The Higgs particle in condensed matter

Assa Auerbach, Technion

N. H. Lindner and A. A, *Phys. Rev. B* 81, 054512 (2010)
D. Podolsky, A. A, and D. P. Arovas, *Phys. Rev. B* 84, 174522 (2011)S.
Gazit, D. Podolsky, A.A, Phys. Rev. Lett. 110, 140401 (2013);
S. Gazit, D. Podolsky, A.A., D. Arovas, Phys. Rev. Lett. 117, (2016).
D. Sherman et. al., Nature Physics (2015)
S. Poran, et al., Nature Comm. (2017)

Outline

- Brief history of the Anderson-Higgs mechanism
- The vacuum is a condensate
- Emergent relativity in condensed matter
- Is the Higgs mode overdamped in d=2?
- Higgs near quantum criticality

Experimental detection:

Charge density waves Cold atoms in an optical lattice Quantum Antiferromagnets Superconducting films 1955: T.D. Lee and C.N. Yang - massless gauge bosons
1960-61 Nambu, Goldstone: massless bosons in spontaneously broken symmetry

Where are the massless particles?

1962

1963

Gauge Invariance and Mass

JULIAN SCHWINGER

Harvard University, Cambridge, Massachusetts, and University of California, Los Angeles, California (Received July 20, 1961)

It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper understanding of nucleonic charge conservation as a manifestation of a gauge invariance, without the obvious conflict with experience that a massless particle entails.

Plasmons, Gauge Invariance, and Mass

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received 8 November 1962)

The vacuum is not empty: it is stiff. like a metal or a charged Bose condensate!

Rewind to 1911

Kamerlingh Onnes

Phil Anderson

Symmetry breaking in O(N) theory

N-component real scalar field : $\phi^{t} = (\phi_{1}, \dots, \phi_{N})$

"Mexican hat" potential : $V(\boldsymbol{\phi}) = \frac{m_0^2}{8N} (\boldsymbol{\phi}^2 - N)^2$

ORDERED GROUND STATE Dan Arovas, Princeton 1981

N-1 Goldstone modes (spin waves)

1 Higgs (amplitude) mode

Dynamics of bosons

 $\begin{array}{l} \hline \textbf{Galilean Gross Pitaevskii bosons (BEC)} \quad \psi \simeq \sqrt{\rho} e^{i\varphi} \\ \mathcal{L} = i \psi^* \dot{\psi} - |\nabla \psi|^2 - g(|\psi|^2 - \bar{n})^2 \\ = \rho \dot{\varphi} - |\nabla \psi|^2 - g(\rho - \bar{n})^2 \quad \textbf{>1 massless phase-density phonon} \end{array}$

→ NO Amplitude-Higgs mode

<u>Relativistic</u> O(2) theory $\psi = r(x)e^{i\varphi(x)}$

 $\mathcal{L}^{O(2)} = (\dot{\psi}|^2) - |\nabla\psi|^2 - \mu|\psi|^2 + g|\psi|^4 - i\alpha\psi^*\dot{\psi}$ $\rightarrow 1 \text{ massless phase mode}$ $\rightarrow 1 \text{ Amplitude-Higgs mode}$

Both modes survive weak p-h symmetry breaking

Relativistic Dynamics in Lattice bosons

Bose Hubbard Model $\mathcal{H} = \left(-t\sum_{i}a_{i}^{\dagger}a_{j}\right) + \left(U\sum_{i}n_{i}^{2}\right) - \mu\sum_{i}n_{i}$

Large t/U: system is a superfluid, (Bose condensate).

Small t/U: system is a Mott insulator, (gap for charge fluctuations).

Relativistic Gross Pitaevskii $\mathcal{L} = |\partial_t \psi|^2 - c^2 |\nabla \psi|^2 + r |\psi|^2 - u |\psi|^4$

Relativistic Dynamics O(2) model

Higgs - Goldstones coupling

$$S[\boldsymbol{\phi}] = \frac{1}{g} \int d^d x \int dt \left[\frac{1}{2} \left(\partial_t \boldsymbol{\phi} \right)^2 - \frac{1}{2} \left(\boldsymbol{\nabla} \boldsymbol{\phi} \right)^2 - V(\boldsymbol{\phi}) \right]$$

 σ (1 direction)

Fluctuations in the ordered state: π (*N*-1 directions)

$$\boldsymbol{\phi} = (\sqrt{N} + \boldsymbol{\sigma}, \boldsymbol{\pi})$$

Harmonic theory

$$\mathcal{L}_0 = \frac{1}{2g} \Big[(\partial_\mu \sigma)^2 - m^2 \sigma^2 + (\partial_\mu \pi)^2 \Big]$$

Interactions

$$\mathcal{L}_{1} = \frac{m^{2}}{2g} \left[\frac{1}{\sqrt{N}} \sigma \pi^{2} + \frac{1}{\sqrt{N}} \sigma^{3} + \frac{1}{4N} \sigma^{4} + \frac{2}{N} \sigma^{2} \pi^{2} + \frac{1}{4N} (\pi^{2})^{2} \right]$$

Higgs coupling to 2 Goldstones

Is the Higgs mode over damped in
$$d=2?$$

Ś

Visibility of the amplitude (Higgs) mode in condensed matter

Daniel Podolsky,¹ Assa Auerbach,^{1,2} and Daniel P. Arovas³

$$S = \frac{1}{2g} \int_{\Lambda} d^{d+1}x \left[(\partial_{\mu} \Phi)^{2} + \frac{m_{0}^{2}}{4N} (|\Phi|^{2} - N)^{2} \right]$$
Quantum Critical point
Landau theory
Sponateously broken symmetry
Quantum Critical point
Symmetric phase
(quantum disordered)

 $q < q_c$

 $g = g_c$

 $g > g_c$

The Higgs decay

The Higgs mode can decay into a pair of Goldstone bosons :

$$\Sigma_{\sigma}(k) = \frac{k}{\sigma} \prod_{p} \frac{k+p}{\sigma} \propto \int \frac{d^3p}{(2\pi)^3} \frac{1}{p^2(p+k)^2} = \frac{1}{8|k|}$$
$$\operatorname{Im}\Sigma(\omega) \propto \frac{1}{|\omega|} \begin{array}{c} \operatorname{infrared} & (\operatorname{Nepomny} \\ \operatorname{Sachdev} & (\operatorname{1998}) \end{array}$$

divergent!

