Highlights from High pT at LHC

Andrea Rizzi

University and INFN Pisa

1

Trento, 12th Sept 2017

High pt?

Which topic to cover with this "high pt" talk?

- ► V+jets → yesterday
- Top \rightarrow tomorrow
- ▶ BSM \rightarrow friday

So I'll cover Higgs and some di-boson

Are Higgs and di-boson not "strong enough" for this workshop?

- Higgs to bb and ttH
- Boosted topologies of boson hadronic decays
- VBF signatures (ok they are ewk "high pt processes" but with important "soft QCD" effects)
- HH final states

In general backgrounds matters, and they are QCD (V+jets, top)

Outline

Standard Model VH(bb) recent results

- Details of the analysis
- Boosted Higgs
- VBF signatures
- di-boson
- HH (resonant and non resonant)

Higgs after Run 1

- The Higgs boson discovery was one of the major results of LHC Run1
- ATLAS and CMS measured different decay and production modes with results >3σ in most channels
- What was left after Run 1?
 - bb decay mode
 - ttH and VH associated productions
- So from Run 2 we would expect :
 - ▶ VH, with $H \rightarrow bb$
 - ttH in the various decay modes
 - Higgs to muons?
- We surf the wave... but top does too!
 - And it is heavier!

VH

Dominant VH production at LHC via

▶ qq \rightarrow V* \rightarrow VH

- Production via ggZH only few %
 - In the inclusive phase space
 - The picture changes in the typical VH(bb) analysis phase space
 - ▶ pT V > ~100-150 GeV
- Needed simulation of ggZH

LHC VH(bb) search

- Signal topology overview
 - Two b-tagged jets
 - 0,1,2 isolated leptons
 - or large missing energy
- Event features for S vs B separation:
 - dijet invariant mass
 - dijet system transverse momentum
 - Additional hadronic activity
- Main backgrounds:
 - ▶ V+jet
 - Ttbar & single top
 - diboson
 - QCD multi jet production

Di-jet mass

- B-jet energy is typically badly measured due to leptons+neutrinos in the decay
- Corrections can improve Mbb resolution
 - ► Additional constraint in $Z \rightarrow ll$ mode as the event is fully reconstructed

V+jet background

Vector+jet is one of the dominant backgrounds

Several difficulties in modelling this background

- Important EWK and QCD corrections to the Vpt spectrum (see arxiv:1511.08692)
- Experimental tags of 2 b-jets can have several origins (hard bb, gluon splitting, experimental mistags)

Apply relevant corrections

- Data to simulation (corners of phase space are not predicted as nicely as inclusive)
- LO to NLO (when NLO fully simulated samples not available)

Take into account V_pt uncertainties

V_pt is a crucial variable to separate signal from background

Background control regions

- Vector pt (and other important variables) checked after all corrections in dedicated control regions
- ttbar control region
- V+light control region
- V+heavy control region

Signal vs background separation

- Several features can be combined to separate S-B
- Multivariate analysis based on Boosted Decision Tree used to maximize sensitivity

Variable	Channels
	utilizing
M(jj): dijet invariant mass	All
$p_{\rm T}(jj)$: dijet transverse momentum	All
$p_{\rm T}({\rm V})$: vector boson transverse momentum	All
CMVA _{max} : value of CMVA for the Higgs boson daughter	2-lepton, 0-lepton
with largest CSV value	
CMVA _{min} : value of CMVA for the Higgs boson daughter	All
with second largest CSV value	
CMVA _{add} : value of CMVA for the additional jet	0-lepton
with largest CSV value	
$\Delta \phi(V, H)$: azimuthal angle between V and dijet	All
$p_{\rm T}(j)$: transverse momentum	2-lepton, 0-lepton
of each Higgs boson daughter	
$p_{\rm T}({\rm add.})$: transverse momentum	0-lepton
of leading additional jet	-
$ \Delta \eta(\mathbf{jj}) $: difference in η	2-lepton, 0-lepton
between Higgs boson daughters	
$\Delta R(jj)$: distance in $\eta - \phi$	2-lepton
between Higgs boson daughters	_
N _{aj} : number of additional jets	1-lepton, 2-lepton
N.B. definition slightly different per channel	
$p_{\rm T}(jj)/p_{\rm T}({\rm V})$: $p_{\rm T}$ balance between Higgs boson	2-lepton
candidate and vector boson	
: Z boson mass	2-lepton
SA5: number of soft activity jets	All
with $p_{\rm T} > 5 {\rm GeV}$	
<i>M</i> _t : reconstructed top quark mass	1-lepton
$\Delta \phi(E_{\rm T}^{\rm miss}, \ell)$: azimuthal	1-lepton
angle between E_{T}^{miss} and lepton	1
$E_{\rm T}^{\rm miss}$: missing transverse energy	1-lepton, 2-lepton
$m_T(W)$: W transverse mass	1-lepton
: difference in ϕ	0-lepton
between Higgs boson daughters	Ĩ
$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet.})$: azimuthal	0-lepton 10
angle between E_{T}^{miss} and the closest jet with $v_{T} > 30 \text{ GeV}$	- 10

