Exotic quarks from composite models

Roberto Leonardi¹

In collaboration with:

O. Panella¹ G. Pancheri² Y. N. Srivastava¹ M. Narain³ U. Heintz³

¹INFN Perugia ²INFN Frascati ³Brown University

September 14, 2017

< 同

Roberto Leonardi ()

Sac

Outline

- Introduction
- Composite models
- Production of excited composite quarks at LHC
- Signal and background study
- Bounds from recasting an experimental analysis

3

イロト イポト イヨト イヨト

The Standard Model, its shortcomings and extensions

The Standard Model

Particles of the Standard Model

- The fermions are the foundamental blocks of the matter
- The bosons mediate the interactions
- The standard model had great success in describing the experimental observations
- However it has some shortcomings

Shortcomings of SM

It can not accomodate

- neutrino masses
- gravitational interaction
- o dark matter
- matter-antimatter asymmetry

Extensions of SM

- GUT
- String theory
- Supersymmetry
- Extra-dimensions
- Composite models

Composite model for quarks and leptons

- Compositness of leptons and quarks is one possible scenario beyond the Standard Model
- In a composite scenario fermions are assumed to have an internal substructure.
- In a composite scenario we expect to observe excited leptons and quarks
- In general the following parameters are introduced:
 - *m*_{*}: mass of the excited states
 - A: Energy scale at which the internal substructure becomes manifest

In our study we will use the parameterization $m_* = \Lambda$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

Extended weak isospin model

- It describes the excited states trough the weak isospin symmetry
- It doesn't refer to the internal dynamics
- $\bullet\,$ Analogy with strong isospin \to prediction of hadronic states before the discovery of quarks and gluons
- SM $q, \ell \in I_W = 0, 1/2$ e $W^{\pm}, Z, \gamma \in I_W = 0, 1$ \Rightarrow excited fermions $\in I_W \leq 3/2$

I_W	Multiplet	Q	Y
0	L-	-1	-2
$\frac{1}{2}$	$\mathbf{L} = \begin{pmatrix} L^0 \\ L^- \end{pmatrix}$	0 -1	-1
1	$\mathbf{L} = \begin{pmatrix} L^0 \\ L^- \\ L^{} \end{pmatrix}$	0 -1 -2	-2
<u>3</u> 2	$\mathbf{L} = \begin{pmatrix} L^+ \\ L^0 \\ L^- \\ L^{} \end{pmatrix}$	1 0 -1 -2	-1

I_W	Multiplet	Q	Y
0	U	2/3	4/3
0	D	-1/3	-2/3
$\frac{1}{2}$	$\Psi = \begin{pmatrix} U \\ D \end{pmatrix}$	2/3 -1/3	1/3
1	$U = \begin{pmatrix} U^+ \\ U \\ D \end{pmatrix}$	5/3 2/3 -1/3	4/3
1	$D = \left(\begin{array}{c} U \\ D \\ D^{-} \end{array}\right)$	2/3 1/3 -4/3	-2/3
32	$\Psi = \begin{pmatrix} U^+ \\ U \\ D \\ D^- \end{pmatrix}$	5/3 2/3 -1/3 -4/3	1/3
		< 3 > >	< = >

The higher isospin multiplets in the quark sector

- The isospin multiplets with $I_W = 1$ and $I_W = 3/2$ contain ordinary charged excited quarks (U, D) and exoticly charged excited quarks (U^+, D^-)
- The higher isospin multiplets contribute solely to the iso-vector current and do not contribute to the hypercharge current
- The exoticly charged excited quarks interact with the standard model fermions only via W^+ and W^- gauge bosons
- Because all gauge fields carry no hypercharge Y, a given multiplet couples truogh the gauge field to light multiplet with the same Y
- In order to conserve the *SU*(2) currents, the couplings between excited and ordinary fermions are magnetic moment type transition couplings.
- The lagrangians are:

$$\mathcal{L}^{(l_W=3/2)} = \frac{gf_{3/2}}{\Lambda} \sum_{M,m,m'} C(\frac{3}{2}, M|1, m; \frac{1}{2}, m') \times (\bar{\Psi}_M \sigma_{\mu\nu} q_{Lm'}) \partial^{\nu} (W^m)^{\mu} + h.c.$$

$$\mathcal{L}^{(l_W=1)} = \frac{gf_1}{\Lambda} \sum_{m=-1,0,1} \left[(\bar{U}_m \sigma_{\mu\nu} u_R) + (\bar{D}_m \sigma_{\mu\nu} d_R) \right] \partial^{\nu} (W^m)^{\mu} + h.c.$$

(g is the SU(2) coupling, $f_1, f_{3/2} = 1$, C are the Clebsch-Gordan coefficients, we assume $\Lambda = m_*$).

