed). This al-
lows us to study C1,2 as functions of ∆b and Pb. We take
∆a = ωm as this choice corresponds to the maximum
entanglement between a and the mirror [4] and we con-
servatively assume that this holds also in presence of b
(which is a good approximation if Pb ≪ Pa). With these
choices, the behavior of C1,2 is shown in Figs. 2. Even
though for Pb < Pa any sign of ∆b corresponds to a sta-
ble regime, we focus on the region associated to ∆b < 0
as we want to study the interaction of fields a and b with
the mirror for any value of the back-action induced by b.

Intracavity entanglement. – At the steady state,
f̂(∞) ≡ f̂ss = limt→∞

∫ t
0 dτeKτ n̂(t − τ). The stationary

covariance matrix Vpq = ⟨f̂ss,pf̂ss,q + f̂ss,q f̂ss,p⟩/2 of the
tripartite system can be written as

V =

⎛

⎝

La Cab Cam

CT
ab Lb Cbm

CT
am CT

bm Lm

⎞

⎠ (4)

where Lj accounts for the local properties of subsystem
j = a, b, m. Cjk describes the correlations between j and
k. The evaluation of V is performed using the Lyapunov
equation VK + KV = −N, which is found by noticing
that, in the Markovian limit, V =

∫ ∞
0 dτ(eKτ )N(eKτ )T .

The Lyapunov equation is linear in the elements of V,
which can be easily determined, even though the formal
solutions are cumbersome.

We can now study the behavior of the entanglement
between the elements forming the tripartite system. In

(a) (b)
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FIG. 2: C1 (panel (a)) and C2 (panel (b)) vs. ∆b ∈
[−1.5κa, 1.5κa] and Pb ∈ [0, Pa] for ∆a = ωm. The hori-
zontal plane corresponds to zero and is a help to the eye. We
used (ωm, ωlj , γm, κj)/2π = (107, 3.7×1014, 100, 8.8×107)Hz,
ℓj = 1mm, T = 0.4K, Pa = 50mW and µ = 5ng.
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Some physical objects are not accessible to direct experimentation. An environment of an open
quantum system being a paradigmatic example. It is then desirable to infer the properties of these
objects based solely on their interactions with systems over which we have control. In this spirit,
here we propose a method for assessing non-classicality of the environment from the gain of quantum
entanglement between two systems individually interacting with the environment but not with each
other. The framework is general and in principle allows detection of non-classical features of any
inaccessible object able to mediate entanglement.

Positions and momenta of classical particles determine
their state. Since no limitation on the precision of po-
sition and momentum measurement is imposed by the
classical laws, all accessible classical states are in prin-
ciple distinguishable. On the contrary, there exists no
measurement able to distinguish quantum states rep-
resented by non-orthogonal Hilbert space vectors. We
therefore declare an object as non-classical if its de-
scription within quantum formalism requires such non-
orthogonal states. Quantum correlations necessitate this
form of non-classicality of certain subsystems, i.e. some
quantum states of the multipartite system are impossible
to represent with only orthogonal states for the subsys-
tem.

This idea is explicitly present in the definition of quan-
tum discord, which asserts that objects share quantum
correlations if there is no von Neumann measurement on
a subsystem that keeps the total state unchanged [1–
4]. Indeed, this only happens when the total state is
not so-called quantum-classical, meaning that some non-
orthogonal states must be used to represent the subsys-
tem. Our aim here is to reveal the non-classicality of a
subsystem, equivalently the presence of quantum discord
between this subsystem and others, without actually ac-
cessing it.

Consider the three-body scenario depicted in Fig. 1.
As a motivation for our study let the inaccessible ob-
ject C be the environment of the open quantum sys-
tem AB. A vast body of literature exists on the initial
system-environment correlations stressing their influence
on the evolution of the open system [5]. The signifi-
cant role of the initial correlations resulted in various
proposals for their detection by monitoring the dynam-
ics of distinguishability [6–10] or purity [11, 12] of the
whole accessible system. These schemes have been im-
plemented experimentally by means of quantum tomog-
raphy [13, 14]. Our scheme can also be used to detect
system-environment correlations with the advantage that
state tomography is not necessary. This is achieved by
dividing the open system into A and B parts and mon-
itoring presence of entanglement, which can be realised

with entanglement witnesses [15, 16].
Furthermore, the non-classicality of the initial correla-

tions was linked to the impossibility of describing dynam-
ics of the open system with completely positive maps [17].
Hence detection schemes of quantum discord in the initial
system-environment state have been proposed [18, 19]
and recently assessed experimentally [20–22]. We em-
phasise that these schemes detect the non-classicality of
the principal system, whereas our schemes ascertain the
non-classicality of the environment. The latter is usually
assumed to be inaccessible directly.
Our method is developed in the context of entangle-

ment distribution with continuos interactions [23], as
shown in Fig. 1. We first focus on the partition A : BC
and demonstrate a crucial result which will be instru-
mental to design our criterion for the inference of non-
classicality of C based on entanglement dynamics in AB
only. Previous studies on the resources allowing for en-
tanglement distribution showed that any three-body den-
sity matrix, i.e. at any moment of time t in the present
context, satisfies the following inequality [24, 25]:

|EA:BC(t)� EAC:B(t)|  DAB|C(t), (1)

where EX:Y is the relative entropy of entanglement in
the partition X : Y [26], and DX|Y is the relative en-
tropy of discord [27] also known as the one-way quantum
deficit [28]. Note that relative entropy of discord is in