BDT? Can we trust BDT?

Are BDT analysis reliable? (the problem is not the BDT)

- The question should rather be, are our predictions of the backgrounds reliable
- Can we really model all uncertainties?
- In general any background prediction is reliable only up to some given number of data events (real detector simulation is hard to model, qft calculations are limited in precision, etc.. etc...)
 - Typical "shape analysis" fits the data with signal and background models having some "uncertainty" parameterized as a scalar "nuisance parameter"
 - We need to be sure the background model have enough freedom in the fit
- So what? ... cross check "candle" analysis!

Diboson: V+Z(bb)

- Try to measure VZ (with Z → bb) instead of No.
 Where the very same analysis technique
- Larger cross section
 - Observe with 5 sigma
- Expected theory value already cross checked in leptonic final states
- Main differences
 - Different peak value of the dijet mass (but reasonably close)
 - Peaking non b-jet signal (but b-tag is well studied in other processes)
 - Di-boson is a background for Higgs, but higgs is less relevant background for diboson (assume SM higgs x-sec)

Higgs results

Very nice agreement in control regions

Signal enriched bins compatible with SM predictions

Evidence of higgs to bb

mH = 125 GeV	Significance	Significance
	expected	observed
0-lepton	1.5	0.0
1-lepton	1.5	3.2
2-lepton	1.8	3.1
All channels	2.8	3.3

Best fit μ

mH = 125 GeV	Significance	Significance	Signal strength
	expected	observed	observed
Run 1	2.5	2.1	$0.89^{+0.44}_{-0.42}$
Run 2	2.8	3.3	$1.19^{+0.40}_{-0.38}$
combined	3.8	3.8	$1.06^{+0.31}_{-0.29}$

VBF Hbb

Exploit VBF features to categorize events (with a mass-independent BDT)

- Forward tag: quark vs gluon discrimination
- Rapidity gap, m_jj mass, soft activity
- Fit (wide)peak on a smooth multi-jet qcd background
 - Validate with Z->bb (VBF "pre-selection" but no VBF-BDT requirements)

ttH, H→ bb

Similar techniques in ATLAS and CMS

- Categorize in N-jets and N-bjets, define CR/SR
- Dominated by irreducible tt+bb background (no "mass peak")
- Difficulties in modelling collinear/soft bb production

How about ggH, $H \rightarrow bb$?

Can we measure $H \rightarrow bb$ also in gluon fusion production?

QCD "bb" production is several orders of magnitude higher

How about the "boosted" regime ?

Jet substructures techniques tested in the past years

Observe hadronic final state of V bosons and top

Mature for "measurements"

- Recent studies on subjets b-tagging to distinguish from V-bosons
- New techniques to keep systematic uncertainty under control
 - Decorrelated Taggers
- All ready for boosted $H \rightarrow bb$?

Dedicated bb-tagger

- Multivariate bb-in-a-jet tagger exploiting substructure information (Nsubjetiness axis)
- Measure performance on data with two-muons-in-jet sample (as a proxy for g → bb)

Boosted Higgs to bb

19

Boosted H->bb results

CMS-PAS-HIG-17-010

Sensitivity at 1 sigma level with 36/fb

To be continued at high luminosity....

ttH - multileptons

Decay of H via W/Z

Low branching ratios, but cleaner states

Look for >3leptons or 2 same-sign lept

- Backgrounds: tt+vector boson, tt+jets, diboson
- Reaching 2/3 sigma sensitivity

First evidence of ttH?