Production process for U^+

- For the $uu
 ightarrow U^+d$ sub-process we have t and u-channel
- For the $u\bar{d}
 ightarrow U^+\bar{u}$ sub-process we have s and t-channel

For the production of D^- we have a similar situation

Roberto Leonardi ()

Sac

Partonic sub-processes cross sections $(I_W = 1)$

The case $I_W = 1$ is characterized by the absence of the interference between the kinematic channels

$$\begin{pmatrix} \frac{d\hat{\sigma}}{d\hat{t}} \end{pmatrix}_{uu \to U^{+}d}^{l_{W}=1} = \frac{1}{4\hat{s}^{2}m_{*}^{2}} \frac{g^{4}f_{1}^{2}}{16\pi} \frac{\hat{t}}{(\hat{t} - M_{W}^{2})^{2}} \left[m_{*}^{2}(\hat{t} - m_{*}^{2}) + 2\hat{s}\hat{u} + m_{*}^{2}(\hat{s} - \hat{u}) \right] \\ + \frac{1}{4\hat{s}^{2}m_{*}^{2}} \frac{g^{4}f_{1}^{2}}{16\pi} \frac{u}{(\hat{u} - M_{W}^{2})^{2}} \left[m_{*}^{2}(\hat{s} - m_{*}^{2}) + 2\hat{t}\hat{u} + m_{*}^{2}(\hat{t} - \hat{u}) \right]$$

$$\begin{pmatrix} \frac{d\hat{\sigma}}{d\hat{t}} \end{pmatrix}_{u\bar{d} \to U^+\bar{u}}^{l_W=1} &= \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_1^2}{16\pi} \frac{\hat{s}}{(\hat{s} - M_W^2)^2} \left[m_*^2 (\hat{s} - m_*^2) + 2\hat{t}\hat{u} + m_*^2 (\hat{t} - \hat{u}) \right] \\ &+ \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_1^2}{16\pi} \frac{\hat{t}}{(\hat{t} - M_W^2)^2} \left[m_*^2 (\hat{t} - m_*^2) + 2\hat{s}\hat{u} + m_*^2 (\hat{s} - \hat{u}) \right]$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Partonic sub-processes cross sections ($I_W = 3/2$)

The case $I_W = 3/2$ is characterized by nonzero interference between the kinematic channels

$$\begin{split} \left(\frac{d\hat{\sigma}}{d\hat{t}}\right)_{uu\to U^+d}^{l_W=3/2} &= \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{\hat{t}}{(\hat{t}-M_W^2)^2} \left[m_*^2(\hat{t}-m_*^2)+2\hat{s}\hat{u}-m_*^2(\hat{s}-\hat{u})\right] \\ &+ \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{\hat{u}}{(\hat{u}-M_W^2)^2} \left[m_*^2(\hat{u}-m_*^2)+2\hat{s}\hat{t}-m_*^2(\hat{s}-\hat{t})\right] \\ &+ \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{1}{(\hat{u}-M_W^2)} \frac{1}{(\hat{t}-M_W^2)} \left(\hat{s}\hat{t}\hat{u}+\frac{3}{8}\hat{u}\hat{t}m_*^2\right) \end{split}$$

$$\begin{split} \left(\frac{d\hat{\sigma}}{d\hat{t}}\right)_{u\bar{d}\to U^+\bar{u}}^{l_W=3/2} &= \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{\hat{s}}{(\hat{s}-M_W^2)^2} \left[m_*^2(\hat{s}-m_*^2) + 2\hat{t}\hat{u} - m_*^2(\hat{t}-\hat{u})\right] \\ &+ \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{\hat{t}}{(\hat{t}-M_W^2)^2} \left[m_*^2(\hat{t}-m_*^2) + 2\hat{s}\hat{u} - m_*^2(\hat{s}-\hat{u})\right] \\ &+ \frac{1}{4\hat{s}^2 m_*^2} \frac{g^4 f_{3/2}^2}{16\pi} \frac{\hat{t}}{(\hat{s}-M_W^2)^2} \left[m_*^2(\hat{t}-m_*^2) + 2\hat{s}\hat{u} - m_*^2(\hat{s}-\hat{u})\right] \end{split}$$

Roberto Leonardi ()

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Production cross section

 $\sigma = \sum_{a,b} \int_{\frac{m^{*2}}{s}}^{\frac{m^{*2}}{s}} d\tau \int_{\tau}^{1} \frac{dx}{x} f_a(x, \hat{Q}) f_b(\frac{\tau}{x}, \hat{Q}) \hat{\sigma}(\tau s, m_*)$ ($\hat{\sigma}$: partonic cross section calculated in the center of mass frame, f_a : partonic distribution

function, x: longitudinal partonic momentum fraction, \hat{Q} : factorization scale.)

