# $t \bar{t}$ Production at Hadron Colliders 

Roberto BONCIANI<br>Dipartimento di Fisica dell’Università di Roma"La Sapienza" and INFN Sezione di Roma, di Fisica Nucleare

## Plan of the Talk

- General Introduction
- Top Quark at hadron colliders
- Status of the Theoretical Calculations
- The General Framework
- The NLO Corrections
- Higher-order Corrections
- Analytic calculation of matrix elements
- Conclusions

Top Quark

## Top Quark

- With a mass of $m_{t}=173.34 \pm 0.76 \mathrm{GeV}$ (March 2014), the TOP quark (the up-type quark of the third generation) is the heaviest elementary particle produced so far at colliders
- Because of its mass, top quark plays a unique role in understanding the EW symmetry breaking $\Rightarrow$ top physics is crucial at the LHC
- The top quark is produced (@ hadron colliders) via two mechanisms
- $p p(\bar{p}) \rightarrow t \bar{t}$

- $p p(\bar{p}) \rightarrow t \bar{b}, t q^{\prime}\left(\bar{q}^{\prime}\right), t W^{-}$



Pair
Production

Single Top

- The top quark plays a double role: signal or background for new physics
- Top quark does not hadronize, since it decays in about $5 \cdot 10^{-25} \mathrm{~s}$ (one order of magnitude smaller than the hadronization time) $\Longrightarrow$ opportunity to study the quark as single particle
- Spin properties
- Interaction vertices
- Top quark mass
- Decay products: almost exclusively $t \rightarrow W^{+} b \quad\left(\left|V_{t b}\right| \gg\left|V_{t d}\right|,\left|V_{t s}\right|\right)$



## Top Quark: Event Selection

Top Pair events

| $\sigma_{\text {tevatron }}^{\text {Tevat }} \sim 7 \mathrm{pb}$ | $p \bar{p}(p) \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu l \nu b \bar{b}$ |
| :---: | :---: |
| $\sigma_{\text {tte }}^{\mathrm{LHC} 8} \sim 250 \mathrm{pb}$ |  |

## Top Quark: Event Selection

Top Pair events


## Top Quark: Event Selection

Top Pair events

| Tevatron $\left\{\begin{array}{l}g g \\ q \bar{q}\end{array}\right.$ | LHC $\left\{\begin{array}{l}g g \text { fusion } \quad \sim 90 \% \\ q \bar{q} \text { annihilation } \sim 10 \%\end{array}\right.$ |  |
| :---: | :---: | :---: |
| $\sigma_{\text {t }}^{\text {Tevatron }} \sim 7 \mathrm{pb}$ | $-\bar{b} \rightarrow l \nu l \nu b \bar{b}$ | Dilepton $\sim 10 \%$ |
| $\sigma_{\text {t }}^{\mathrm{LH}} \mathrm{LHC} 8 \sim 250 \mathrm{pb}$ | $W^{-} \bar{b} \rightarrow q \bar{q}^{\prime} q \bar{q}^{\prime} b$ | All jets $\sim 46 \%$ |

## Top Quark: Event Selection

Top Pair events

$$
\text { LHC }\left\{\begin{array}{l}
g g \text { fusion } \quad \sim 90 \% \\
q \bar{q} \text { annihilation } \sim 10 \%
\end{array}\right.
$$

| $\sigma_{\mathrm{t} \overline{\mathrm{t}}}^{\text {Tevatron }} \sim 7 \mathrm{pb}$ |
| :--- | :--- |
| $\sigma_{\mathrm{t} \overline{\mathbf{t}}}^{\text {LHC }} \sim 250 \mathrm{p}$ |

2 high- $p_{T}$ lept, $\geq 2$ jets and ME

## Top Quark: Event Selection

Top Pair events


## Top Quark: Event Selection

Top Pair events


NO lept, $\geq 6$ jets and low ME

## Top Quark: Background

## Top Quark: Background

## Background Processes



Drell-Yan


W+jets


QCD


Di-boson

## Top Quark: Background



## Top Quark: Background



## Top Quark: Background



## Top Quark: Background



- Note: background processes known theoretically at NLO and NNLO. Simulated for CDF and D0 using Monte Carlo event generators (PYTHIA or HERWIG), normalized to the NLO cross section ( for instance calculated with MCFM). For ATLAS and CMS using FEWZ, HATOR, and as CDF+D0.
- Background also evaluated using data-driven methods (for multi-jet bg).
- In order to increase the signal-to-background ratio is crucial the tagging of the $b$ jets (not present in the background).


## Top Quark: $t t$ Cross Section

## Top Quark: $t \bar{t}$ Cross Section

- Total $t \bar{t}$-pair Cross Section

$$
\sigma_{t \bar{t}}=\frac{N_{\text {data }}-N_{b k g r}}{\epsilon L}
$$

- Test for the SM (in particular QCD)



Combination CDF-D0 September 2013 ( $m_{t}=172.5 \mathrm{GeV}$ )

$$
\begin{array}{|ll|}
\hline \sigma_{t \bar{t}}=7.60 \pm 0.41 \mathrm{pb} \quad\left(\Delta \sigma_{t \bar{t}} / \sigma_{t \bar{t}} \sim 5.4 \%\right) \quad \text { using up to } 8.8 \mathrm{fb}^{-1} \text { of data } . ~
\end{array}
$$

## Top Quark: $t \bar{t}$ Cross Section

- Total $t t$-pair Cross Section

$$
\sigma_{t \bar{t}}=\frac{N_{\text {data }}-N_{b k g r}}{\epsilon L}
$$

- Test for the SM (in particular QCD)


ATLAS + CMS $\left(m_{t}=172.5 \mathrm{GeV}\right)$
$@ \sqrt{s}=7 \mathrm{TeV}: \sigma_{t \bar{t}}=173.3 \pm 2.3 \pm 7.6 \pm 6.3 \mathrm{pb}$ ATLAS in lepton+jets ( $m_{t}=172.5 \mathrm{GeV}$ )
$@ \sqrt{s}=8 \mathrm{TeV}: \sigma_{t \bar{t}}=260 \pm 1_{-23}^{+22} \pm 8 \mathrm{pb}$
CMS in lepton+jets ( $m_{t}=172.5 \mathrm{GeV}$ )
$@ \sqrt{s}=13 \mathrm{TeV}: \sigma_{t \bar{t}}=835 \pm 3 \pm 23 \pm 23 \mathrm{pb}$

## Top Quark: $t \bar{t}$ Cross Section

$t \bar{t}$ cross section measurements in agreement with theoretical predictions at NNLO+NNLL


## Top Quark Mass

## Top Quark Mass

- Top-quark Mass
- Fundamental parameter of the SM. A precise measurement has impacts on EW precision fits. It was useful to constraint Higgs mass from radiative corrections $(\Delta r)$ before the direct detection

World Combination: ATLAS, CDF, CMS, D0 (18 March 2014)

$$
m_{t}=173.34 \pm 0.27(\text { stat }) \pm 0.71(\text { sys }) \mathrm{GeV} \quad(0.44 \%)
$$



- In spite of the high precision is not totally clear which mass corresponds to the parameter measured by Tevatron and LHC (matching using LO+LL MC, reconstruction of the final state, hadronization modeling, bound-state effects near threshold ...). It is generally believed to be "something near" the "pole mass".
- Partial solution: extraction from observables known with good th accuracy
- However, top-quark pole mass is "physically" not well defined (although in pQCD it has a precise meaning) due to non-PT effects: $\mathcal{O}\left(\Lambda_{Q C D}\right)$ ambiguity.
- Possible solution: change mass definition: short-distance mass def (for instance $\overline{\mathrm{MS}}$ )


