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Basic infroduction and LTD
S Y e e

0 When computing IR-safe observables, divergences cancel combining the
real and virtual corrections (KLN theorem)

0 For IR singularities, phase-space integrals of real radiation should
originate the same structures that appear in Feynman integrals for loop
diagrams |:> Loop-tree theorems!

Virtual corrections I Real corrections
(loop integrals) (PS integrals)

dPq dP-1g dPq n
Pole cancellation AFTER _/W /{Q;T]D—lzqﬂ - f{QW]D(EH}ﬁ [qﬂ) 0(q0)
performing real-virtual
integrals!! + Renormalization counter-terms
(€ poles times leading order)

WE WANT INTEGRAND .,

Cr (0)
LEVEL CANCELLATION! — X do



Basic introduction and LTD

4 ] Dual representation of one-loop integrals

Loop 1
LY (py, ... ;
Feynman (P, PN) /HGF %) /H 2 — m?2 + 40

integral

Dual Sum of phase-
. L(l)(pla'”)pN Z/ Q'L H GD Q’MQJ .

integral space integrals!
J=1,j#1

0(qi) = 12w 0(qi.0) 0(q? — m?)

1
GD(Q’MQ) — ;
@ —ms —i0n(g; — qi)

™M Pi-1 5(a) Pi .
- Even at higher-

q
orders, the number
N 1

= = > (q+p)" — i0np,;

of cuts is equal the
number of loops

S Pi41

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEPO2(2016)044



Basic infroduction and LTD
S e el e o

0 ldea: «Sum over all possible T-cuts)» (but with a modified prescription...)

O Apply Cauchy’s residue theorem to the Feynman integral:

N N
L{'“")(pl,pz,...,pw)=/ ]dtm [[c@) = ] f dgo | Gla) = —2mi ] > Resgma<o)
q i=1 a /o 4

i=1

N

o Compute the residue in the poles with negative imaginary part:

N
RﬂS{i—th pole} [H G {1? ] RD‘B“ th pole} G(ql)] H G(qj’)
i=1
| J7i - fi—th pole}
1
1 H G(g;) — H
Resy;_ /d B { Y 5 0nlo — o
[i—th pole} 3 n ED] Go +{QI) i {ith pole] i q; — 1 H(QJ 'Eh)
Put on-shell the particle Introduction of ((dual propagators) (n prescription,
crossed by the cut a future- or light-like vector)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEPO2(2016)044



Basic infroduction and LTD
e BT a el e e ol

0 It is crucial to keep track of the prescription! Duality relation involves the
presence of dual propagators:

L.{.ﬂr}(plﬁp?.! L !p‘.‘\-') = — /
q o

N N
i=

B 1
i

1

o The prescription involves a future- or light-like vector (arbitrary) and could depend
on the loop momenta (at 1-loop is always independent of q). It is related with the
finite value of i0 in intermediate steps

o Connection with Feynman Tree Theorem: dual prescription encodes the information
contained in multiple cuts

O Implement a shift in each term of the sum to have the same measure: the loop
integral becomes a phase-space integrall

O The unification of coordinates allows a cancellation of singularities among dual
components (UV and soft/collinear divergences remaining)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEPO2(2016)044



LTD /FDU approach

Motivation and introduction

0 Two different kinds of physical singularities: UV and IR

o IR divergences: massless triangle —
: er 8 0 "
L[l’] T _ . )= — | —&12 —
(P1, P2, —P3) ff!zll r(4:) . ( e
IR pole I

IDEA: Define a proper MOMENTUM MAPPING to generate REAL EMISSION
KINEMATICS, and use REAL TERMS as fully local IR counter-terms!

o UV divergences: bubble with massless propagators

2

2
W oy — () — P 2 a0
L (p,—p) IEGP{@J E‘Ifl[l—zfj': p- —10)
UV pole

IDEA: Define an INTEGRAND LEVEL REPRESENTATION of standard UV counter-
terms, and combine it with the DUAL REPRESENTATION of virtual terms!

