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Indirect Measurement of Quantum Observables:

1. Spin of a Silver atom

... PROBLEM: internal degree of freedom

Exploiting correlation with exit localization

Stern-Gerlach
apparatus

Localization UP
correlated to Spin=+1/2

Local. DOWN
correlated to Spin=-1/2

Silver
Atom

CORRELATION:

Spin= +1
2 iff the atom outcomes from UP

Spin= −1
2 iff the atom outcomes from DOWN
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Indirect Measurement of Quantum Observables:

2. Localization of a neutrino

PROBLEM: too low interactivity

SOLUTION: To localize τ−

ν

τ

τ

∆

-

Region

CORRELATION: ντ in ∆ iff τ− in ∆
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Indirect Measurement of Quantum Observables:

3. Which Slit QS with the Final Position QF

1. complementarity: [Q̂S, Q̂F ] = i t
m

Q  =1

Q  =0

QS

S

F

[Q  ,Q  ]=0!/S F
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DOUBLE SLIT EXPERIMENT SOLUTION

Correlation: ∃TS, [T̂S, Q̂S] = [T̂S, Q̂F ] = 0

TS = 1 iff QS = 1, TS = 0 iff QS = 0

TS

Q  =1

Q  =0

QS

S

F

[Q  ,Q  ]=0!/S F

QS is not measured! Its value is inferred!
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GENERALIZATION

EVALUATION OF E BY MEASURING T :

E T

not
measured measured

perfect correlation
between T and E

System

Condition: T perfectly correlated with E

To assign E the actual outcome of T
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FIRST QUESTION: Evaluations of E by T ,

are they Measurements of E?

[Spin↔ exit localization: practice answers YES]

Tasks for a satisfactory scientific answer

i. to formally establish the different concepts

I. of Measurements and Evaluations

ii. to find out the formal statement for the

II. Identification Measurement≡Evaluation

iii. to check whether it holds in the theory
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I. Quantum Formalism of Measurements

Support S(ρ) of ρ (density operator):

any concrete non-empty set of specimens whose

quantum state is ρ

E set of elementary (1-0) observables

E ∈ E is represented by projection Ê

E

S(  )ρ

.

Given E ∈ E and support S(ρ),

specimen x ∈ E means

x ∈ S(ρ) and

E actually measured on x.
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I. Quantum Formalism of Measurements

For each E ∈ E,
E1: specimens in E with outcome 1

E0: specimens in E with outcome 0

E

E

E=E     E

S(  )ρ

1

0

1 0U

E1 ∩ E0 = ∅

E1 ∪ E0 = E
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I. Quantum Formalism of Measurements

E, F are measurable together (comeasurable)

iff for every ρ a support S(ρ) exists

such that E ∩ F 6= ∅.

According to Quantum Theory

(q.1) If [Ê, F̂ ] = 0 then ∀ρ, S(ρ) exists

(q.1)such that E∩F 6= ∅ (E, F comeasurable);
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I. Quantum Formalism of Evaluations

T ∈ E Evaluates E ∈ E in state ρ, conceptually,

if whenever they are measured together, then

If their outcomes coincide, i.e. if

the restrictions of T1 and E1 to E∩T coincide,

and those of T0 and E0 coincide too.

Def. T evaluates E in ρ, written E ≺ ρ Â T , if

(D.1) ∃S(ρ) such that E ∩T 6= ∅
(D.2) ∀x ∈ E ∩T (“if measured together”)

x ∈ T1 iff x ∈ E1, x ∈ T0 iff x ∈ E0
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II. Identification Measurement≡Evaluation:

To identify evaluations of E by T

with authentic measurements of E

means “If x ∈ T then x ∈ E”.

Evaluations are identifiable with measurements

Evaluations are if and only if

T ≺ ρ Â E implies T1 = E1, T0 = E0 (Id)

(tout court, not for the restricions to T ∩ E)
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III. (Id) Contradicts Quantum Physics!

H = H1 ⊗H2 ⊗H3 ⊗H4, and Hk = IC2, ∀k.

Seven observables with spectrum {1,−1}:
Âα = σ̂x⊗12⊗13⊗14, Âβ = σ̂y⊗12⊗13⊗14

B̂ = 11 ⊗ σ̂x ⊗ 13 ⊗ 14

Ĉα = 11⊗12⊗ σ̂x⊗14, Ĉβ = 11⊗12⊗ 1
2σ̂y⊗14

D̂α = 11⊗12⊗13⊗σ̂x, D̂β = 11⊗12⊗13⊗1
2σ̂y.

A quantum state ρ0 = |ψ0〉〈ψ0| where ψ0 is

IIIIII

1√
2

{[
1
0

]

1

⊗
[

1
0

]

2

⊗
[

0
1

]

3

⊗
[

0
1

]

4

−
[

0
1

]

1

⊗
[

0
1

]

2

⊗
[

1
0

]

3

⊗
[

1
0

]

4

}
.
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III. (Id) Contradicts Quantum Physics!