## Top Quark Mass

- Top-quark Mass from Theoretical $\sigma_{t \bar{t}}$ calculations, using NLO, NLO+NNLL, and approximate NNLO calculations (Tevatron)


| Th. prediction | $m_{t}^{\text {pole }}(\mathrm{GeV})$ | $\Delta m_{t}^{\text {pole }}(\mathrm{GeV})$ |
| :---: | :---: | :---: |
| MC assumpt. | $m_{t}^{\mathrm{MC}}=m_{t}^{\text {pole }}$ | $m_{t}^{\mathrm{MC}}=m_{t}^{\overline{\mathrm{MS}}}$ |
| NLO | $164.8_{-5.4}^{+5.7}$ | -3.0 |
| NLO+NLL | $166.5_{-4.8}^{+5.5}$ | -2.7 |
| $\mathrm{NLO}_{+}+\mathrm{NNLL}$ | $163.0_{-4.6}^{+5.1}$ | -3.3 |
| Appr. $^{+5 N L O}$ | $167.5_{-4.2}^{+5.7}$ | -2.7 |
| Appr. $\mathrm{NNLO}_{2}$ | $166.7_{-4.5}^{+5.2}$ | -2.8 |



| Th. prediction | $m_{t}^{\mathrm{MS}}(\mathrm{GeV})$ | $\Delta m_{t}^{\mathrm{MS}}(\mathrm{GeV})$ |
| :---: | :---: | :---: |
| MC assumpt. | $m_{t}^{\mathrm{MC}}=m_{t}^{\text {pole }}$ | $m_{t}^{\mathrm{MC}}=m_{t}^{\overline{\mathrm{MS}}}$ |
| NLO+NNLL | $154.5_{-4.3}^{+5.0}$ | -2.9 |
| Appr. $\mathrm{NNLO}_{1}$ | $160.0_{-4.3}^{+4.8}$ | -2.6 |

DO Collaboration, Phys. Lett. B 703 (2011) 422

## Top Quark Mass

- Same analysis done by CMS with Run I sample ( 7 TeV ), constraining alternatively $\alpha_{S}\left(M_{Z}\right)$ to be the world average getting $m_{t}^{\text {pole }}$ and vice versa. They use NNLO+NNLL accuracy $t \bar{t}$ cross section.


$$
m_{t}^{p o l e}=176.7_{-3.4}^{+3.8} \mathrm{GeV}
$$



$$
\alpha_{S}\left(m_{Z}\right)=0.1151_{-0.0032}^{+0.0033}
$$

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 728 (2014) 496

## Top Quark: other properties

- Top-Anti Top Mass Difference
- CDF

$$
\Delta m_{t}=-1.95 \pm 1.11(\text { stat }) \pm 0.59(\text { syst }) \mathrm{GeV} \text { with } 8.7 \mathrm{fb}^{-1} .
$$

- DO

$$
\Delta m_{t}=0.8 \pm 1.8(\text { stat }) \pm 0.5 \text { (syst) GeV with } 3.6 \mathrm{fb}^{-1} .
$$

- CMS

$$
\Delta m_{t}=-0.44 \pm 0.46(\text { stat }) \pm 0.27 \text { (syst) } \mathrm{GeV} \text { with } 4.7 \mathrm{fb}^{-1} @ 7 \mathrm{TeV} .
$$

- ATLAS

$$
\Delta m_{t}=0.67 \pm 0.61(\text { stat }) \pm 0.41(\text { syst }) \mathrm{GeV} \text { with } 4.7 \mathrm{fb}^{-1} @ 7 \mathrm{TeV} .
$$

- Top-quark Width
- CDF

$$
\Gamma_{t}=2.21_{-1.11}^{+1.84} \mathrm{GeV} \text { with } 8.7 \mathrm{fb}^{-1} \text {. }
$$

- DO

$$
\Gamma_{t}=2.00_{-0.43}^{+0.47} \mathrm{GeV} \text { with } 5.4 \mathrm{fb}^{-1}
$$

- Top-quark Charge
- Both at Tevatron and LHC 7 , lepton $+j$ jets events compatible with the charge of the top of $+2 / 3$. Exotic top with charge $-4 / 3$ is excluded at $99 \% \mathrm{CL}$.
- $W$ helicity fractions
- Tevatron

$$
F_{0}=0.722 \pm 0.081 \quad F_{+}=-0.033 \pm 0.046
$$

- LHC 7 (CMS)

$$
F_{0}=0.682 \pm 0.030 \pm 0.033 \quad F_{+}=0.008 \pm 0.012 \pm 0.014 \quad F_{-}=0.310 \pm 0.022 \pm 0.022
$$

Ok with SM prediction at NNLO (A. Czarnecki, J. G. Körner, J. H. Piclum, Phys. Rev. D 81 (2010) 111503)

## Top Quark: $A_{F B} @$ Tevatron

- FB Asymmetry

$$
A_{F B}^{l a b}(\text { or } t \bar{t})=\frac{N\left(y_{t}(\text { or } \Delta y)>0\right)-N\left(y_{t}(\text { or } \Delta y)<0\right)}{N\left(y_{t}(\text { or } \Delta y)>0\right)+N\left(y_{t}(\text { or } \Delta y)<0\right)}
$$

After years of discrepancy, the situation changed quite considerably in 2014.


- D0 data are consistent with the SM prediction. CDF still has $<2 \sigma$ discrepancy
M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 115 (2015) 5, 052001


## Top Quark: Charge asymmetries @ LHC

- Charge Asymmetry

$$
\mathbf{A}_{\mathbf{C}}=\frac{N(\Delta|y|>0)-N(\Delta|y|<0)}{N(\Delta|y|>0)+N(\Delta|y|<0)} \quad \Delta|y|=\left|y_{t}\right|-\left|y_{\bar{t}}\right|
$$

## and in dilepton events:

$$
\mathbf{A}_{\mathbf{C}}^{\text {lep }}=\frac{N\left(\Delta\left|\eta_{l}\right|>0\right)-N\left(\Delta\left|\eta_{l}\right|<0\right)}{N\left(\Delta\left|\eta_{l}\right|>0\right)+N\left(\Delta\left|\eta_{l}\right|<0\right)} \quad \Delta\left|\eta_{l}\right|=\left|\eta_{l^{+}}\right|-\left|\eta_{l^{-}}\right|
$$



W. Bernreuther, Z. G. Si, Phys. Rev. D 86 (2012) 034026 J. H. Kuhn, G. Rodrigo, JHEP 1201 (2012) 063

## Top Quark: Distributions

Also differential distributions were studied at Tevatron and LHC

- Invariant mass, top rapidity and $p_{T}$ distributions in $t \bar{t}$ events, with $9.7 \mathrm{fb}^{-1}$






In very good agreement with the SM predictions

## Top Quark: Distributions

Also differential distributions were studied at Tevatron and LHC

- Invariant mass, top rapidity and $p_{T}$ distributions in $t \bar{t}$ events @ 8 TeV


Again, in very good agreement with the SM predictions

## Top Quark: searches for NP

Both @ Tevatron and @ LHC rich program of BSM searches in top quark evants:

- New production mechanisms via new spin-1 or spin-2 resonances: $q \bar{q} \rightarrow Z^{\prime} \rightarrow t \bar{t}$ in lepton+jets and all hadronic events. Bumps in the invariant-mass distribution (excluded vector resonances, $Z^{\prime}$, with masses below $\sim 900 \mathrm{GeV}$ and $W^{\prime}$ with masses below ~ 800 GeV @ 95\% CL)
- Top charge measurements (excluded exotic top-quark with $Q_{t}=-4 / 3 @ 99 \% \mathrm{CL}$ )
- Anomalous couplings

$$
L=-\frac{g}{\sqrt{2}} \bar{b}\left\{\gamma^{\mu}\left(V_{L} P_{L}+V_{R} P_{R}\right)+\frac{i \sigma^{\mu \nu}\left(p_{t}-p_{b}\right)_{\nu}}{M_{W}}\left(g_{L} P_{L}+g_{R} P_{R}\right)\right\} t W_{\mu}^{-}
$$

