WORKSHOP QUANTUM FOUNDATIONS LNF Frascati 2017

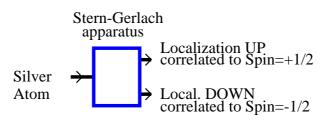
CONSISTENCY OF VALUE ASSIGNMENT BY MEANS OF QUANTUM CORRELATIONS

G. Nisticò, Università della Calabria & INFN, gr.coll. Cosenza

Indirect Measurement of Quantum Observables:

1. Spin of a Silver atom

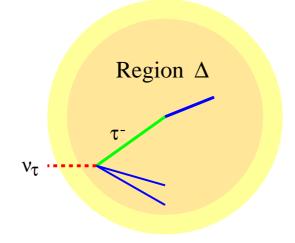
PROBLEM: internal degree of freedom Exploiting correlation with exit localization



CORRELATION: Spin= $+\frac{1}{2}$ iff the atom outcomes from UP Spin= $-\frac{1}{2}$ iff the atom outcomes from DOWN Indirect Measurement of Quantum Observables:

Localization of a *neutrino* PROBLEM: too low interactivity

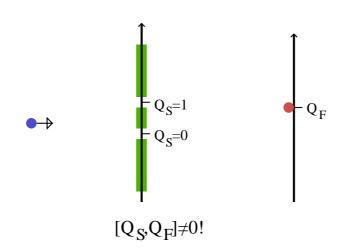
SOLUTION: To localize τ^-



CORRELATION: ν_{τ} in Δ iff τ^{-} in Δ

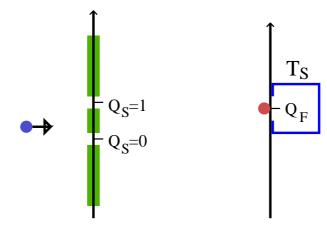
Indirect Measurement of Quantum Observables:

3. Which Slit Q_S with the Final Position Q_F complementarity: $[\hat{Q}_S, \hat{Q}_F] = i \frac{t}{m}$



DOUBLE SLIT EXPERIMENT SOLUTION

Correlation: $\exists T_S$, $[\hat{T}_S, \hat{Q}_S] = [\hat{T}_S, \hat{Q}_F] = 0$ $T_S = 1$ iff $Q_S = 1$, $T_S = 0$ iff $Q_S = 0$

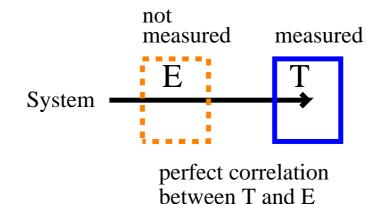


 $[Q_{S}, Q_{F}] \neq 0!$

 Q_S is not measured! Its value is inferred!

GENERALIZATION

EVALUATION OF E BY MEASURING T:



Condition: T perfectly correlated with ETo assign E the actual outcome of T

FIRST QUESTION: Evaluations of E by T, are they Measurements of E?

[Spin \leftrightarrow exit localization: practice answers YES]

Tasks for a satisfactory scientific answer

- to formally establish the different concepts
 of Measurements and Evaluations
- ii. to find out the formal statement for theIdentification Measurement≡Evaluation
- iii. to check whether it holds in the theory

I. Quantum Formalism of Measurements

Support $S(\rho)$ of ρ (density operator): any concrete non-empty set of specimens whose quantum state is ρ

 \mathcal{E} set of *elementary* (1-0) observables

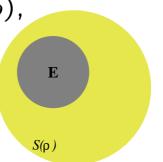
 $E \in \mathcal{E}$ is represented by projection \hat{E}

Given $E \in \mathcal{E}$ and support $\mathcal{S}(\rho)$,

specimen $x \in \mathbf{E}$ means

 $x \in \mathcal{S}(\rho)$ and

E actually measured on x.



I. Quantum Formalism of Measurements

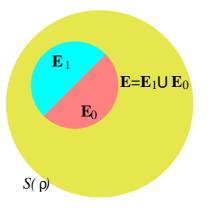
For each $E \in \mathcal{E}$,

 E_1 : specimens in E with outcome 1

 \mathbf{E}_0 : specimens in \mathbf{E} with outcome 0

 $E_1 \cap E_0 = \emptyset$

 $\mathrm{E}_1 \cup \mathrm{E}_0 = \mathrm{E}$



I. Quantum Formalism of Measurements

E, *F* are measurable together (*comeasurable*) iff for every ρ a support $S(\rho)$ exists such that $\mathbf{E} \cap \mathbf{F} \neq \emptyset$.

According to Quantum Theory

(q.1) If $[\hat{E}, \hat{F}] = 0$ then $\forall \rho, S(\rho)$ exists such that $\mathbf{E} \cap \mathbf{F} \neq \emptyset$ (*E*, *F* comeasurable);

I. Quantum Formalism of Evaluations

 $T \in \mathcal{E}$ Evaluates $E \in \mathcal{E}$ in state ρ , conceptually,

if whenever they are measured together, then their outcomes coincide, i.e. if

the restrictions of T_1 and E_1 to $E\cap T$ coincide, and those of T_0 and E_0 coincide too.