The bands correspond to the varition of the factorization scale from $\hat{Q} = M_W$ to $\hat{Q} = m_*$

The production of U^+ has a larger cross section because this process involves sub-processes with u quarks in the initial state, that is the most available quark in the proton.

Excited quarks decay and final signature

We consider the decay chain $Q \rightarrow W^+ q \rightarrow \ell^+ \nu q$ \Rightarrow The final signature is $\ell^+ \not{p}_T j j$ This signature can be given by the processes: $pp \rightarrow U^+ j \rightarrow W^+ j j \rightarrow \ell^+ \not{p}_T j j$ $pp \rightarrow \overline{D}^- j \rightarrow W^+ j j \rightarrow \ell^+ \not{p}_T j j$ $pp \rightarrow \overline{D} j \rightarrow W^+ j j \rightarrow \ell^+ \not{p}_T j j$ All these contributions are included in the simulations

Contributions to the final signature

The U^+ and \overline{D}^- interact with the SM Gauge boson W, the U and \overline{D} interact with the SM gauge bosons W, Z, γ :

- The U^+ and \overline{D}^- contribute to Wqq channel with branching ratio $\mathcal{B}(Q \to W^+q) = 1$, while the U and \overline{D} with $\mathcal{B}(Q \to W^+q) \approx 0.22$
- The U and \overline{D} production happen with diagrams involving all the SM gauge bosons, this enhances these contributions

1		1
IW	=	Т

I_W	=	3/2
-------	---	-----

m_* (GeV)	U^+ (fb)	U (fb)	\overline{D} (fb)	\overline{D}^{-} (fb)	$\sigma_{tot}(e^+ \not p_T j j)$ (fb)	m_* (GeV)	U^+ (fb)	U (fb)	\overline{D} (fb)	\overline{D}^{-} (fb)	$\sigma_{tot}(e^+ \not p_T j j)$ (fb)
500	7782.0	6303.0	2594.0	2679.0	19358.0	500	11080	3446.0	1506.0	477.60	16509.6
1000	1277	978	329.4	357.3	2941.7	1000	2240	623.70	151.30	47.46	3062.46
1500	344.6	250.30	73.390	90.400	758.69	1500	806.3	203.20	28.750	8.8000	1047.05
2000	107.7	74.580	23.370	28.330	233.98	2000	343.2	82.890	6.3130	1.954	434.357
2500	39.05	24.740	8.689	9.1740	81.653	2500	159.9	40.760	1.7260	0.5253	202.911
3000	13.5	9.5770	4.043	2.459	29.579	3000	60.25	24.130	0.44890	0.15880	84.9877
3500	4.281	3.612	1.119	0.7004	9.7124	3500	23.55	8.5430	0.12390	0.053250	32.2702
4000	1.424	1.3470	0.2401	0.2161	3.2272	4000	9.347	2.0480	0.03894	0.018810	11.4527
4500	0.4957	0.4958	0.06098	0.06365	1.11613	4500	3.191	0.6354	0.01335	0.006457	3.84621
5000	0.1799	0.18530	0.01819	0.0211	0.4045	5000	1.043	0.2034	0.004864	0.002433	1.2537

Roberto Leonardi ()

- Partonic processes simulation (CalcHEP)
 - $m^* \in [500, 5000] \ GeV$ with steps of 250 $\ GeV$
 - 100000 events per sample
- $\, \bullet \,$ Study of the kinematic variables $\, \rightarrow \,$ kinematic cuts
- Simulation of detector effects (DELPHES): efficiency, resolution, geometrical acceptance etc.
- Study of the statistical significance

イロト イポト イヨト イヨト 二日

Kinematical cuts

- The main background is the process $pp \rightarrow W_{ij} \rightarrow \ell^+ p_T_{ij}$
- We want to find kinematical cuts that can separate the signal and the backround

Sac

14 / 20

Roberto Leonardi ()