- From helicity fractions
- From asymmetries in the final state
- Forward-backward asymmetry (now consistent with the SM prediction)
- Non SM Top decays. Search for charged Higgs: $t \rightarrow H^{+} b \rightarrow q \bar{q}^{\prime} b(\tau \nu b)$
- Search for heavy $t^{\prime} \rightarrow W^{+} b$ in lepton+jets (recently excluded $t^{\prime}$ with $m_{t^{\prime}}<360 \mathrm{GeV}$ and $b^{\prime}$ with $m_{b^{\prime}}<385 \mathrm{GeV} @ 95 \% \mathrm{CL}$ )


## Theoretical Framework: pQCD

## Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions $h_{1}+h_{2} \rightarrow Q \bar{Q}+X$ According to the FACTORIZATION THEOREM the process can be sketched as follows:


$$
\begin{gathered}
\sigma_{h_{1}, h_{2}}=\sum_{i, j^{\prime}} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{h_{1}, i}\left(x_{1}, \mu_{F}\right) f_{h_{2}, j}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{i j}\left(\hat{s}, m_{t} ; \alpha_{s}\left(\mu_{R}\right), \mu_{F}, \mu_{R}\right) \\
s=\left(p_{h_{1}}+p_{h_{2}}\right)^{2}, \hat{s}=x_{1} x_{2} s
\end{gathered}
$$

## Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions $h_{1}+h_{2} \rightarrow Q \bar{Q}+X$ According to the FACTORIZATION THEOREM the process can be sketched as follows:


## Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions $h_{1}+h_{2} \rightarrow Q \bar{Q}+X$ According to the FACTORIZATION THEOREM the process can be sketched as follows:


## Partonic Cross Section: PT Expansion

$$
\hat{\sigma}_{i j}^{Q \bar{Q}} \propto\left|\mathcal{M}_{i j}^{Q \bar{Q}}\right|^{2}=\left|\mathcal{M}_{i j, 0}^{Q \bar{Q}}+\alpha_{S} \mathcal{M}_{i j, 1}^{Q \bar{Q}}+\alpha_{S}^{2} \mathcal{M}_{i j, 2}^{Q \bar{Q}}+\cdots\right|^{2}
$$

$$
\mathcal{M}_{q \bar{q}}^{Q \bar{Q}}=\gg 0 \cdots\left\langle+\frac{g}{g}\right.
$$



|  | $\begin{aligned} & \frac{\delta_{i j}(-i \not k+m)}{k^{2}+m^{2}-i \epsilon} \\ & \frac{\delta_{a b}}{k^{2}-i \epsilon} \\ & \frac{\delta_{\mu \nu} \delta_{a b}}{k^{2}-i \epsilon} \\ & i g_{S} t_{i j}^{a} \gamma^{\mu} \\ & -i g_{S} f^{c a b} p^{\mu} \\ & i g_{S} f^{a b c}\left[\delta_{\mu \nu}\left(p_{\sigma}-q_{\sigma}\right)\right. \\ & +\delta_{\nu \sigma}\left(q_{\mu}-k_{\mu}\right) \\ & \left.+\delta_{\mu \sigma}\left(k_{\nu}-p_{\nu}\right)\right] \end{aligned}$ |
| :---: | :---: |
|  | $\begin{aligned} & -g_{S}^{2}\left[f ^ { g a c } { } _ { f } { } ^ { g d d } \left(2 \delta_{\mu \nu} \delta_{\sigma \tau}\right.\right. \\ & \left.-\delta_{\mu \sigma} \delta_{\nu \tau}-\delta_{\mu \tau} \delta_{\nu \sigma}\right) \end{aligned}$ |

$$
\underbrace{\infty}_{p \rightarrow k} \propto \frac{\alpha_{S}}{\pi} \int d^{4} k \frac{\operatorname{tr}\left\{t^{a} t^{b}\right\} \operatorname{tr}\left\{\gamma^{\mu}(-i \not k+m) \gamma^{\nu}[i(\not p-\not k)+m]\right\}}{\left(k^{2}+m^{2}\right)\left[(p-k)^{2}+m^{2}\right]}
$$

## Cross Section: LO (stable top)

## Cross Section: LO (stable top)

Top-Antitop production at leading order, partonic diagrams:

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \longrightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)
$$



$$
g\left(p_{1}\right)+g\left(p_{2}\right) \longrightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)
$$



## Cross Section: NLO (stable top)

## Cross Section: NLO (stable top)

Fixed Order

- The NLO QCD corrections are quite sizable: $+25 \%$ at Tevatron and $+50 \%$ at LHC. Scales variation to $\pm 15 \%$.

Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91; Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

- Mixed NLO QCD-EW corrections are small: - $1 \%$ at Tevatron and $-0.5 \%$ at LHC.

Beenakker et al. '94 Bernreuther, Fuecker, and Si '05-'08
Kühn, Scharf, and Uwer '05-'06; Moretti, Nolten, and Ross '06.

## Cross Section: NLO (stable top)

## Fixed Order

- The NLO QCD corrections are quite sizable: $+25 \%$ at Tevatron and $+50 \%$ at LHC. Scales variation to $\pm 15 \%$.

Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91; Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

- Mixed NLO QCD-EW corrections are small: - $1 \%$ at Tevatron and $-0.5 \%$ at LHC.

Beenakker et al. '94 Bernreuther, Fuecker, and Si '05-'08
Kühn, Scharf, and Uwer '05-'06; Moretti, Nolten, and Ross '06.

- The QCD corrections to processes involving at least two large energy scales $\left(\hat{s}, m_{t}^{2} \gg \Lambda_{Q C D}^{2}\right)$ are characterized by a logarithmic behavior in the vicinity of the boundary of the phase space

$$
\sigma \sim \sum_{n, m} C_{n, m} \alpha_{S}^{n} \ln ^{m}(1-\rho) \quad m \leq 2 n
$$

## Cross Section: NLO (stable top)

## Fixed Order

- The NLO QCD corrections are quite sizable: $+25 \%$ at Tevatron and $+50 \%$ at LHC. Scales variation to $\pm 15 \%$.

Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91; Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

- Mixed NLO QCD-EW corrections are small: - 1\%

Beenakker et al. '94 Bernreuth
Inelasticity parameter Kühn, Scharf, and Uwer '05-'06

$$
\rho=\frac{4 m_{t}^{2}}{\hat{s}} \rightarrow 1
$$

- The QCD corrections to processes involving at least two large end gy scales $\left(\hat{s}, m_{t}^{2} \gg \Lambda_{Q C D}^{2}\right)$ are characterized by a logarithmic behavior in the vicinity of the boundary of the phase space

$$
\sigma \sim \sum_{n, m} C_{n, m} \alpha_{S}^{n} \ln ^{m}(1-\rho) \quad m \leq 2 n
$$

## Cross Section: NLO (stable top)

## Fixed Order

- The NLO QCD corrections are quite sizable: $+25 \%$ at Tevatron and $+50 \%$ at LHC. Scales variation to $\pm 15 \%$.

Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91; Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

- Mixed NLO QCD-EW corrections are small: - 1\%

Beenakker et al. '94 Bernreuth Kühn, Scharf, and Uwer '05-'06

## Inelasticity parameter

$$
\rho=\frac{4 m_{t}^{2}}{\hat{s}} \rightarrow 1
$$

- The QCD corrections to processes involving at least two large end gy scales $\left(\hat{s}, m_{t}^{2} \gg \Lambda_{Q C D}^{2}\right)$ are characterized by a logarithmic behavior in the vicinity of the boundary of the phase space

$$
\sigma \sim \sum_{n, m} C_{n, m} \alpha_{S}^{n} \ln ^{m}(1-\rho) \quad m \leq 2 n
$$

- Even if $\alpha_{S} \ll 1$ (perturbative region) we can have at all orders

$$
\alpha_{S}^{n} \ln ^{m}(1-\rho) \sim \mathcal{O}(1)
$$

Resummation $\Longrightarrow$ improved perturbation theory

## Cross Section: NLO (stable top)

## Fixed Order

- The NLO QCD corrections are quite sizable: $+25 \%$ at Tevatron and $+50 \%$ at LHC. Scales variation to $\pm 15 \%$.

Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91; Mangano, Nason, Ridolfi '92; Frixione et al. '95; Czakon and Mitov '08.

