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Introduction
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Why jets?

• Jet related studies important for understanding QCD

• Extraction of α
S

and PDFs

• LHC is a jet factory: complex final states containing multiple hadronic jets copiously
produced

• SM background to BSM searches

• Precisely measured over many orders of magnitude

Bottom line: jets are essential analysis tools, precise understanding needed
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Jets at LHC

• Double-differential inclusive jet cross section at
√
s = 13 TeV

• Precise data over more than 10 orders of magnitude

• p
T

range to (beyond) 2 TeV

[ATLAS-CONF-2017-048]

[Eur. Phys. J. C76 (2016) no.8, 451]

[CMS-SMP-15-007, CERN-EP-2016-104]
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α
S

world average

[S. Bethke, Nucl. Part. Phys. Proc. 282-284 (2017) 149]

With the exception of lattice results, most results
within their subclass are strongly correlated, however
to an unknown degree, as they largely use similar data
sets and/or theoretical predictions. The large scatter
between many of these measurements, sometimes with
only marginal or no agreement within the given errors,
indicate the presence of additional systematic uncer-
tainties from theory or caused by details of the anal-
yses. Therefor the unweighted average of all selected
results is taken as pre-average value for each subclass,
and the unweighted average of the quoted uncertainties
is assigned to be the respective overall error of this pre-
average.

For the subclasses of hadron collider results and elec-
troweak precision fits, only one result each is available
in full NNLO, so that these measurements alone define
the average value for their subclass. Note that more
measurements of top-quark pair production at LHC are
meanwhile available, indicating that - on average - a
larger value of αs(M2

Z) is likely to emerge in the future;
see also [17] and the presentation of T. Klijnsma at this
conference [18]. The resulting subclass averages are in-
dicated in figure 1, and are summarized in table 1.

Table 1: Pre-average values of subclasses of measurements of
αs(M2

Z).

Subclass αs(M2
Z)

τ-decays 0.1192 ± 0.0018
lattice QCD 0.1188 ± 0.0011
structure functions 0.1156 ± 0.0021
e+e− [jets & shps] 0.1169 ± 0.0034
hadron collider 0.1151 + 0.0028

− 0.0027
ew precision fits 0.1196 ± 0.0030

Assuming that the resulting pre-averages are largely
independent of each other, the final world average
value is determined as the weighted average of the pre-
averaged values. An initial uncertainty of the central
value is calculated treating the uncertainties of all in-
put values as being uncorrelated and of Gaussian nature,
and the overall χ2 to the central value is determined. If
the initial χ2 is smaller than the number of degrees of
freedom, an overall, a-priori unknown correlation co-
efficient is introduced and adjusted such that the total
χ2/d.o.f. equals unity. Applying this procedure to the
values listed in table 1 results in the new world average
of

αs(M2
Z) = 0.1181 ± 0.0011 .

This value is in good agreement with that from

Figure 1: Summary of determinations of αs. The light-shaded bands
and long-dashed vertical lines indicate the pre-average values as ex-
plained in the text and as listed in table 1; the dark-shaded band and
short-dashed line represent the new overall world average of αs.

S. Bethke / Nuclear and Particle Physics Proceedings 282–284 (2017) 149–152150

α
S

at e+e− colliders

• Based on jet rates and event shapes
(thrust, C -parameter, etc.)

• NNLO theory is used, with up to N3LL
resummation

α
S

at the LHC

• Several determinations based on jet
measurements at 7 and 8 TeV

• Typically NLO theory is used, except
for the tt̄ total cross section, which
based on NNLO

• Uncertainties already dominated by
theory, e.g., α

S
from transverse

energy-energy correlation at 8 TeV

α
S

(MZ ) = 0.1162± 0.0011 (exp.) +0.0076
−0.0061 (scale)± 0.0018 (PDF)± 0.0003 (NP)

[ATLAS Coll., arXiv:1707.02562]
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Constraining PDFs

• Triple-differential dijet jet cross section at
√
s = 13 TeV

• Experimental uncertainties small enough to constrain PDFs

• Largest impact on the high-x region

[CMS Coll., arXiv:1705.02628]

[CMS-SMP-16-011, CERN-EP-2017]

6



QCD at colliders

• To fully exploit the physics potential of colliders requires precision, QCD must be
understood/modeled as best as feasible

a

b

jet

dσ =
∑
a,b

∫
dxa

∫
dxb fa(xa, µ

2
F ) fb(xb, µ

2
F )︸ ︷︷ ︸

non-pert. PDFs

× dσ̂ab(xa, xb,Q
2, α

S
(µ2

R))︸ ︷︷ ︸
pert. partonic x-sec

+O ((Λ/Q)m)

• One particular aspect of precision: calculation of exact higher order corrections to
physical observables in perturbation theory
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Why higher order corrections?