Def. *T* evaluates *E* in ρ , written $E \prec \rho \succ T$, if (D.1) $\exists S(\rho)$ such that $\mathbf{E} \cap \mathbf{T} \neq \emptyset$ (D.2) $\forall x \in \mathbf{E} \cap \mathbf{T}$ ("if measured together") $x \in \mathbf{T}_1$ iff $x \in \mathbf{E}_1$, $x \in \mathbf{T}_0$ iff $x \in \mathbf{E}_0$

II. Identification Measurement = Evaluation:

To identify evaluations of E by Twith authentic measurements of Emeans "If $x \in \mathbf{T}$ then $x \in \mathbf{E}$ ".

Evaluations are identifiable with measurements if and only if

 $T \prec \rho \succ E$ implies $T_1 = E_1, T_0 = E_0$ (Id)

(*tout court*, not for the restricions to $T \cap E$)

III. (Id) Contradicts Quantum Physics!

 $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \otimes \mathcal{H}_4$, and $\mathcal{H}_k = \mathbb{C}^2$, $\forall k$.

Seven observables with spectrum $\{1, -1\}$:

 $\hat{A}^{\alpha} = \hat{\sigma}_{x} \otimes \mathbf{1}_{2} \otimes \mathbf{1}_{3} \otimes \mathbf{1}_{4}, \quad \hat{A}^{\beta} = \hat{\sigma}_{y} \otimes \mathbf{1}_{2} \otimes \mathbf{1}_{3} \otimes \mathbf{1}_{4}$ $\hat{B} = \mathbf{1}_{1} \otimes \hat{\sigma}_{x} \otimes \mathbf{1}_{3} \otimes \mathbf{1}_{4}$ $\hat{C}^{\alpha} = \mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes \hat{\sigma}_{x} \otimes \mathbf{1}_{4}, \quad \hat{C}^{\beta} = \mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes \frac{1}{2} \hat{\sigma}_{y} \otimes \mathbf{1}_{4}$ $\hat{D}^{\alpha} = \mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes \mathbf{1}_{3} \otimes \hat{\sigma}_{x}, \quad \hat{D}^{\beta} = \mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes \mathbf{1}_{3} \otimes \frac{1}{2} \hat{\sigma}_{y}.$ A quantum state $\rho_{0} = |\psi_{0}\rangle\langle\psi_{0}|$ where ψ_{0} is $\frac{1}{\sqrt{2}} \left\{ \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}_{1} \otimes \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}_{2} \otimes \begin{bmatrix} \mathbf{0} \\ \mathbf{0}$

III. (Id) Contradicts Quantum Physics!

PROP.3. If (Id) holds, then x_0 exists and i) $x_0 \in \mathbf{A}^{\alpha} \cap \mathbf{A}^{\beta} \cap \mathbf{B} \cap \mathbf{C}^{\alpha} \cap \mathbf{C}^{\beta} \cap \mathbf{D}^{\alpha} \cap \mathbf{D}^{\beta}$

ii) the values $a^{\alpha}, a^{\beta}, b, c^{\alpha}, c^{\beta}, d^{\alpha}, d^{\beta}$ measured

on x_0 must satisfy the relations

 $a^{\alpha}b = -c^{\alpha}d^{\alpha}, \quad a^{\beta}b = -c^{\beta}d^{\alpha}$ $a^{\beta}b = -c^{\alpha}d^{\beta}, \quad a^{\alpha}b = c^{\beta}d^{\beta}$

These relations are contradictory, because: (ii) and $a^{\alpha}, a^{\beta}, b, c^{\alpha}, c^{\beta}, d^{\alpha}, d^{\beta} \in \{-1, +1\}$ imply $c^{\alpha}c^{\beta} = -c^{\alpha}c^{\beta}$!

CONCLUSION:

Identification Evaluation≡Measurement Is Impossible in Quantum Physics!

QUESTION:

What's the Physical Meaning of Evaluations related to the evaluated Observable?

What are we doing when we Evaluate an Observable instead of measuring it?

A Quick (limited) answer is obtained

By Theoretically Comparing

Physical Consequences of Occurrences of E

with

Physical Consequences of Occurrences of ${\cal T}$

RESULT OF THE COMPARISON:

these consequences are the same:

Evaluations are perfect simulations

of measurements

Algebraic characterization of $E \prec \rho \succ T$

 $E \prec \rho \succ T$ implies E, F comeasurable. According to Quantum Theory $[\hat{T}, \hat{E}] = 0$.

PROP.1. $E \prec \rho \succ T$ if and only if $[\hat{T}, \hat{E}] = \mathbf{0}$ and $\hat{E}\rho = \hat{T}\rho$.