- Mixed NLO QCD-EW corrections are small: - $1 \%$ at Tevatron and $-0.5 \%$ at LHC.

Beenakker et al. '94 Bernreuther, Fuecker, and Si '05-'08
Kühn, Scharf, and Uwer '05-'06; Moretti, Nolten, and Ross '06.

## All-order Soft-Gluon Resummation

- Leading-Logs (LL)

Laenen et al. '92-'95; Berger and Contopanagos '95-'96; Catani et al. '96.

- Next-to-Leading-Logs (NLL)

Kidonakis and Sterman '97; R. B., Catani, Mangano, and Nason '98.

- Next-to-Next-to-Leading-Logs (NNLL)

Moch and Uwer '08; Beneke et al. '09-'10; Czakon et al. '09; Kidonakis '09;
Ahrens et al. '10; Cacciari-Czakon-Mangano-Mitov-Nason '12

Distributions (stable top)

## Distributions (stable top)

- $p p(\bar{p}) \rightarrow t \bar{t}+1$ jet
- Important for a deeper understanding of the $t \bar{t}$ prod (possible structure of the top-quark)
- Technically complex involving multi-leg NLO diagrams

$$
\sigma_{t \bar{t}+j}(L H C)=376.2_{-48}^{+17} \mathrm{pb}
$$



$$
\sigma_{t \bar{t}+j}(T e v)=1.79_{-0.31}^{+0.16} \mathrm{pb}
$$

$$
\sigma_{t t+j}^{C D F}=1.6 \pm 0.2 \text { (stat) } \pm 0.5 \text { (syst) } \mathrm{pb}
$$


S. Dittmaier, P. Uwer and S. Weinzierl,

Phys. Rev. Lett. 98 (2007) 262002
Eur. Phys. J. C 59 (2009) 625
confirmed by G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys.Rev.Lett. 104 (2010) 162002
K. Melnikov and M. Schulze, Nucl.Phys. B840 (2010) 129-159

## Distributions (stable top)

- Invariant mass and $p_{T}$ distributions in $t \bar{t}$ events: NLO + resummed (SCET) NNLL comparison with CDF and D0 data


V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, JHEP 1009 (2010) 097
V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, JHEP 1109 (2011) 070


## Tools @ NLO

The corrections at NLO for the $t \bar{t}$ (and single-top productions) are implemented in a series of public codes
J. M. Campbell, R. K. Ellis, Phys. Rev. D60 (1999) 113006

- MC@NLO
S. Frixione, B. R. Webber, JHEP 0206 (2002) 029
- POWHEG
S. Frixione, P. Nason, C. Oleari, JHEP 0711 (2007) 070


## NLO with decay Products: Fact. Corrections

- The calculations shown so far consider a stable top (anti-top) quark. Advantage: reduction in the complexity of a NLO calculation
- In "reality" the out states are leptons and hadrons $\Longrightarrow$ experiments put cuts on leptons and hadrons. Desirable a description of the process in terms of actual out states


## NLO with decay Products: Fact. Corrections

- The calculations shown so far consider a stable top (anti-top) quark. Advantage: reduction in the complexity of a NLO calculation
- In "reality" the out states are leptons and hadrons $\Longrightarrow$ experiments put cuts on leptons and hadrons. Desirable a description of the process in terms of actual out states
- Factorizable corrections do not mix production and decay stages!

$$
\lim _{\Gamma_{t} / m_{t} \rightarrow 0} \frac{1}{\left(p_{t}^{2}-m_{t}^{2}\right)^{2}+m_{t}^{2} \Gamma_{t}^{2}}=\frac{\pi}{m_{t} \Gamma_{t}} \delta\left(p_{t}^{2}-m_{t}^{2}\right)
$$


Production , Decay


- The non-factorizable corrections do not decouple, but in sufficiently inclusive observables they become small: $\sim \mathcal{O}\left(\Gamma_{t} / m_{t}\right) \quad$ Fadin, Khoze, Martin '94; Aeppli, van Oldenborgh, Wyler '94; Melnikov, Yakovlev '94; Beenakker, Berends, Chapovsky '99
- One can keep track of the spin of the top and anti-top and compute spin correlations


## NLO with decay Products: Fact. Corrections

- NLO corrections to various kinematic distributions for Tevatron and LHC (Bernreuther et al. include also EW corrections)

- NB: the study could be extended at NNLO, using differential top quark decay at NNLO


## NLO with decay Products

- In 2011 two groups computed the full set of NLO corrections to $p p \rightarrow W W b b$
- Calculation technically challenging ( $\sim 1500$ Feynman diagrams, up to 6 external legs)
- The direct calculation confirms that for inclusive quantities the non-factorizable corrections are of $\mathcal{O}\left(\Gamma_{t} / m_{t}\right)$
- Possibility to study many distributions imposing realistic experimental cuts

A. Denner, S. Dittmaier, S. Kallweit, and S. Pozzorini, Phys. Rev. Lett. 106 (2011) 052001<br>G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos, M. Worek, JHEP 1102 (2011) 083

- Finally, very recently these corrections were matched with PS in the POWHEG-BOX frame
T. Jezo, J. M. Lindert, P. Nason, C. Oleari and S. Pozzorini, Eur. Phys. J. C 76 (2016) 12691


## $t \bar{t}$ Cross Section @ NNLO in QCD

In 2013 the total cross section was calculated in perturbative QCD at the NNLO!

- Outstanding calculation, at the edge of current techniques! Virtual part: numerical solution of the differential equations for the MIs; Real Part variation of sector
${ }^{4}$ decomposition. Numerical cancelation of remaining IR divergences

> P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001
> M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080
> M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004

- Numerical implementation very demanding, but fitted for different values of $m_{t}$ in the program Top++
M. Czakon and A. Mitov, Comput. Phys. Commun. 185 (2014) 2930
- Resummation of soft gluons included up to NNLL
M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Phys. Lett. B 710 (2012) 612
- Distributions were produced
M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116 (2016) 8, 082003 ; JHEP 1605 (2016) 034
- Very recently NNLO QCD corrections were implemented by NLO EW corrections
M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, arXiv:1705.04105 [hep-ph].


## $t \bar{t}$ Cross Section @ NNLO in QCD

| Pure NNLO |  |  |  |
| :---: | :---: | :---: | :---: |
| Collider | $\sigma_{\text {tot }}[\mathrm{pb}]$ | scales [pb] | pdf [pb] |
| Tevatron | 7.009 | $\begin{aligned} & +0.259(3.7 \%) \\ & -0.374(5.3 \%) \end{aligned}$ | $\begin{aligned} & \hline+0.169(2.4 \%) \\ & -0.121(1.7 \%) \end{aligned}$ |
| LHC 7 TeV | 167.0 | $\begin{aligned} & +6.7(4.0 \%) \\ & -10.7(6.4 \%) \end{aligned}$ | $+4.6(2.8 \%)$ |
| LHC 8 TeV | 239.1 | $\begin{aligned} & +9.2(3.9 \%) \\ & -14.8(6.2 \%) \end{aligned}$ | $\begin{aligned} & +6.1(2.5 \%) \\ & -6.2(2.6 \%) \end{aligned}$ |
| LHC 14 TeV | 933.0 | $\begin{aligned} & +31.8(3.4 \%) \\ & -51.0(5.5 \%) \end{aligned}$ | $\begin{aligned} & +16.1(1.7 \%) \\ & -17.6(1.9 \%) \end{aligned}$ |




P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001
M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080
M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004

## Analytic Calculation: $t \bar{t} @$ NNLO

## Analytic Calculation: $t \bar{t}$ @ NNLO

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

- Virtual Corrections
- two-loop matrix elements for $q \bar{q} \rightarrow t \bar{t}$ and $g g \rightarrow t \bar{t}$

Czakon '08, R. B., Ferroglia, Gehrmann, Maitre, von Manteuffel, Studerus '08-13, Ferroglia, Neubert, Pecjak, Yang '09

- interference of one-loop diagrams
- Real Corrections

Körner et al. '05-'08; Anastasiou and Aybat '08

- one-loop matrix elements for the hadronic production of $t \bar{t}+1$ parton
- tree-level matrix elements for the hadronic production of $t \bar{t}+2$ partons

Dittmaier, Uwer and Weinzierl '07-'08, Bevilacqua, Czakon, Papadopoulos, Worek '10, Melnikov, Schulze '10

- Subtraction Terms
- In a complete NNLO computation of $\sigma_{t \bar{t}}$ we need subtraction terms with up to 2 unresolved partons.