PROP.3. If (Id) holds, then x0 exists and

i) x0 ∈ Aα ∩Aβ ∩B ∩Cα ∩Cβ ∩Dα ∩Dβ

ii) the values aα, aβ, b, cα, cβ, dα, dβ measured

on x0 must satisfy the relations

aαb = −cαdα, aβb = −cβdα

aβb = −cαdβ, aαb = cβdβ

These relations are contradictory, because:

(ii) and aα, aβ, b, cα, cβ, dα, dβ ∈ {−1,+1} imply

cαcβ = −cαcβ !

13



.

CONCLUSION:

Identification Evaluation≡Measurement

Is Impossible in Quantum Physics!

QUESTION:

What’s the Physical Meaning of Evaluations

related to the evaluated Observable?

What are we doing when we Evaluate an

Observable instead of measuring it?
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A Quick (limited) answer is obtained

By Theoretically Comparing

Physical Consequences of Occurrences of E

Physical Consequwith

Physical Consequences of Occurrences of T

RESULT OF THE COMPARISON:

these consequences are the same:

Evaluations are perfect simulations

of measurements
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Algebraic characterization of E ≺ ρ Â T

E ≺ ρ Â T implies E, F comeasurable.

According to Quantum Theory [T̂ , Ê] = 0.

PROP.1. E ≺ ρ Â T if and only if

PROP.1. [T̂ , Ê] = 0 and Êρ = T̂ ρ.

IThis point should be treated with more care.

II do so to expedite the presentation
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Consequences of a Measurements of E:

Correlations Between

occurrences of actual outcomes of E and

occurrences of actual outcomes of F

Expressed by Quantum conditional probability:

P (F | E) =
Tr(ρF̂ Ê)

Tr(ρÊ)
Condition: [F̂ , Ê] = 0

Consequences of a Measurements of T :

Quantum conditional probability:

P (F | T ) =
Tr(ρF̂ T̂ )

Tr(ρT̂ )
Condition: [F̂ , T̂ ] = 0
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Comparing consequences of E and T

PROP. 4. If E ≺ ρ Â T (T evaluates E) then

P (F | T ) = P (F | E) for all F ∈ FT (E)

where FT (E) = {F ∈ E | [F̂ , T̂ ] = [F̂ , Ê] = 0}.

Thus, if T evaluates E, then

Measurable consequences of outcomes of T

are indistinguishable from those of E

Evaluations of E by T perfectly simulate

measurements of E.
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Evaluations of E perfectly simulate

measurement of E if [F̂ , Ê] = 0.

E ≺ ρ Â T and [T̂ , F̂ ] = 0

T can evaluate E in measuring F

But if [F̂ , Ê] 6= 0, there is nothing to simulate!

E T

F

not
measured measured

ρE T
TS

Q  =1

Q  =0

QS

S

F

[F,E]=0/[Q  ,Q  ]=0!/S F[T  ,Q  ]=0, butS F
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Given E and ρ, E ≺ ρ Â T and [T̂ , F̂ ] = 0,

pQ(E&F ) quantum probability of joint event

“outcome of E is 1” & “otucome of F is 1”

is defined on F(E) = {F ∈ E | [F̂ , Ê] = 0}.

[F,E]=0

[F,E]=0/

F(  )T
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Theorem 1. Put E′ = 1− E. The mappings

pρ(E& · ) : F(T ) → [0,1], pρ(E&F ) = Tr(ρÊF̂ Ê)

pρ(E′& · ) : F(T ) → [0,1], pρ(E′&F ) = Tr(ρÊ′F̂ Ê′)
are the unique functionals such that

C.1. If F ∈ F(T ) and [F̂ , Ê] = 0, then

C.1. pρ(E&F ) = Tr(ρÊF̂ ) and

C.1. pρ(E′&F ) = Tr(ρÊ′F̂ );

C.2. if {Fj}j∈J ⊆ F(T ) and F̂j⊥F̂k, then

C.1. pρ(E&
∑

j F̂j) =
∑

j∈J pρ(E&Fj) and

C.1. pρ(E′&
∑

j F̂j) =
∑

j∈J pρ(E′&Fj).
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Meaning of Theorem 1.

There is a unique possibility for a probability

ruling over values assignments to E consistent

with measurements and Quantum theoretical

predictions about all observables in F(T ),

predictioF(T ) = {F ∈ E | [F̂ , T̂ ] = 0}.

Theorem 2. Such a unique probability

is empirically realized by assigning

• E the measured value of T

• F the value actually measured.
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CONCLUSION

III. To interpret an evaluation of E by T

III. as a measurement of E

III. is consistent with all performable

III. measurements in the domain F(T ) ⊆ E.

III. The consistency is guaranteed

III. if T is actually measured,

III. not if T is only evaluated.

IIII. Given E, its evaluation can be performed

III. by different T with different F(T ).
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