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach

- 8 | General strategy
0 To find the dual representation of Feynman integrals, we follow some steps:

v If there are only single poles, we replace standard propagators with dual ones.
Otherwise, we compute the residue and remove the energy integral:

Res (f,z) = " i i [;;:1 ((z — zo)" f{z))] . |:> / dq; Res I;IGF(Qj)aQZ(B)

v Parametrize momenta; for instance, for 1->2 processes we used

Py = \/8_12(1,[],[], 1)

2
y € [—-1.1]
/512 :VI\
&= \/;12 (15 - _yﬂé;’y) y=1—2 variables
in the massless case (analogous expressions when massive particles are present)
v Factorize the measure in D-dimensions
26 ()2 IMPORTANT: We implement the
d[&i0] = 15 &5 dio method within DREG to establish a
['(1—e¢) ’ . : -
comparison with traditional results!

d[’UZ] = (’Uz(l — Ui))_e d’UZ'
Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



LTD /FDU approach
"9 | IR singularities

0 Reference example: Massless scalar three-point function in the time-like region

3
Ccr $12 :
LM (p1,p2, —ps) = fEHGF(%) == (—— — 10
i=1

12
— L —1 o -1
L= 512 d[€1,0] d[v1] &1 g (v1(1 — 1))
L :
1 (1 — ’02)_1
I - — d d v N
| °7 s / a0l dlv2 L= 52’062./0\
T h 1 Vo To regularize

Is=— | d d 3

, : 5T s1a $5.0] dlvs] 1+ &30 — 40 threshold

singularity

o This integral is UV-finite (power counting); there are only IR-singularities,
associated to soft and collinear regions

o OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at
integrand level (i.e. no epsilon should appear, 4D representation)

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach

10 [ Location of IR singularities in the dual-space

0 Analize the dual integration region. It is obtained as the positive energy

solution of the on-shell condition:

Gr'(g) = q; —

Massive case: hyperboloids

m? +i0 = 0

4
qz(,O)

)

Forward (backward) on-shell

hyperboloids associated with
positive (negative) energy >

solutions. 0.0

Degenerate to light-cones for o

lo

massless propagators.
. -1.0
Dual integrands become

singular at intersections (two

or more on-shell propagators)  _,,

::I:\/q%—km%—io

_15})
s

-1.5 -10 -05 0.0
Iz

Massless case: light-cones

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEPO8(2016) 160



LTD /FDU approach

~ 11 [Location of IR singularities in the dual

-space

0 The application of LTD converts loop-integrals into PS ones: integration over

forward light-cones.

Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

Forward-forward singularities cancel among
dual contributions

Threshold and IR singularities associated with
finite regions (i.e. contained in a compact
region)

No threshold or IR singularity at large loop
momentum

0 This structure suggests how to perform real-virtual combination! Also, how to

overcome threshold singularities (integrable but numerically unstable)

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP0O8(2016) 160



LTD /FDU approach

12 ] Location of IR singularities in the dual-space

0 The application of LTD converts loop-integrals into PS ones: integration over
forward light-cones.

* Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

* Forward-forward singularities cancel among
dual contributions

* Threshold and IR singularities associated with

finite regions (i.e. contained in a compact
region)

* No threshold or IR singularity at large loop
momentum

LY
R
.
b
p"
b
\
LY
h"
~
b

threshold )

0 This structure suggests how to perform real-virtual combination! Also, how to
overcome threshold singularities (integrable but numerically unstable)

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEPO8(2016) 160



LTD /FDU approach: toy model

- 13 | Real-virtual momentum mapping

0 Suppose one-loop scalar scattering amplitude given by the triangle (scalar

Virtual

d

O

Real

toy-model!):
P1 o _
P I |ME1§(P1=P25P3]} i 8g B ) | = Re (MO |MMD)
P2 (M (p1,p2ip3)) = —ig £ (p1,p2, —p3)
1->2 one-loop process 1->3 with uniesolved extra-parton

Add scalar tree-level contributions with one extra-particle; consider
interference terms:

P
4
P M@ phprips)) = —ig? /sl = Re (M| M) = L
PS Si'.r" Sjr
Pa

Generate 1->3 kinematics starting from 1->2 configuration plus the loop
three-momentum [ Il

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach: toy model
= Recl-virtual momentum mapping