Different methods on the market at the NNLO
Gehrmann-De Ridder, Ritzmann '09, Daleo et al. '09, Boughezal et al. '10, Glover, Pires '10, Del Duca, Somogyi, Trocsanyi '13,
Double and single real in $\sigma_{t \bar{t}}$ Catani Grazzini '07, B. Catani Grazzini Sargsyan Torre '15
Czakon '10, Anastasiou, Herzog, Lazopoulos '10

## Two-Loop Corrections to $q \bar{q} \rightarrow t \bar{t}$

$$
\begin{gathered}
|\mathcal{M}|^{2}(s, t, m, \varepsilon)=\frac{4 \pi^{2} \alpha_{s}^{2}}{N_{c}}\left[\mathcal{A}_{0}+\left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\mathcal{A}_{2}=\mathcal{A}_{2}^{(2 \times 0)}+\mathcal{A}_{2}^{(1 \times 1)} \\
\mathcal{A}_{2}^{(2 \times 0)}=N_{c} C_{F}\left[N_{c}^{2} A+B+\frac{C}{N_{c}^{2}}+N_{l}\left(N_{c} D_{l}+\frac{E_{l}}{N_{c}}\right)\right. \\
\left.+N_{h}\left(N_{c} D_{h}+\frac{E_{h}}{N_{c}}\right)+N_{l}^{2} F_{l}+N_{l} N_{h} F_{l h}+N_{h}^{2} F_{h}\right]
\end{gathered}
$$

218 two-loop diagrams contribute to the 10 different color coefficients

- The whole $\mathcal{A}_{2}^{(2 \times 0)}$ is known numerically

Czakon '08.

- The coefficients $D_{i}, E_{i}, F_{i}$, and $A$ are known analytically (agreement with num res)
R. B., Ferroglia, Gehrmann, Maitre, and Studerus '08-'09
- The coefficients $B$ and $C$ can be calculated analytically (with the same techniques)
A. von Manteuffel et al., in progress
- The poles of $\mathcal{A}_{2}^{(2 \times 0)}$ (and therefore of $B$ and $C$ ) are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

## Two-Loop Corrections to $q \bar{q} \rightarrow t \bar{t}$

- $D_{i}, E_{i}, F_{i}$ come from the corrections involving a closed (light or heavy) fermionic loop:
$\stackrel{1}{4}$


- $A$ the leading-color coefficient, comes from the planar diagrams:

- The calculation is carried out analytically using:
- Laporta Algorithm for the reduction of the dimensionally-regularized scalar integrals (in terms of which we express the $|\mathcal{M}|^{2}$ ) to the Master Integrals (MIs)
- Differential Equations Method for the analytic solution of the MIs


## Master Integrals for $\mathbf{N}_{l}$ and $\mathbf{N}_{h}$



1 MI


2 MIs


1 MI


1 MI


1 MI


18 irreducible two-loop topologies ( 26 MIs )
R. B., A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, JHEP 0807 (2008) 129.

## Master Integrals for the Leading Color Coeff



For the leading color coefficient there are 9 additional irreducible topologies (19 MIs)

## Example: Box for the Leading Color Coeff



$$
=\frac{1}{m^{6}} \sum_{i=-4}^{-1} A_{i} \epsilon^{i}+\mathcal{O}\left(\epsilon^{0}\right)
$$

$$
\begin{aligned}
& A_{-4}=\frac{x^{2}}{24(1-x)^{4}(1+y)},
\end{aligned}
$$

$$
\begin{aligned}
& A_{-2}=\frac{x^{2}}{48(1-x)^{4}(1+y)}[-5 \zeta(2)-6 G(-1 ; y) G(0 ; x)+ \\
& A_{-1}=\frac{x^{2}}{48(1-x)^{4}(1+y)}[-13 \zeta(3)+38 \zeta(2) G(-1 ; y)+9 \zeta(2) G(0 ; x)+\underset{\rho}{\underset{\hat{s}}{6} \zeta(Q) \underset{\sim}{4}(1 ; x)-24 \zeta(2) G(-1 / y ; x)} \\
& +24 G(0 ; x) G(-1,-1 ; y)-24 G(1 ; x) G(-1,-1 ; y)-12 G(-1 /, x) G(-1,-1 ; y) \\
& -12 G(-y ; x) G(-1,-1 ; y)-6 G(0 ; x) G(0,-1 ; y)+6 G(\wedge ; x) G(0,-1 ; y)+6 G(-y ; x) G(0,-1 ; y) \\
& +12 G(-1 ; y) G(1,0 ; x)-24 G(-1 ; y) G(1,1 ; x)-6 G(-1 ; y) G(-1 / y, 0 ; x)+12 G(-1 ; y) G(-1 / y, 1 ; x)
\end{aligned}
$$

$$
\begin{aligned}
& -12 G(0,-1,-1 ; y)+6 G(0,0,-1 ; y)+6 G(1,0,0 ; x)-12 G(1,0,1 ; x)-12 G(1,1,0 ; x)+24 G(1,1,1 ; x \\
& -6 G(-1 / y, 0,0 ; x)+12 G(-1 / y, 0,1 ; x)+6 G(-1 / y, 1,0 ; x)-12 G(-1 / y, 1,1 ; x)+6 G(-y, 1,0 ; x) \\
& -12 G(-y, 1,1 ; x)]
\end{aligned}
$$

## GHPLs

- One- and two-dimensional Generalized Harmonic Polylogarithms (GHPLs) are defined as repeated integrations over set of basic functions. In the case at hand

$$
\begin{aligned}
& f_{w}(x)=\frac{1}{x-w}, \quad \text { with } w \in\left\{0,1,-1,-y,-\frac{1}{y}, \frac{1}{2} \pm \frac{i \sqrt{3}}{2}\right\} \\
& f_{w}(y)=\frac{1}{y-w}, \quad \text { with } \quad w \in\left\{0,1,-1,-x,-\frac{1}{x}, 1-\frac{1}{x}-x\right\}
\end{aligned}
$$

- The weight-one GHPLs are defined as

$$
G(0 ; x)=\ln x, \quad G(w ; x)=\int_{0}^{x} d t f_{w}(t)
$$

- Higher weight GHPLs are defined by iterated integrations

$$
G(\underbrace{0,0, \cdots, 0}_{n} ; x)=\frac{1}{n!} \ln ^{n} x, \quad G(w, \cdots ; x)=\int_{0}^{x} d t f_{w}(t) G(\cdots ; t)
$$

- Shuffle algebra. Integration by parts identities

Goncharov '98, Remiddi and Vermaseren '99, Gehrmann and Remiddi '01-'02, Vollinga and Weinzierl '04

Two-Loop Corrections to $g g \rightarrow t \bar{t}$

## Two-Loop Corrections to $g g \rightarrow t \bar{t}$

$$
\begin{gathered}
|\mathcal{M}|^{2}(s, t, m, \varepsilon)=\frac{4 \pi^{2} \alpha_{s}^{2}}{N_{c}}\left[\mathcal{A}_{0}+\left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\mathcal{A}_{2}=\mathcal{A}_{2}^{(2 \times 0)}+\mathcal{A}_{2}^{(1 \times 1)}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{A}_{2}^{(2 \times 0)}=\left(N_{c}^{2}-1\right)\left(N_{c}^{3} A+N_{c} B+\frac{1}{N_{c}} C+\frac{1}{N_{c}^{3}} D+N_{c}^{2} N_{l} E_{l}+N_{c}^{2} N_{h} E_{h}\right. \\
\\
+N_{l} F_{l}+N_{h} F_{h}+\frac{N_{l}}{N_{c}^{2}} G_{l}+\frac{N_{h}}{N_{c}^{2}} G_{h}+N_{c} N_{l}^{2} H_{l}+N_{c} N_{h}^{2} H_{h} \\
\\
\left.+N_{c} N_{l} N_{h} H_{l h}+\frac{N_{l}^{2}}{N_{c}} I_{l}+\frac{N_{h}^{2}}{N_{c}} I_{h}+\frac{N_{l} N_{h}}{N_{c}} I_{l h}\right)
\end{gathered}
$$