• NLO corrections are large,
convergence is slow (α

S
∼ 0.1)

• Dependence on unphysical scales
considerably reduced at higher
orders

• Reliable estimate of theoretical
uncertainties

• Benchmark processes measured
with high experimental accuracy

• The lack of striking signals of new
physics at LHC suggests that BSM
effects will be accessible only
through precision studies

[Anastasiou, Dixon, Melnikov, Petriello,

Phys. Rev. D69 (2004) 094008]
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NNLO
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NNLO ingredients

• 2-loop (VV)

• 1-loop (RV)

• tree (RR)

• Two-loop integrals ⇒ explicit poles up to 1/ε4

• 2→ 2 available (including VV production)

• Huge progress, but higher multiplicities a bottleneck?

• One-loop integrals ⇒ explicit poles up to 1/ε2

• Real emission ⇒ implicit poles up to 1/ε2 from
integration over unresolved phase space

• NLO complexity

• Tree level ⇒ amplitudes trivial to compute

• Double real emission ⇒ implicit poles up to 1/ε4

from integration over unresolved phase space

• Higher multiplicities a bottleneck?
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The problem

Assuming we know the relevant matrix elements, can we use those matrix elements to
compute cross sections?

• Consider the NNLO correction to a generic m-jet observable

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

• All three terms are separately divergent in d = 4 dimensions

• Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe) observables
(KLN theorem)

• How to make this cancellation explicit, so that the various contributions can be
computed numerically?

Need a method to deal with implicit poles.
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Handling singularities: phase space slicing

Phase space slicing: split phase space according to singular configurations

∫ 1

0
|MR |2 dφR +

∫
|MV |2 dφV =

∫ 1

δ
|MR |2 dφR︸ ︷︷ ︸

regularized
by cutoff

+

∫ δ

0
|MR |2 dφR +

∫
|MV |2 dφV︸ ︷︷ ︸

can be obtained from
resummation framework

• Not used at NLO

• Generates large numerical cancellations on cutoff (must check independence)

• Can use existing NLO calculations as basis (X+jet)

• Local subtractions for NLO-like singularities

• Simpler to implement (resummation)
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Handling singularities: phase space slicing

Two approaches based on different resummation frameworks

• q
T

subtraction [Catani, Cieri, de Florian, Ferrera, Grazzini]

• N-jettiness subtraction [Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh]

q
T

or jettiness used to disentangle “pure” NNLO regions

So far only for “simpler” configurations: one/zero colored particle in the final state
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Handling singularities: subtraction method

Subtraction method: use local counterterm to rearrange singularities

∫ 1

0
|MR |2 dφR +

∫
|MV |2 dφV =

∫ 1

0
(|MR |2 −D)dφR︸ ︷︷ ︸

integrable

+

∫ 1

0
D dφR +

∫
|MV |2 dφV︸ ︷︷ ︸

poles cancel analytically

• Method of choice at NLO

• Subtractions can be completely local (good convergence)

• At NNLO lots of singular configurations with overlaps

• Integration of subtraction term quite complicated (can be numerical)
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Handling singularities: subtraction method

Definition of the subtraction term is not unique, several approaches

• Sector decomposition [Anastasiou, Melnikov, Petriello; Binoth, Heinrich]

• Antenna subtraction [Gehrmann, Gehrmann-de Ridder, Glover]

• Sector-improved residue subtraction (STRIPPER) [Czakon; Boughezal, Melnikov, Petriello]

• Projection-to-born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

• CoLoRFulNNLO subtraction [Del Duca, GS, Trócsányi]

Personal opinion: general solution not yet available

15



Handling singularities: subtraction method

Definition of the subtraction term is not unique, several approaches

• Sector decomposition [Anastasiou, Melnikov, Petriello; Binoth, Heinrich]

• Antenna subtraction [Gehrmann, Gehrmann-de Ridder, Glover]

• Sector-improved residue subtraction (STRIPPER) [Czakon; Boughezal, Melnikov, Petriello]

• Projection-to-born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

• CoLoRFulNNLO subtraction [Del Duca, GS, Trócsányi]
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CoLoRFulNNLO

Several approaches – why this one?