ATLAS: mu=2.5+1.3-1.1

Di-boson

- Various multilepton di-boson analysis repeated at 13 TeV
 - Nice agreement with NNLO QCD
- Boosted analysis performed in final state with lepton+fat-jet
 - Allow to measure W pt in WW channel
 - Probe high pt region where all lepton analysis are limited by sigma*BR

VBF/VBS and alike

- Same experimental techniques as for VBF Higgs tagging
- Associated production of Z,W, diboson with two jets
- Hard process is typically purely EWK
- QCD play a crucial role in
 - Identification of the two q-jets
 - Background modeling
 - Underlying event activity

QCD features (e.g. Z+jj)

- V+jets is the dominant background
- Rapidity gap distinguish S vs B
- Quard vs Gluon discriminator
- Soft-activity variables (e.g. HT of additional jets)

Results of "VBF" analyses

EWK Zii production $\sigma_{\rm EW}(\ell\ell jj) = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst) fb}$ EWK diboson production (VBS):

Another interesting VBF

► $H \rightarrow \mu\mu$

- VBF signature is the most sensitive and have largest S/B
 - Need precise prediction of V+jets to use multivariate VBF techniques

	S	В	S/\sqrt{B}
Central low $p_T^{\mu\mu}$	11	8000	0.12
Noncentral low $p_T^{\mu\mu}$	32	38 000	0.16
Central medium $p_T^{\mu\mu}$	23	6400	0.29
Noncentral medium $p_T^{\mu\mu}$	66	31 000	0.37
Central high $p_T^{\mu\mu}$	16	3300	0.28
Noncentral high $p_T^{\mu\mu}$	40	13 000	0.35
VBF loose	3.4	260	0.21
VBF tight	3.4	78	0.38

Higgs boson pairs interesting both for SM and exotics

ΗН

- SM sensitivity is still far away
- bb+bb mode has largest BR
 - Best sensitivity for m_res> 500GeV

Sample	2015 Signal Region	2016 Signal Region
$\begin{array}{c} \text{Multijet} \\ t\bar{t} \end{array}$	$\begin{array}{c}1131\pm68\\57\pm34\end{array}$	3670 ± 200 190 ± 110
Total	1189 ± 76	3860 ± 230
Data	1 231	3 990
$\frac{\mathrm{SM}\ hh}{G_{\mathrm{KK}}^{*}} (800 \ \mathrm{GeV}), \ k/\bar{M}_{\mathrm{Pl}} = 1$	$\begin{array}{c} 0.47 \pm 0.12 \\ 8 \pm 3 \end{array}$	$\begin{array}{rrrr} 1.5 \ \pm \ 0.4 \\ 24 \ \pm \ 8 \end{array}$

HH results

Resonant analysis: low mass – resolved, high mass – boosted

Non-resonant SM, ATLAS 4b: $\sigma(pp \rightarrow hh \rightarrow b\bar{b}b\bar{b}) < 330 \text{ fb}$ 30x the SM prediction: $\sigma(pp \rightarrow hh \rightarrow b\bar{b}b\bar{b}) = 11.3^{+0.9}_{-1.0} \text{ fb}$

Conclusions

- Many measurements ongoing at high-pt scale in Run2
- Current understanding of hard and soft QCD processes is often a limiting factor
- Vector plus jet is an everywhere background
 - Lot of theory calculation available in large regions of the phase space with NNLO accuracy
 - Large uncertainties in heavy flavour (gluon splitting) realm
- Data driven background models often(always) used for multijet processes
- Long term targets/more precise measurements will require perfect understanding of key kinematic distributions (perhaps it is not just a matter of how many Ns in front of LO)
- Stay tuned for $H \rightarrow mumu$

backup

Hbb mass

BDT in control regions

VBF Hbb BDT

Boosted Hbb

ArXiv:1609.07483

Jet Substructure

- Measures the degree to which a jet can be considered as composed of N prongs
- · Energy correlation functions are sensitive to N-point correlations in a jet
 - A 2-pronged jet will have e₃<e₂

Jet Substructure

ArXiv:1603.00027 CMS-PAS-B2G-17-001 CMS-PAS-EXO-17-001

N¹₂ sculpts jet mass distribution