789 two-loop diagrams contribute to 16 different color coefficients

- Numeric result for $\mathcal{A}_{2}^{(2 \times 0)}$ known
P. Bärnreuther, M. Czakon and P. Fiedler, '14
- The poles of $\mathcal{A}_{2}^{(2 \times 0)}$ are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

- The leading color $A$, and light-quark $E_{l}-I_{l}$ coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus '11, '13


## Two-Loop Corrections to $g g \rightarrow t \bar{t}$

$$
\begin{gathered}
|\mathcal{M}|^{2}(s, t, m, \varepsilon)=\frac{4 \pi^{2} \alpha_{s}^{2}}{N_{c}}\left[\mathcal{A}_{0}+\left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\mathcal{A}_{2}=\mathcal{A}_{2}^{(2 \times 0)}+\mathcal{A}_{2}^{(1 \times 1)}
\end{gathered}
$$

$$
\mathcal{A}_{2}^{(2 \times 0)}=\left(N_{c}^{2}-1\right)\left(N N_{c} B+\frac{1}{N_{c}} C+\frac{1}{N_{c}^{3}} D+N_{c}^{2} N_{l} E_{l}+N_{c}^{2} N_{h} E_{h}\right.
$$

$$
+N_{l} F_{l}+N_{h}+\frac{N_{l}}{N_{c}^{2}} G_{l}+\frac{N_{h}}{N^{2}} G_{h}+N_{c} N_{l}^{2} H_{l}+N_{c} N_{h}^{2} H_{h}
$$

$$
+N_{c} N_{l} N_{h} H_{l h}+\frac{\Lambda_{l}}{N_{c}} \quad \text { For the leading-color coefficient }
$$

789 two-loop diagrams contribute to 16 different
NO additional MI

- Numeric result for $\mathcal{A}_{2}^{(2 \times 0)}$ recently published
P. Bärnreuther, M. Czakon and P. Fiedler, '14
- The poles of $\mathcal{A}_{2}^{(2 \times 0)}$ are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang '09

- The leading color $A$, and light-quark $E_{l}-I_{l}$ coefficients are known analytically

[^0]
## Two-Loop Corrections to $g g \rightarrow t \bar{t}$

$$
\begin{gathered}
|\mathcal{M}|^{2}(s, t, m, \varepsilon)=\frac{4 \pi^{2} \alpha_{s}^{2}}{N_{c}}\left[\mathcal{A}_{0}+\left(\frac{\alpha_{s}}{\pi}\right) \mathcal{A}_{1}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \mathcal{A}_{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\mathcal{A}_{2}=\mathcal{A}_{2}^{(2 \times 0)}+\mathcal{A}_{2}^{(1 \times 1)} \\
\mathcal{A}_{2}^{(2 \times 0)}=\left(N_{c}^{2}-1\right)\left(N_{c}^{3} A+N_{c} B+\frac{1}{N_{c}} C+\frac{1}{N_{c}^{3}} D+N_{c}^{2} r_{l} E_{l}+N_{c}^{2} N_{h} E_{h}\right. \\
+N_{l} F_{l}-N_{h} F_{h}+\frac{N_{l} G_{l}}{N_{c}^{2}}-\frac{N_{h}}{N_{c}^{2}} G_{h}+N_{c} N r^{2} H_{l}+N_{c} N_{h}^{2} H_{h} \\
+N_{c} N_{l} N\left(H_{l h}+\frac{N_{2}^{2}}{N_{c}}-\frac{N_{h}^{2}}{N_{c}} I_{h}+\frac{N_{l} N_{l}}{N_{c}}\right.
\end{gathered}
$$

- For the light-fermion contrib 9 additional MIs
- The leading color $A$, and light-quark $E_{l}-I_{l}$ coefficients are known analytically

[^1]
## Additional Master Integrals for the $N_{l}$ Coeff



2 MIs


2 MIs


2 MIs


3 MIs

For the $N_{l}$ coefficients in the gg channel there are 4 additional irreducible topologies ( 9 MIs )

## Light Quark Coefficients in $g g$

Some considerations concerning the functional basis in which to express our analytic results are in order:

- The result can be written in terms of 289 GHPLs up to weight 4. They can be reduced to 221 using the algebra (3 MB of analytic formula)
- Alphabet in the naive case:

$$
\begin{aligned}
& G(\ldots ; y) \in\left\{-1,0,-\frac{1}{x},-x,-\frac{\left(1+x^{2}\right)}{x},-\frac{\left(1-x+x^{2}\right)}{x}\right\} \\
& G(\ldots ; x) \in\left\{-1,0,1,\left[1+o^{2}\right],\left[1-o+o^{2}\right]\right\}
\end{aligned}
$$

- NOTE: in this basis, 200 s for the numerical evaluation of a single phase space point! Hopeless! No way to use it in a Monte Carlo. What to do?

> From complicated functions of simple arguments $x, y$

To simpler functions of complicated arguments

## Optimized Functional Basis

- It turns actually out that a good choice is to express the result in terms ONLY of logarithms, polylogarithms $\mathrm{Li}_{n}$ with $n=2,3,4$, and a single type of multiple polylogarithms, the $\mathrm{Li}_{2,2}$ :

$$
\operatorname{Li}_{n}(x)=-G(\underbrace{0, \cdots, 0,1}_{n} ; x), \quad \operatorname{Li}_{2,2}\left(x_{1}, x_{2}\right)=G\left(0, \frac{1}{x_{1}}, 0, \frac{1}{x_{1} x_{2}} ; 1\right)
$$

of arguments

$$
\pm x, \pm x^{2},-\frac{1}{y},-y,-\frac{y}{x},-x(x+y), \frac{x+y}{y},-\frac{x+z(x, y)}{x+y}, \cdots
$$

these arguments are such that the multiple polylogarithms are real valued in the Minkowski region

- We find again 225 multipole polylogarithms, out of which $57 \mathrm{Li}_{2,2}$. Moreover the size of the analytic expression is always about 3 MB . However, the numerical evaluation now takes a fraction of a second!!
- Part of this transformation was done using symbols and co-products (Duhr, Gangl, Rhodes '12)
R. B., A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, JHEP 1312 (2013) 038


## Heavy-Quark Loop Coefficients

The color structure of the heavy-quark loop coefficients is the following


- The planar diagrams contribute to all the three color factors, while the crossed diagrams only to two of them
- Therefore, calculation of planar diagrams gives one gauge independent color factors out of three

In collaboration with P. Caucal and M. Capozi

## Planar Corrections

- The planar Feynman diagrams can be described in terms of dim-reg scalar integrals belonging to 7 topologies: 2 at 7 denominators and 5 at 6 denominators
- The 7-denom topologies are reduced to a set of 55 Master Integrals using IBP's
- The MIs are calculated with the Diff Eqs Method


$$
\begin{aligned}
& \infty=0,0 \theta \theta \theta \theta-\theta
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{4} \mathbb{d}
\end{aligned}
$$

## Planar Master Integrals

$$
\begin{aligned}
& \infty=0 \quad 0 \quad \theta \quad \theta \theta \theta-\theta \text {. }
\end{aligned}
$$

- Blue diagrams have homogeneous solutions expressed in terms of Elliptic Integrals
- Green diagrams contain non-homogeneous elliptic terms


## Differential Equations Method

- One of the more successful techniques for the computation of multi-loop Feynman diagrams in the last years is the Differential Equations Method



## Integration-by-Parts Identities

One of the building blocks of the method is constituted by the REDUCTION PROCEDURE

- Using IBP identities and LIs the scalar integrals in terms of which our observable is expressed are "REDUCED" to a set of I.i. ones: the MASTER INTEGRALS
- Different algorithms used for this goal
S. Laporta '96, R. N. Lee '08, A. von Manteuffel and R. M. Schabinger '15, A. Georgoudis and Y. Zhang '15
- AIR - Maple package
(C. Anastasiou, A. Lazopoulos, JHEP 0407 (2004) 046 )
- FIRE - Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)
- REDUZE - REDUZE2 C++/GiNaC packages
(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;
A. von Manteuffel and C. Studerus, arXiv:1201.4330 [hep-ph].)
- LiteRed - Mathematica package (R. N. Lee arXiv:1212.2685 [hep-ph])
- Kira - C++/GiNaC (P. Maierhöfer, J. Usovitsch, P. Uwer, arXiv:1705.05610)
F.V. Tkachov, Phys. Lett. B100 (1981) 65.
K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159.