• general and explicit expressions, including color and flavor
(automation, color space notation is used)

• fully local counterterms, taking account of all color and spin correlations
(mathematical rigor, efficiency)

• analytic cancellation of explicit ε poles in loop amplitudes
(mathematical rigor)

• option to constrain subtractions to near singular regions (αmax)
(efficiency, important check)

• very algorithmic construction
(valid at any order in perturbation theory)
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The recipe

Use the same framework that was successful at NLO: local subtractions

The NLO correction to some m-jet observable J

σNLO[J] =

∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1 Jm

]
d=4

+

∫
m

[
dσV

m +

∫
1
dσ

R,A1
m+1

]
d=4

Jm

The NNLO correction is the sum of three pieces

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

The three contributions are separately IR divergent in d = 4

• RR: double and single unresolved real emission

• RV: single unresolved real emission ⊕ ε-poles from m + 1 parton one-loop

• VV: ε poles from m parton two-loop

17



For the RR contribution subtractions are needed to regularize one- and two-parton
emissions

σNNLO
m+2 =

∫
m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

• A1 and A2 have overlapping singularities ⇒ A12 is needed to cancel

For the RV contribution emissions are like at NLO but for one-loop-tree interference

σNNLO
m+1 =

∫
m+1

{[
dσRV

m+1 +

∫
1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]
Jm
}
d=4

• Notice the integrated A1 from RR which is still singular ⇒ subtraction is needed
(last term)

The m-parton contribution contains the double virtual and integrated subtractions

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]}

d=4
Jm
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Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

• Tree level 3-parton splitting functions and double soft gg and qq̄ currents

Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

! Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

! One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore,
Schmidt 1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000;

Kosower 2003)

Gábor Somogyi | CoLoRFulNNLO | page 10

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]

• One-loop 2-parton splitting functions and soft gluon current
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Schmidt 1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000;

Kosower 2003)

Gábor Somogyi | CoLoRFulNNLO | page 10

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

But note

• Unresolved regions in phase space overlap

• Quantities appearing in factorization formulae are only well-defined in the strict limit
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Defining the subtraction scheme

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of
PS. Easy at NLO: collinear limit + soft limit - collinear limit of soft limit.

A1|M(0)
m+1|2 =

∑
i

[∑
i 6=r

1

2
Cir + Sr −

∑
i 6=r

CirSr

]
|M(0)

m+1|2

2. Extension of IR factorization formulae over full PS using momentum mappings that
respect factorization and delicate structure of cancellations in all limits.

{p}m+1
r−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration of the counterterms over the phase space of the unresolved parton(s).
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Defining the subtraction scheme

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an efficient solution
that works at any order in PT is known.

2. Extension is delicate. E.g., counterterms for single unresolved real emission
(unintegrated and integrated) must have universal IR limits. This is not guaranteed
by QCD factorization.

3. Choosing the counterterms such that integration over the unresolved phase space is
(relatively) straightforward generally conflicts with the delicate cancellation of IR
singularities.
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Computing the integrated subtractions

Strategy for computing the phase space integrals: direct integration

1. Write phase space in terms of
angles and energies

2. Angular integrals in terms of
Mellin-Barnes representations

3. Resolve the ε poles by analytic
continuation

4. MB integrals to Euler-type
integrals, pole coefficients are finite
parametric integrals

1. Choose explicit parametrization of
phase space

2. Write the parametric integral
representation in chosen variables

3. Resolve the ε poles by sector
decomposition

4. Pole coefficients are finite
parametric integrals

5. Evaluate the parametric integrals in terms of multiple polylogs

6. Simplify result (optional)
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General features of CoLoRFulNNLO

CoLoRFulNNLO: Completely Local subtRactions for Fully differential NNLO

Subtractions built using universal IR limit formulae and exact PS factorization

• Altarelli-Parisi splitting functions, soft currents

• PS factorizations based on momentum mappings that can be generalized to any
number of unresolved partons

Completely local in color ⊗ spin space, fully differential in phase space

• No need to consider the color decomposition of real emission ME’s

• Azimuthal correlations correctly taken into account in gluon splitting

• Can check explicitly that the ratio of the sum of counterterms to the real emission
cross section tends to unity in any IR limit

Poles of integrated subtraction terms computed analytically

• Can check pole cancellation in (double) virtual contribution explicitly

Explicit formulae for processes with colorless initial state

• Automation is possible
23



MCCSM

MCCSM is a Monte Carlo for the CoLoRFulNNLO Subtraction Method

• Completely general and fully automatic

• Highly flexible and tunable

• Phase space is recursively constructed, MINT is used for MC integration

• Histogram output in YODA format through an interface to YODA

• Written in standard fortran90 (by Á. Kardos)

• User must provide only the squared MEs, including color- and spin-correlated (since
subtraction terms are local)
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Jet production at lepton colliders
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Why e+e− → jets?