0 Mapping of momenta: generate 1->3 real emission kinematics (3 external
on-shell momenta) starting from the variables available in the dual
description of 1->2 virtual contributions (2 external on-shell momenta and
1 free three-momentum)

v Split the real phase space into two regions, i.e. y'; <y’, and y’, <y’,, to separate
the possible collinear singularities

v Implement an optimized mapping in each region, to allow a fully local cancellation
of IR singularities with those present in the dual terms

p v1 1,0
!‘u'—qﬂ I'I’“':I}M—’ul yl?‘: : "21—
P q ‘|"911Pu —(1— Y §1,0
REGION 1: ’ o 2 a t-(-u)be 52
py = (1—ay)ph, a1 = gq:pg’ y’zr:(lfm()l(l_g)lg)&,ﬂ
—\L—=7v1)Q10
! / l—w 57
REGION 2 Py =ay, Pr=rh—d +oapf, Yir =1—&p0 yzr=(1_£)@?
CUOIN 24 " qi ;v (1=&0) &0 ’
pi =1 —a)py, a2 = 2 - p1 N2 T e

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach: toy model

15 |Example: massive scalar three-point function (DREG vs LTD)

0 We combine the dual contributions with the real terms (after applying the
proper mapping) to get the total decay rate in the scalar toy-model.

0 The result agrees perfectly with 8
standard DREG. . — Analytical (DREG)

O Massless limit is Smoothly 6; e 4D unsubtracted (LTD)
approached due to proper
treatment of quasi-collinear

configurations in the RV mapping

Rodrigo et al, JHEP10(2016)162



LTD /FDU approach: toy model

16 [ Location of IR singularities: quasi-collinear limit

0 About the quasi-collinear configurations: masses regulate IR singularities,
but we need smooth transitions at INTEGRAND level to guarantee a
smooth limit at INTEGRAL level.

Gpl(g) = ¢ —mi +i0=0 mmm) ¢ = i\/q,,? +m? — i0

=  Quasi-collinear
configurations lead to
Log(m?), which is singular
in the massless limit

-——
P

$o
$o

" We request a smooth
behaviour in the massless

A soft 5 threshold threshold ™

limit

¢z
Massless case: light-cones

§z

Massive case: on-shell hyperboloids

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach: multileg

Real-virtual momentum mapping (GENERAL)

0 Real-virtual momentum mapping with massive particles:
o Consider 1 the emitter, r the radiated particle and 2 the spectator

0 Apply the PS partition and restrict to the only region where 1//r is

allowed (i.e. R1 = {y}, < min yﬁcj}) 4 Py )
. . p1
O Propose the following mapping: - — -
T p3 . P3
Pr = 4 P2 p’
A~ ~ 2
pli=0—a)pi + (1 —m)ph —af| - o

(N 4oy Impose on-shell conditions to
Py = 1Py TP determine mapping parameters

with p; massless four-vectors build using p; (simplify the expressions)

0 Express the loop three-momentum with the same parameterization used for
describing the dual contributions!

Repeat in each region of the partition...

Rodrigo et al, JHEP10(2016)162



LTD /FDU approach: renormalization
S TUvsingulanies S

0 Reference example: two-point function with massless propagators

2 2 —€ 2
L™ (p, —p) = / Gr(q:) = T (_p_ - ?30) => I
Y '1,1—_[1 E(]. — 26) [J/2 ;
I, ~
I]_ — —/ 6(q1) P
—2q1 - p + p? & 20 To regularize
‘ . @\ threshold
I = _/ 5012) singularity
> ¢2q2-p+p*—10

o In this case, the integration regions of dual integrals are two energy-displaced
forward light-cones. This integral contains UV poles only!

o OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV
counter-terms, and find a purely 4-dimensional representation of the loop

integral

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach: renormalization

19 JLocation of UV singularities and local counter-terms

0 Divergences arise from the high-energy region (UV poles) and can be
cancelled with a suitable renormalization counter-term. For the scalar

case, we use

Becker, Reuschle, Weinzierl,

Icnt — 1
oY 0 (G~ — iy +10)2 JHEP 12 (2010) 013

0 Dual representation (new: double poles in the
loop energy)

~

Icnt . 5(QUV) Bierenbaum et al.
£ 9 ( (+) )2 JHEP 03 (2013) 025

duv,o &

_|_ .
qI(JV),O = \/q%v + pgy — 10

0 Loop integration for loop energies larger
than [y

§1
Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD /FDU approach: renormalization
So"JUV counterterms and local renormalization SRR

0 LTD must be applied to deal with UV singularities by building local
versions of the usual UV counterterms.

0 1: Expand internal propagators around the “UV propagator”

1 = L Becker, Reuschle, Weinzierl, JHEP12(2010)013
F-mPt0 iy — iy 0
2quv - kiuv + klgy —mi + i 2quv - kiuv)? _
" 1| )Y [0AY n g quv ,UV) + O ((Q%v) 5/2)

Gt — 1y + 20 (atv — 1y +10)?