## Differential Equations for the MIs

The Master Integrals are function of the Mandelstam invariants $\left(x=s / m^{2}, t / m^{2}, \ldots\right)$

$$
F_{i}=\int d^{D} k_{1} d^{D} k_{2} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{D_{1}^{m_{1}} \cdots D_{t}^{m_{t}}}=F_{i}(x)
$$

They obey systems of first-order linear differential equations in the invariants

$$
\frac{d F_{i}}{d x}=\sum_{j} h_{j}(x, D) F_{j}+\Omega_{i}(x, D)
$$

where $i, j=1, \ldots, N_{M I s}$ and $\Omega_{i}(x, D)$ involves subtopologies.

- The choice of the masters is arbitrary, but crucial for the solution of the system!
- We look for solutions in $(D-4) \sim 0$ (Laurent expansion)
- The system can be solved analytically (but also numerically ...)
- Analytical solutions need a suitable functional basis, that depends on the problem
V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.
E. Remiddi, Nuovo Cim. 110A (1997) 1435.
E. Remiddi and T. Gehrmann, Nucl. Phys.B580 (2000) 485.


## Decoupling and Non-Decoupling Systems

Although the number of problems that can be solved using the idea of systems that order-by-order in $\epsilon$ exhibit a triangular matrix for the homogeneous part

$$
\partial_{x} h(x)=\left(\begin{array}{cccc}
a_{1,1} & 0 & 0 & 0 \\
a_{2,1} & a_{2,2} & 0 & 0 \\
a_{3,1} & a_{3,2} & a_{3,3} & 0 \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right) h(x)+\text { non homogeneous terms }
$$

is big, not all the systems follow this behaviour.

In some (more and more numerous) cases we are in the situation in which the simplification of the system cannot be better than this

$$
\partial_{x} h(x)=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & 0 & 0 \\
a_{2,1} & a_{2,2} & 0 & 0 \\
a_{3,1} & a_{3,2} & a_{3,3} & 0 \\
a_{4,1} & a_{4,2} & 0 & a_{4,4}
\end{array}\right) h(x)+\text { non homogeneous terms }
$$

- In this case, although two of the masters can be solved using only first order differential equations, the other two are coupled and their sub-system is equivalent to a Second Order Differential Equation
- Solution: two sol for the homogeneous and the particular with the variation of constants


## Functional Basis for the Solutions

If the system of differential equations can be cast in canonical form (triangularized in $\epsilon$ ), then

- when all possible square roots are removed (with changes of variables), the appropriate functional basis for the analytic solutions is the one of Multiple Polylogarithms (MPLs)

$$
G\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=\int_{0}^{x} \frac{1}{t-a_{1}} G\left(a_{2}, \ldots, a_{n}, t\right) d t
$$

Goncharov '98, Remiddi-Vermaseren '99,
Ablinger-Bluemlein-Schneider '13, Duhr-Gangl-Rhodes '12

- MPLs (or GPLs) can be evaluated numerically with dedicated C++ fast and precise numerical routines

Vollinga-Weinzierl '05

- In the case the alphabet cannot be fully linearized, we can find a solution in terms of repeated integrals that involve square roots. In particular, we can find a solution at weight 2 in terms of logarithms and $\mathrm{Li}_{2}$ functions. The weight 3 will be an integration over known functions, while the weight 4 would involve a two-fold integration. However, integrating by parts we can make in such a way that we are left with a single one-fold integration to be done numerically.


## Two-Point Functions

The first case of Master Integrals that cannot be expressed in terms of generalized polylogarithms is the two-loop equal masses Sunrise

- Reducing the corresponding topology we find two MIs that obey a coupled system of first order linear differential equations in the dimensionless variable $z=p^{2} / m^{2}$

- The second-order linear diff eq for the scalar diagram in $d$ dimensions is:

$$
\frac{d^{2}}{d z^{2}} F+\frac{\left(3(4-d) z^{2}+10(6-d) z+9 d\right.}{2 z(z+1)(z+9)} \frac{d}{d z} F+\frac{(d-3)[(d-4) z-d-4]}{2 z(z+1)(z+9)} F=\Omega(z, d)
$$

- Expanding in $(d-4)$ we find

$$
F=-\frac{3}{8(d-4)^{2}}+\frac{(z+18)}{32(d-4)}+F_{0}+\ldots
$$

- The solution of $F_{0}, F_{1}$, etc $\ldots$ is more easily found from the 2 -dimensional solution using Tarasov's dimensional relations


## Two-Point Functions

- The solutions of the homogeneous equation in $d=2$ are given in terms of complete elliptic integral of the first kind

$$
\psi_{1}(z)=\frac{K\left(m^{2}(z)\right)}{\left[(z+1)^{3}(z+9)\right]^{\frac{1}{4}}} \quad \psi_{2}(z)=\frac{K\left(1-m^{2}(z)\right)}{\left[(z+1)^{3}(z+9)\right]^{\frac{1}{4}}}
$$

where

$$
K\left(m^{2}\right)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-m^{2} x^{2}\right)}} \quad m^{2}=\frac{z^{2}+6 z-3+\sqrt{(z+1)^{3}(z+9)}}{2 \sqrt{(z+1)^{3}(z+9)}}
$$

- Therefore, the particular solution is expressed via Euler's variation of constants in terms of integrals over the elliptic kernel represented by the homogeneous solutions

$$
F(z)=c_{1} \psi_{1}(z)+c_{2} \psi_{2}(z)-\psi_{1}(z) \int^{z} \frac{d x}{W} \psi_{2}(x) \Omega(x)+\psi_{2}(z) \int^{z} \frac{d x}{W} \psi_{1}(x) \Omega(x)
$$

S. Laporta and E. Remiddi, Nucl.Phys. B704 (2005) 349
L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54 (2013) 052303
E. Remiddi and L. Tancredi, Nucl.Phys. B907 (2016) 400

## Two-Point Functions

- Very recently proposal of expressing the solution in terms of Elliptic Polylogarithms

$$
\mathrm{E} L i_{n ; m}(x, y, q)=\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{x^{j}}{j^{n}} \frac{y^{k}}{k^{m}} q^{j k}
$$

where $q=\operatorname{Exp}\left(i \pi \psi_{2} / \psi_{1}\right)$ is the nome of the elliptic curve and it is always $|q|<1$ In terms of $\mathrm{EL} i$ the sunrise in $d=2$ dimensions is

$$
S_{1,1,1}^{(0)}(t)=\frac{3 \psi_{1}}{i \pi}\left[\frac{1}{2} \operatorname{Li}_{2}\left(e^{2 \pi i / 3}\right)-\frac{1}{2} \operatorname{Li}_{2}\left(e^{-2 \pi i / 3}\right)+\operatorname{ELi}_{2,0}\left(e^{2 \pi i / 3},-1,-q\right)-\operatorname{ELi}_{2,0}\left(e^{-2 \pi i / 3},\right.\right.
$$

