Manipulation of levitated optomechanics to test fundamental physics

Hendrik Ulbricht

University of Southampton, UK

Nanoparticle Talbot Interferometer: NaTall

Talbot interferometer with particle of mass: 10⁶ -10⁷ amu (~20nm diameter)

- Wigner function model of interference pattern
- **Dominating decoherence effect:** Blackbody emission and absorption.
- Mass of particle is limited by Earth's gravity ... future experiment in space?

Collimation/Preparation of spatial coherence translates to cooling of the particle in the trap.

Advantage compared to other schemes: We don't need ground state of trapped particle before the drop.

Bateman, J., S. Nimmrichter, K. Hornberger, and H. Ulbricht **Near-field interferometry of a free-falling nanoparticle from a point-like source** Nature Communications 4, 4788 (2014).

LEVITATED OPTOMECHANICS

Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle

Jan Gieseler,¹ Bradley Deutsch,³ Romain Quidant,^{1,2} and Lukas Novotny^{3,4}

¹ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain ²ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain ³Institute of Optics, University of Rochester, Rochester, New York 14627, USA ⁴Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland (Received 6 June 2012; published 7 September 2012)

Cavity cooling of an optically levitated submicron particle

Nikolai Kiesel^{1,2}, Florian Blaser¹, Uroš Delić, David Grass, Rainer Kaltenbaek, and Markus Aspelmeyer² Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna, Austria Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved July 16, 2013 (received for review May 14, 2013)

G

Cavity Cooling a Single Charged Levitated Nanosphere

J. Millen, P.Z. G. Fonseca, T. Mavrogordatos, T.S. Monteiro, and P.F. Barker*

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom (Received 31 December 2014; published 27 March 2015)

Experiments with nanoparticles: the particle optical trap

- Trap a single particle in vacuum
- Optical parametric feedback to cool the centre of mass motion

Setup schematics:

Trapping, 3d imaging, and 3d cooling done with a single beam of 1550nm light.

Particle in the trap:

42 nm - 150 nm diameter SiO₂, <100 mW, NA=0.9, down to <u>1x10⁻⁶ mbar</u>

Mechanical frequency measurement:

Signal for detection of motion of particle: optical interference pattern

Large Iris Aperture

Small Iris Aperture

Decreasing Iris Aperture Size

Light Interferometry for Particle Detection of x,y motion:

The total intensity at the detector is:

$$I \propto \left| E_{total} \right|^2 = \left| E_{div} + E_{scat} \right|^2 = E_{div}^2 + 2E_{div}E_{scat}\sin(\phi_{scat}) + E_{scat}^2$$

See the mechanical oscillation

Trap and measure position ...

Equation of motion: $\ddot{x}(t) + \Gamma_0 \dot{x}(t) + \omega_0^2 x(t) = \frac{1}{m} [F_{\text{fluct}}(t) + F_{\text{feed}}(t)]$

a)

60 40

Position (nm)

Mirror

Parametric Feedback Cooling: use the interference

signal to modulate the trapping laser light intensity

- Cooling the COM motion of the particle by modulation of the trap depth => trapping laser power modulation
 - Increase trap depth when particle is moving away from center.
 - Decrease trap depth when particle is moving towards the depth.
- Feedback signal in the form of:

$$\propto \sin(2\omega_0 t + \phi)$$

Studying the dynamics of the trapped particle ...

The effect of the parametric feedback ...

- Result: We have a source, now we build the Talbot Interferometer to test the superposition principle in a new mass range!
- To cool further we need to overcome the present limit by the noise of the elecgronics.

Vovrosh, J., M. Rashid, D. Hempston, J. Bateman, and H. Ulbricht, *Controlling the Motion of a Nanoparticle Trapped in Vacuum*, arXiv:1603.02917 (2016).

LEVITATED OPTOMECHANICS: SQUEEZING/SQUASHING

<u>Squeezing/Squashing:</u> by fast switching the trap frequency

RMS position vs time

Squeezing the thermal motion

Rashid, M., T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, *Experimental Realisation of a Thermal Squeezed State of Levitated Optomechanics*, arXiv:1607.05509 (2016).

NOW FOR SOMETHING COMPLETELY DIFFERENT... SEMICLASSICAL GRAVITY

Schroedinger-Newton (SN): semi-classical gravity

$$R_{\mu\nu} + \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4} \left\langle \Psi \mid \hat{T}_{\mu\nu} \mid \Psi \right\rangle.$$

$$i\hbar \frac{\partial}{\partial t} \psi(t, \mathbf{r}) = \left(\frac{\hbar^2}{2M} \nabla^2 + V_{\text{ext}} + V_g[\psi]\right) \psi(t, \mathbf{r})$$
$$V_g[\psi](t, \mathbf{r}) = -G \int d^3 r' |\psi(t, \mathbf{r}')|^2 I_{\rho_c}(\mathbf{r} - \mathbf{r}').$$

Obvious option for test: study free wavefunction expansion

Wave function expansion: a case for space

Our proposal: Predicted shifts of energy levels according to SN

• SN shift of energy levels of mechanical harmonic oscillator

• Feasible for a test With existing tech

A Großardt, J Bateman, H Ulbricht, A Bassi, *Optomechanical test of the Schrodinger-Newton equation*, arXiv:1510.01696 (2015)

Thanks to ...

- **Group at Southampton:** Muddassar Rashid, David Hempston, Jamie Vovrosh, Ashley Setter, George Winstone, Chris Timberlake, Marko Toros.
- **Quantum Optics Theory:** Mauro Paternostro, Myungshik Kim, Sougato Bose, Tommaso Tufarelli.
- Matter-wave Interferometry and Experiments: Klaus Hornberger, Peter Barker, Markus Aspelmeyer, Nikolai Kiesel.
- Foundations of Physics: Angelo Bassi & group, Tejinder P Singh, Andre Grossardt.

Support from: EPSRC, Templeton Foundation, The Leverhulme Trust, COST, FQXi

Application: Experimental test of gravity

How does the gravitational field of a spatial quantum superposition state look like?

Is Gravity Quantum?

This test seems to be feasible with todays optomechanics devices and technology.

Idea for the experimental setup

M. Bahrami, A. Bassi, S. McMillen, M. Paternostro, H. Ulbricht, Is Gravity Quantum?, arXiv:1507.05733 (2015).