0 2: Apply LTD to get the dual representation for the expanded UV
expression, and subtract it from the dual+real combined integrand.

LTD extended to deal with multiple poles
(use residue formula to obtain the dual representation)

0 3: Take into account wave-function and vertex renormalization constants
(not trivial in the massive case!)

Rodrigo et al, JHEP10(2016)162



LTD /FDU approach: renormalization
S UV countertorms and local renormalization SRR

0 Self-energy corrections with on-shell renormalization conditions

M) = dXR(p)
Sr(ph = M) =0 é‘;‘l

=0
h=M

o Wave-function renormalization constant (both IR and UV poles):

AZy(p1) = —g5Cr ffGF(ql)GF(qB) ((d 2)q1 Z+4M2 (1;1 f}i) GF(QB))

0 Vertex renormalization (only UV):

I‘fql)w = g5 CF /E(GF(qu))B [’Y” dov T duv v — daov by Ff)}

0 Important features:
O Integrated results agrees with standard UV counter-termsl

O Smooth massless limit!

Rodrigo et al, JHEP10(2016)162



Physical example: A* — qq(g) @NLO

Results and comparison with DREG

r(M,r)

0.6

0.5

04!
03
02f

01F

—— Analytical (DREG)

® 4D unsubtracted (LTD)

pgy=112

H-qq

0.0

0.2 0.4

0.6 0.8

0 Total decay rate for Higgs
into a pair of massive
quarks:

O Agreement with the
standard DREG result

O Smoothly achieves the
massless limit

0 Local version of UV
counterterms
succesfully reproduces
the expected
behaviour

o Efficient numerical
implementation

Rodrigo et al, JHEP10(2016)162



Physical example: A* — qq(g) @NLO

- 23 | Results and comparison with DREG

0 Total decay rate for a

0l vector particle into a pair
| of massive quarks:
_ O Agreement with the
—0.81 standard DREG result
S 0 Smoothly achieves the
< _qol massless limit
> o Efficient numerical
- ol implementation
O Cancellation of UV log’s
. — Analytical (DREG) . (as in DREG...)
'1'4_' ® 4D unsubtracted (LTD) |
00 02 04 06 08
m

Rodrigo et al, JHEP10(2016)162



Physical example: A* — qq(g) @NLO

~ 24 [Important remarks

0 The total decay-rate can be expressed using purely four-dimensional
integrands (which are integrable functionsl!!)

0 We recover the total NLO correction, avoiding to deal with DREG (ONLY
used for comparison with known results)

0 Main advantages:

v Direct numerical implementation (integrable functions for €=0)  \ith FDU

Integrability with €=0 is truel
v No need of tensor reduction (avoids the presence of Gram determinants,
which could introduce numerical instabilities)

Finite integral for €=0

v Smooth transition to the massless limit (due to the efficient treatment of
quasi-collinear configurations)

v Mapped real-contribution used as a fully local IR counter-term for the
dual contribution!

Rodrigo et al, JHEP10(2016)162



Physical example: Higgs@NLO

~ 25 [ Using LTD to regularize finite amplitudes

0 Application of LTD to compute one-loop Higgs amplitudes:

gg — H H — v~
0 They are IR/UV finite BUT still not well-defined in 4D!ll Hidden cancellation of
singularities leads to potentially undefined results (scheme dependencelll)

0 We start by defining a tensor basis and projecting (amplitude levell):

AL = N gD i 20
H !Z; / W”h . g" p1p2 . (d . 1)P5u/)
512

Projectors

T_,W:{gw_%i’pé” g ZPLPE 2P 2195‘335}
! S12 " s12 0 S12 0 S12

0 Then, scalar coefficients P/ A(l ) = Aﬁl’” are dualized.

0 IMPORTANT: Take into account 1-2 exchange symmetry (different cuts and non-
trivial cancellations!!!)

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]