This point should be treated with more care. I do so to expedite the presentation

Consequences of a Measurements of E:

Correlations Between

occurrences of actual outcomes of E and

occurrences of actual outcomes of F

Expressed by Quantum conditional probability:

 $P(F \mid E) = \frac{Tr(\rho \hat{F} \hat{E})}{Tr(\rho \hat{E})}$ Condition: $[\hat{F}, \hat{E}] = 0$

Consequences of a Measurements of T:

Quantum conditional probability:

 $P(F \mid T) = \frac{Tr(\rho FT)}{Tr(\rho \hat{T})} \quad \text{Condition: } [\hat{F}, \hat{T}] = 0$

Comparing consequences of E and T

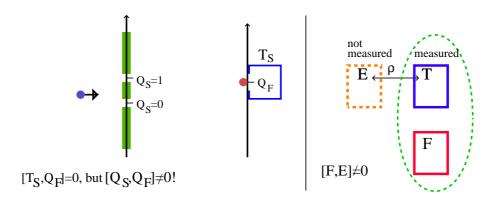
PROP. 4. If $E \prec \rho \succ T$ (*T* evaluates *E*) then $P(F \mid T) = P(F \mid E)$ for all $F \in \mathcal{F}_T(E)$ where $\mathcal{F}_T(E) = \{F \in \mathcal{E} \mid [\hat{F}, \hat{T}] = [\hat{F}, \hat{E}] = \mathbf{0}\}.$

Thus, if T evaluates E, then Measurable consequences of outcomes of Tare indistinguishable from those of E

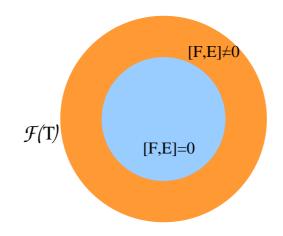
Evaluations of E by T perfectly simulate measurements of E.

Evaluations of *E* perfectly simulate measurement of *E* if $[\hat{F}, \hat{E}] = 0$.

 $E \prec \rho \succ T$ and $[\hat{T}, \hat{F}] = 0$ T can evaluate E in measuring F But if $[\hat{F}, \hat{E}] \neq 0$, there is nothing to simulate!



Given E and ρ , $E \prec \rho \succ T$ and $[\hat{T}, \hat{F}] = 0$, $p_Q(E\&F)$ quantum probability of joint event "outcome of E is 1" & "otucome of F is 1" is defined on $\mathcal{F}(E) = \{F \in \mathcal{E} \mid [\hat{F}, \hat{E}] = 0\}.$



Theorem 1. Put E' = 1 - E. The mappings $p_{\rho}(E\& \cdot) : \mathcal{F}(T) \rightarrow [0, 1], p_{\rho}(E\& F) = Tr(\rho \hat{E} \hat{F} \hat{E})$ $p_{\rho}(E'\& \cdot) : \mathcal{F}(T) \rightarrow [0, 1], p_{\rho}(E'\& F) = Tr(\rho \hat{E}' \hat{F} \hat{E}')$ are the unique functionals such that **C.1.** If $F \in \mathcal{F}(T)$ and $[\hat{F}, \hat{E}] = \mathbf{0}$, then $p_{\rho}(E\& F) = Tr(\rho \hat{E} \hat{F})$ and $p_{\rho}(E'\& F) = Tr(\rho \hat{E}' \hat{F});$ **C.2.** if $\{F_j\}_{j\in J} \subseteq \mathcal{F}(T)$ and $\hat{F}_j \perp \hat{F}_k$, then

 $p_{\rho}(E \& \sum_{j} \widehat{F}_{j}) = \sum_{j \in J} p_{\rho}(E \& F_{j}) \text{ and}$ $p_{\rho}(E' \& \sum_{j} \widehat{F}_{j}) = \sum_{j \in J} p_{\rho}(E' \& F_{j}).$

Meaning of Theorem 1.

There is a unique possibility for a probability ruling over values assignments to E consistent with measurements and Quantum theoretical predictions about all observables in $\mathcal{F}(T)$,

$$\mathcal{F}(T) = \{ F \in \mathcal{E} \mid [\widehat{F}, \widehat{T}] = \mathbf{0} \}.$$

Theorem 2. Such a unique probability is empirically realized by assigning

- E the measured value of T
- F the value actually measured.

CONCLUSION

- I. To interpret an evaluation of E by Tas a measurement of Eis consistent with all performable measurements in the domain $\mathcal{F}(T) \subseteq \mathcal{E}$.
- **II.** The consistency is guaranteed if T is actually measured, not if T is only evaluated.
- **III.** Given E, its evaluation can be performed by different T with different $\mathcal{F}(T)$.

G Nistico', A Sestito Int J Theor Phys

DOI 10.1007/s10773-015-2819-4