• Relevant for extracting α
S

from data
– the value of the strong coupling
matters

• Three-jet event shapes and jet rates
are sensitive to α

S
and have been

extensively measured

• Can compute new observables which
may be better suited extraction of the
strong coupling

• Good testing ground for higher order
technology

)
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e+e− → jets: status

NNLO corrections to event shapes and jet rates in e+e− → 2, 3 jets known

• Antenna subtraction: EERAD3 now superseded by NNLOJET

[Gehrmann, Gehrmann-de Ridder, Glover, Heinrich 2007;
Gehrmann, Glover, Huss, Niehues, Zhang 2017]

• Another implementation of the same scheme is available

[Weinzierl 2009]

• CoLoRFulNNLO subtraction: MCCSM

[Del Duca, Duhr, Kardos, GS, Szőr, Trócsányi, Tulipánt 2016]

• Used to extract α
S

from e+e− data, in conjunction with resummation

[Dissertori et al. 2009, Abbate et al. 2011,
Gehrmann et al. 2013, Hoang et al. 2015]
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Event shapes at NNLO

• Thrust
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Jet rates at NNLO

• Three-jet rate, anti-k⊥ jets
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• Three-jet rate, anti-k⊥ jets
(Ecut = 0.0385
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e+e− → jets: outlook

More jets?

• Necessary two-loop amplitudes not yet ready, but on the way

• Antenna: general form of approximate cross sections for e+e− → n jets not recorded
in literature, in particular subleading color is complicated

• STRIPPER: can handle e+e− → n jets in principle, but cancellation of poles is
numeric

• N-jettiness: some pieces of the resummation framework still missing, numerics could
be a major challenge

• CoLoRFulNNLO: approximate cross sections for the general case known, some
integrated counterterms for n > 3 missing

• Numerics for double real radiation will be challenging for any method
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Jet production at hadron colliders
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Jets at LHC: status

NNLO corrections known to

• Single jet inclusive production using antenna subtraction: NNLOJET

(leading color, all partonic channels)

[Currie, Glover, Pires 2016]

• Dijet production using antenna subtraction: NNLOJET

(leading color, all partonic channels)

[Currie, Gehrmann-De Ridder, Gehrmann, Glover,
Huss, Pires 2017]

• First qualitative comparisons to data

[ATLAS-CONF-2017-048]

• Will not discuss H/W /Z + jet and VBF, apologies

[Boughezal, Focke, Giele, Liu, Petriello 2015; Boughezal, Caola,
Melnikov, Petriello, Schulze 2015, Chen, Cruz-Martinez,
Gehrmann, Glover, Jaquier 2016; Gehrmann-De Ridder,

Gehrmann, Glover, Huss, Morgan 2016; Boughezal, Campbell,
Ellis, Focke, Giele, Liu, Petriello 2016; Boughezal, Liu, Petriello

2016; Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015]
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Single jet inclusive production at the LHC

Leading color, all partonic channels using antenna subtraction: NNLOJET
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• Moderate NNLO corrections
• Two different scale choices: leading jet vs. individual jet transverse momentum

• Equivalent at large transverse momentum
• Differences outside scale band at low transverse momentum
• µ = pT provides better description of data
• Requires further studies
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Single jet inclusive production at the LHC

Single inclusive cross section in three pT bins
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Dijet production at the LHC

Leading color, all partonic channels using antenna subtraction: NNLOJET
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• Moderate NNLO corrections (∼ 10%)

• Better description of data at low mjj , y∗

• NLO underestimates uncertainty at low
mjj , y∗

• NNLO scale dependence smaller than
experimental uncertainty

• Natural scale choice is invariant mass
(better convergence)
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pp → jets: outlook

More jets?

• Available computations for one and two jets still only leading color

• Necessary two-loop amplitudes not yet ready, but on the way

• Antenna: general form of subtraction terms not recorded in literature, in particular
subleading color is complicated

• STRIPPER: can handle pp → n jets in principle, but cancellation of poles is numeric

• N-jettiness: some pieces of the resummation framework still missing, numerics could
be a major challenge

• CoLoRFulNNLO: work on extending to initial state radiation ongoing

• Numerics for double real radiation will be challenging for any method
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Conclusions
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Conclusions

Jets are essential analysis tools: precise understanding mandatory

Amazing progress in fixed order calculations in the past decade

• Automation of NLO

• NNLO for 3 jets at lepton colliders

• NNLO for several 2→ 2 processes, including dijet, at hadron colliders

• Even N3LO for simplest LHC kinematics, first set of splitting functions

NNLO results are being used for analyses

• Extraction of α
S

, constraining PDFs, searches, . . .

• First comparison of LHC jet data with NNLO

But reaching new bottlenecks, in particular NNLO still very challenging beyond 2→ 2

• Two-loop (massive) amplitudes

• Real radiation not trivial

Will need significant developments: new understanding, new ideas, new tools

The future is challenging but exciting
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