(Nepomnyaschii)² (1978) Sachdev (1999), Zwerger (2004)

Behavior of different dynamical correlation functions

order parameter susceptibility

(Nepomnyaschii)² (1978) Sachdev (1999), Zwerger (2004)

$$\chi_{11}(\omega) = \langle \psi_1(\omega)\psi_1(-\omega)\rangle \sim \omega^{-1}$$

infrared divergent in d=2

scalar susceptibility D. Podolsky, A. A, and D. P. Arovas, PRB (2011)

 $\chi_{\rho\rho}(\omega) = \langle |\vec{\psi}|^2(\omega) |\vec{\psi}|^2(-\omega) \rangle \sim \omega^3 \text{ infrared regular}$ in d=2

Higgs peak in scalar response is well defined!

vector vs scalar dynamical correlations

Longitudinal versus radial perturbations :

Radial motion is less damped, since it is not effected by azimuthal meandering.

What happens to the spectral function near the quantum critical point?

Numerical simulations

Gazit Podolsky Auerbach PRL (2013), Gazit, Podolsky, AA, Arovas (in preparation)

universal Higgs spectral function

5

Conclusion: Higgs peak is visible close to criticality in d=2

Apr 26, 2013 Birth of a Higgs boson Results from ATLAS and CMS now provide enough evidence to identify the new particle of 2012 as 'a

Narrow Higgs peak —> vacuum is far from criticality

Experimental detection:

Charge density waves (coupled 1 dimensions)

Quantum Antiferromagnets (3 dimensions)

Cold atoms in an optical lattice (2 dimensions)

Superconducting films (2 dimensions)

CDW systems (TbTe₃, DyTe₃, 2H-TaSe₂):

R. Yusupov et al., Nature Phys. 6, 681 (2010)

Magnetic systems in 3 dimensions

Heisenberg antiferromagnet

$$H = \sum_{\langle ij \rangle \rangle} \vec{S}_i \cdot \vec{S}_j$$

 1
 1
 1
 1

 4
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

O(3) Relativistic non linear sigma model

Cold atoms in optical lattices

Greiner et. al. Nature 2001

Relativistic Gross Pitaevskii $\mathcal{L} = |\partial_t \psi|^2 - c^2 |\nabla \psi|^2 + r |\psi|^2 - u |\psi|^4$

Higgs near criticality: ⁸⁷Rb

LETTER

doi:10.1038/nature11255

Relativistic Gross Pitaevskii $\mathcal{L} = |\partial_t \psi|^2 - c^2 |\nabla \psi|^2 + r |\psi|^2 - u |\psi|^4$

Superconductor to Insulator transition in thin films

Partial list:

Haviland et. al. PRL (1989) Hebard Palaanen PRL (1990) Yazdani & Kapitulnik (PRL (1995) MoGe Sambandamurthy et. al. PRL (2004) InO Baturina et. al. PRL 99 (2007) M. Chand et. Al, PRB (2009)

Theory:

Finkelstein, Feigelman, Vinokur, Larkin, Ioffe, Trivedi, Randeria, Ghosal, Shimshoni, AA, Meir, Dubi, Michaeli

O(2) Quantum phase transition at T=0Collective modes would prove quantum criticality

We find
$$\sigma(\omega) = A \, \delta(\omega) + \widetilde{\sigma}(\omega)$$
 with $A = N e^2 g^{-1} + \mathcal{O}(g^0)$

The finite frequency part is computed from

$$\widehat{K}_{\mu\nu}^{\mathsf{P}}(k) = \frac{1}{(N-1)q^2} \int d^{d+1}x \, e^{ik \cdot (x-x')} \left\langle \left(\boldsymbol{\sigma} \, \partial_{\mu} \boldsymbol{\pi} - \boldsymbol{\pi} \, \partial_{\mu} \boldsymbol{\sigma} \right)_x \cdot \left(\boldsymbol{\sigma} \, \partial_{\nu} \boldsymbol{\pi} - \boldsymbol{\pi} \, \partial_{\nu} \boldsymbol{\sigma} \right)_{x'} \right\rangle$$

We evaluate this perturbatively in the coupling g. Conductivity diagrams :

This yields a threshold at the Higgs mass, with

$$\sigma(\omega) \propto (\omega - m)^d$$

Does this change qualitatively at higher orders?

Sherman et.al. THZ spectroscopy

D. Sherman et. al., Nature Physics (2015)

Summary

A Higgs (amplitude) mode in condensed matter appears when

1. The dynamics are *relativistic*. (*granular superconductors*, *cold atoms on optical lattices*, *antiferromagnets*).

2. Near a *quantum critical point*, when the Higgs mass is low. In two dimensional superconductors, the Higgs mode is visible as a threshold for the AC conductivity. At criticality, the Higgs spectral function scales as a *universal peak*