- Numeric evaluation of the Elliptic Polylogarithms in all the real $t$ axis
- Another two-loop two-point function was studied: Kite Integral (homogeneous non elliptic, sunrise in the non homogeneous part of the diff eq)
- Even more: three-loop "banana" graph! Homogeneous solutions as products of elliptic integrals
L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57 (2016) 032304
C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B 922 (2017) 528
A. Primo and L. Tancredi, Nucl. Phys. B 921 (2017) 316 '17
J. Ablinger et al. arXiv:1706.01299 [hep-th]


## 5-Den Elliptic Box

The first unknown four-point function is the 5-denominator Elliptic Box

- The reduction procedure gives three MIs With the following choice we succeed to disentangle one of them:

- The system of first order differential equations becomes, at each order in epsilon, constituted by a single first order equation and two coupled equations (equivalent to a second order diff eq)
- We contruct the second order differential equation for one of the two masters (we choose the second) in $s$ and $t$. We find the two independent solutions of the homogeneous equation
- We compute the Wronskian and we determinate the particular solution via Euler's variation of constants


## Second order hom differential equations

The equations in $s$ and $t$ of the master integral are ( $m_{t}=1$ ):

$$
\begin{aligned}
& \frac{d^{2}}{d s^{2}} F+p(s, t) \frac{d}{d s} F+q(s, t) F=0 \\
& \frac{d^{2}}{d t^{2}} F+r(s, t) \frac{d}{d t} F+u(s, t) F=0 \\
& p(s, t)=-\frac{1}{(s-4)}-\frac{2}{s}-\frac{1}{\left(s-4 \frac{t-1}{t-9}\right)}-\frac{1}{\left(s+\frac{(t-1)^{2}}{t}\right)}+\frac{1}{\left(s+4 \frac{t+1}{t+3}\right)} \\
& q(s, t)=-\frac{1}{4 s^{2}}-\frac{(t-9)^{5}}{\left(256(t-3)^{3}(4-9 s-4 t+s t)\right)}-\frac{(3+t)^{5}}{\left(64(-4+3 s+4 t+s t)\left(-3-2 t+t^{2}\right)^{2}\right)} \\
& +\frac{\left(5-10 t+2 t^{2}\right)}{\left(4 s(t-1)^{2}\right)}+\frac{\left(-25-77 t-27 t^{2}+t^{3}\right)}{\left(128(-4+s)(1+t)^{2}\right)} \\
& -\frac{\left((t-9)^{2}\left(-1971+1944 t-534 t^{2}+48 t^{3}+t^{4}\right)\right)}{\left(256(4+s(t-9)-4 t)(t-3)^{3}(t-1)\right)}+\frac{\left(9 t^{2}+6 t^{3}+2 t^{4}-6 t^{5}+t^{6}\right)}{\left((t-3)^{2}(t-1)^{2}(1+t)^{2}\left(1-2 t+s t+t^{2}\right)\right)} \\
& -\frac{\left((3+t)^{2}\left(135+192 t-10 t^{2}-72 t^{3}+11 t^{4}\right)\right)}{\left(64(t-3)^{2}(t-1)(1+t)^{2}(-4+4 t+s(3+t))\right)}
\end{aligned}
$$

and similar coefficients for the equation in $t \ldots$

## Cuts and Solutions of the Homogeneous Eq

- Another possible approach to the solution of the Homogeneous Diff Eq is the direct calculation of the maximal cut:
- Simultaneously replace propagators with their $\delta$-functions

$$
\frac{1}{\left(p^{2}+m^{2}\right)} \rightarrow \delta\left(p^{2}+m^{2}\right)
$$

- If the propagator is squared, we cut it in the IBP sense (reduction to integrals with single prop and scalar prods)
- The observation is based on the fact that if the masters under consideration obey a system

$$
\partial_{x} M_{i}(\epsilon, x)=A_{i j}(\epsilon, x) M_{j}(\epsilon, x)+\Omega_{i}(\epsilon, x)
$$

then

$$
\partial_{x} \operatorname{Cut}\left(M_{i}(\epsilon, x)\right)=A_{i j}(\epsilon, x) \operatorname{Cut}\left(M_{j}(\epsilon, x)\right)
$$

because $\operatorname{Cut}\left(\Omega_{i}(\epsilon, x)=0 \Longrightarrow\right.$ the MaxCut is solution of the Hom Eq

- Integrate directly finite MaxCut can help to solve the system of Diff Eqs
R. N. Lee and V. A. Smirnov, JHEP 12 (2012) 104.
A. Primo and L. Tancredi, Nucl. Phys. B916 (2017) 94.
H. Frellesvig and C. G. Papadopoulos, JHEP 04 (2017) 083.
M. Harley, F. Moriello, R. M. Schabinger, '17


## Maximal Cut

We move to "PLAN B" which consists on the calculation of the $d=4$ maximal cut (Primo and Tancredi), which is solution of the differential equation.

$C u t(s, t)=\frac{K\left(\frac{16(t-1)(s+t-1) \sqrt{\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}}}}{4(t-1)^{2}\left(2 \sqrt{\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}}}-1\right)+s\left(t^{2}+8 \sqrt{\left.\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}} t-6 t-8 \sqrt{\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}}}-3\right)}\right)}\right.}{2 s \sqrt{\left.\frac{4(t-1)^{2}\left(2 \sqrt{\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}}}-1\right.}{\frac{4\left(t^{2}+(s-2) t+1\right.}{}} t-6 t-8 \sqrt{\frac{s\left(t^{2}+(s-2) t+1\right.}{(t-1)^{2}(s+t-1)^{2}}}-3\right)}}$
The two solutions are then

$$
F_{1,0}=\frac{1}{R(s, t)} K(\omega) \quad F_{2,0}=\frac{1}{R(s, t)} K(1-\omega)
$$

## The decoupled Masters

In principle, once the solution of the coupled masters is found, the problem is completely solved

- We solve the second order linear diff eq for one of the coupled MIs (homogeneous solutions and particular solution as repeated integrations over the elliptic kernel)
- The solution of the other coupled MI comes just performing derivatives
- The $\epsilon$-decoupled MIs of the same set can be calculated solving a first order linear diff eq

However, this implies an additional integration over the solution of the coupled MIs
$\Longrightarrow \quad$ even more complicated functional structure!

- Since the set of Masters can be chosen freely, we can find different basis in which we decouple one master and solve a second order diff eq for one of the coupled.
- We found two basis constituted by ( $F_{1}, F_{2}, F_{3}$ ) and ( $F_{1}, F_{2}, F_{4}$ ), with $F_{2}, F_{3}$ and $F_{4}$ constituting a basis finite in 4 dimensions. Having solved $F_{2}$, we can get the solutions of $F_{3}$ and $F_{4}$ just by derivatives

We calculated numerically the finite part of $F_{1}$ in the Euclidean region and found agreement with FIESTA4 ( 5 digits)

## Conclusions

- Analytic computations received a big boost in the last years. In particular the reduction to the MIs and the method of differential equations for their calculation seams to be very powerful (many calculations more and more complicated)
- The paradigm at the moment seams to be the following
- The masters that can be expressed in terms of multiple polylogarithms satisfy a system of diff eqs in canonical form
- Increasing the complexity of the calculations, we start to find cases in which the system does not decouple in $\epsilon$. In these cases, higher-order differential equations (for the moment second-order) have to be solved. The basis of functions involved points in the direction of generalized hypergeometric functions (and particular subcases)
- We discussed the calculation of the planar corrections to $g g \rightarrow t \bar{t}$ that involve a closed heavy-quark loop, in perturbative QCD. We afforded the calculation of 55 MIs : 31 are expressed in term of multiple polylogarithms (or more in general repeated integrations over a limited alphabet); 24 of them involves elliptic integrals.
- For the masters involving elliptic integrals, we calculated the homogeneous solutions for the corresponding second order differential equations using the maximal cut in $d=4$ dimensions.
- The study of the structure of the new functions just started ....


[^0]:    R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus '11, '13

[^1]:    R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus '11, '13