FIG. 1. General framework. Particles A and B individually
interact with a mediator object C, but not with each other,
i.e. the interaction Hamiltonian is HAC +HBC . It is assumed
that C is inaccessible, i.e. no measurement can be conducted
on it and its state cannot be controlled. We show conditions
under which the gain of quantum entanglement in AB implies
non-classicality of C.
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Some physical objects are not accessible to direct experimentation. An environment of an open
quantum system being a paradigmatic example. It is then desirable to infer the properties of these
objects based solely on their interactions with systems over which we have control. In this spirit,
here we propose a method for assessing non-classicality of the environment from the gain of quantum
entanglement between two systems individually interacting with the environment but not with each
other. The framework is general and in principle allows detection of non-classical features of any
inaccessible object able to mediate entanglement.

Positions and momenta of classical particles determine
their state. Since no limitation on the precision of po-
sition and momentum measurement is imposed by the
classical laws, all accessible classical states are in prin-
ciple distinguishable. On the contrary, there exists no
measurement able to distinguish quantum states rep-
resented by non-orthogonal Hilbert space vectors. We
therefore declare an object as non-classical if its de-
scription within quantum formalism requires such non-
orthogonal states. Quantum correlations necessitate this
form of non-classicality of certain subsystems, i.e. some
quantum states of the multipartite system are impossible
to represent with only orthogonal states for the subsys-
tem.

This idea is explicitly present in the definition of quan-
tum discord, which asserts that objects share quantum
correlations if there is no von Neumann measurement on
a subsystem that keeps the total state unchanged [1–
4]. Indeed, this only happens when the total state is
not so-called quantum-classical, meaning that some non-
orthogonal states must be used to represent the subsys-
tem. Our aim here is to reveal the non-classicality of a
subsystem, equivalently the presence of quantum discord
between this subsystem and others, without actually ac-
cessing it.

Consider the three-body scenario depicted in Fig. 1.
As a motivation for our study let the inaccessible ob-
ject C be the environment of the open quantum sys-
tem AB. A vast body of literature exists on the initial
system-environment correlations stressing their influence
on the evolution of the open system [5]. The signifi-
cant role of the initial correlations resulted in various
proposals for their detection by monitoring the dynam-
ics of distinguishability [6–10] or purity [11, 12] of the
whole accessible system. These schemes have been im-
plemented experimentally by means of quantum tomog-
raphy [13, 14]. Our scheme can also be used to detect
system-environment correlations with the advantage that
state tomography is not necessary. This is achieved by
dividing the open system into A and B parts and mon-
itoring presence of entanglement, which can be realised

with entanglement witnesses [15, 16].
Furthermore, the non-classicality of the initial correla-

tions was linked to the impossibility of describing dynam-
ics of the open system with completely positive maps [17].
Hence detection schemes of quantum discord in the initial
system-environment state have been proposed [18, 19]
and recently assessed experimentally [20–22]. We em-
phasise that these schemes detect the non-classicality of
the principal system, whereas our schemes ascertain the
non-classicality of the environment. The latter is usually
assumed to be inaccessible directly.
Our method is developed in the context of entangle-

ment distribution with continuos interactions [23], as
shown in Fig. 1. We first focus on the partition A : BC
and demonstrate a crucial result which will be instru-
mental to design our criterion for the inference of non-
classicality of C based on entanglement dynamics in AB
only. Previous studies on the resources allowing for en-
tanglement distribution showed that any three-body den-
sity matrix, i.e. at any moment of time t in the present
context, satisfies the following inequality [24, 25]:

|EA:BC(t)� EAC:B(t)|  DAB|C(t), (1)

where EX:Y is the relative entropy of entanglement in
the partition X : Y [26], and DX|Y is the relative en-
tropy of discord [27] also known as the one-way quantum
deficit [28]. Note that relative entropy of discord is in

FIG. 1. General framework. Particles A and B individually
interact with a mediator object C, but not with each other,
i.e. the interaction Hamiltonian is HAC +HBC . It is assumed
that C is inaccessible, i.e. no measurement can be conducted
on it and its state cannot be controlled. We show conditions
under which the gain of quantum entanglement in AB implies
non-classicality of C.
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