Transverse mass

- One of the decay product of the excited quark is a neutrino
- For neutrinos it is not possible to reconstruct the longitudinal momentum
- therefore it is not possible to exactly reconstruct the excited quark mass
- we can reconstruct the transverse mass

The transverse mass is defined in terms of the reconstructed trensverse momentum of the W gauge boson $(p_{TW} = p_{T\ell} + p_{T\nu})$ and the transverse momentum of the leading jet:

Roberto Leonardi ()

Excited quark reconstructed mass (with approximation)

We can still reconstruct the invariant mass of the exotic quark to some degree of accuracy

- We start from the conservation of four-momento: $M_W^2 = (p_\ell + p_
 u)^2$
- From it we obtain a second-order equation for p_I^{ν}
- ${\ensuremath{\, \bullet \, }}$ Among the two solutions we select the one that gives the more central (smaller pseudorapidity) W
- Now we can reconstruct the invariant mass $M_{\ell\nu_\ell j_1}$

The $M_{\ell\nu_\ell j_1}$ distribution has a clear peak in correspondence of the excited quark mass

Reconstruction and selection efficiencies

Selection:

2 jets and 1 lepton with $p_T(j1) \ge 180 \text{ GeV},$ $p_T(j2) \ge 100 \text{ GeV}$

	Backgr	ound			
	σ_b before cut (fb)	σ_b after cut (fb)	(ϵ_b)		
	8200000	14678	0.00179		
	Signal (I	w = 1)			
m_* (GeV) σ_s before cut (fb)	σ_s after cut (fb)	(ϵ_s)		
500	19358	12213.1	0.630906		
1000	2941.7	2367.87	0.804931		
1500	758.69	643.786	0.848549		
2000	233.98	203.191	0.868412		
2500	81.653	71.5896	0.876754		
3000	29.579	26.1131	0.882824		
3500	9.7124	8.6383	0.88941		
4000	4000 3.2272 2.87522				
4500	1.11613	0.994357	0.890897		
5000	0.4045	0.362569	0.896339		
	Signal (I _W	= 3/2)			
m_* (GeV) σ_s before cut (fb)	σ_s after cut (fb)	(ϵ_s)		
500	16509.6	8888.19	0.538365		
1000	3062.46	2257.67	0.737208		
1500	1047.05	841.233	0.803432		
2000	434.357	358.925	0.826336		
2500	202.911	169.963	0.837622		
3000	84.9877	73.1053	0.860187		
3500	32.2702	27.4566	0.850835		
4000	11.4527	9.31689	0.813507		
4500	3.84621	3.13297	0.814562		
5000	1.2537	1.01801	0.812003		

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー のくべ

Statistical significance study

Statistical Significance:
$$S = \frac{N_s}{\sqrt{N_s + N_b}}$$
, with $N_s = L\sigma_s\epsilon_s$, $N_b = L\sigma_b\epsilon_b$
Luminosity needed to have a given S : $L = \frac{S^2}{\sigma_s\epsilon_s} \left[1 + \frac{\sigma_b\epsilon_b}{\sigma_s\epsilon_s}\right]$

September 14, 2017 18 / 20

Roberto Leonardi ()

Recast of an experimental analysis

We give bounds on the excited quarks in $I_W = 1,3/2$ multiplets by recasting results from CMS-PAS-B2G-12-016

CMS-PAS-B2G-12-016

• Search for exotic light flavour quark partners

•
$$\sqrt{s} = 8 \text{ TeV}$$

- 19.6 fb⁻¹
- We compare the observed limit on $\sigma(pp \rightarrow Dq) \times \mathcal{B}(D \rightarrow Zq)$ of the experimental analysis with the prediction of our model
- In our model this signature is produced by the states D, D, U, U

 $I_W=3/2
ightarrow m_*>1710\,\,{
m GeV}$

イロト イポト イヨト イヨト

Conclusions

This is the first study of the production at the LHC of the excited quarks which appear in composite models with weak isospin multiplets $I_W = 1$ and $I_W = 3/2$

- Cross section for excited quarks
- Implementation of the magnetic type Gauge interactions in the CalcHEP generator
- Fast simulation of the detector reconstruction for signal and relevant background based on DELPHES
- Luminosity curves as function of m_* for S=3 and S=5
- Bound on the excited quark mass by recasting an experimental analysis

Future improvement of the study:

- The two dimensional parameter space (Λ, m_*) could be fully explored
- The effect of expected contact interaction should be taken into account

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○