Physical example: Higgs@NLO

~ 26 [ Using LTD to regularize finite amplitudes

0 Application of LTD to compute one-loop Higgs amplitudes:

ALD = o /5 (f(ﬂ £" ¥ 2 (2¢- pr12)° )( s12 M7 oD
) o) st @0 p2—0)? S\ @ p)R0p2)

+c§)>—|—s

£(+)
A = /5 ( iy

d1.0

with ¢1 = (+p1,qo = (+p1>  and qﬁo) = \/(£+P1)2 + M3, QA(;E)) = \/(3+P2)2 + M3,
g3 = L, qa = L+ po 57 =8t = ¢l = \Je + M2
0 Comments:

0 Generic result valid for 99 =+ H and H — vy Il

0 Process dependence codified in the coefficients. Valid for scalar, fermion and vector
massive particles inside the loop!!!

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]



Physical example: Higgs@NLO

Using LTD to regularize finite amplitudes

0 Combine expressions (use “zero integrals” in DREG associated with Ward
identities):

(+) (+) 2 M2
(1.f) 5 v E E (25 plg) 812 My (f)
A0 = ”Kqﬁo) T T Gl — 02 ) B @) ! Well defined in 4-dl!

2 812 (f)k N o o . o
on-commutativity of limit
— 2 sty — (20~ p12 —10)? < ‘ and in'regra’rion““y
UV divergent O(e)

0 Use local renormalization (equivalent to Dyson’s prescription...)

(+) 2
(1f) (4 L) 5 0 () by 512 L 3ugv \ (on
A = (A=A ALUV__gff ey P ed—a )
£ (qUVO> (qu,o)

o Counter-term mimics UV behaviour at integrand level.
o Term proportional to /7,y used to fix DREG scheme (vanishing counter-term in d-dimll)

o Valid also for W amplitudes in unitary-gauge (naive Dyson’s prescription fails to subtract

subleading terms due to enhanced UV divergencesf——
. quqv 1
—i | guv — 37 P P :

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]




Physical example: Higgs@NLO

28 | Spin-off: Asymptotic expansions

0 Infinite-mass limit used to define effective vertices. Equivalent to explore
asymptotic expansions!

0 Expansions at integrand level are non-trivial in Minkowski space (i.e. within
Feynman integrals) and additional factors are neccesary

0 Dual amplitudes are expressed as phase-space integralsmpEuclidean space!!

~ 0 (g3) Mf > 512 0(q3) ~=[ —s5 "
4] G ; - =
(g3) Gp(as:q2) = S19 + 203 - pro — 1) —) 0(gs) G (asi02) = 203 - 12 ; (2q3-p12>

Expansion of the dual propagator (q; on-shell)

0 Example: Higgs amplitudes with heavy-particles within the loop

M2 N S,u E( ) o0 s n
A(Lf)(slg < 4M2)‘ — O F /5(£) [ Uv A(f) ( Q ( 12 ) )C(f)]
o Pl ) Jo 7 Ll 2,0\ e )

(
ty
(2 ) 1) Reproduces all the

2= (2 p)/()ATE) and Qulz) = ——— (P

known-results!!

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]



Towards two loops...

~ 29 ]Introducing the notation

0 Dual amplitudes can be defined at higher-orders (even with multiple poles)

Bierenbaum, Catani, Draggiotis, Rodrigo; JHE

P 10 (2010) 073

0 Standard example: two-loop N-point scalar amplitude

L(Q)(plap%"'apN):/ / GF(QIUQQUQS)
0 Jila

/ / =
® 1
4;

(2m)4
0 Three possible sets of momenta, according

o )

Grlax) = ] Gr(a)

1EQ)

to their dependence on |,, |, or |, +1, (inte-
gration variables)

ap ={0,1,..r} ,ao={r+1,7r+2,.,0} ,as={l+1,l+2,...,N}

g . ) . .
- gl 117}@ ’; g Zl with ¢, anti—clockwise
¢ = 2 T Pii-1 e {5 clockwise
b+l +pig—1 .1 € a3

Pi-1

Pr+1

Generic two-loop diagram

Driencourt-Mangin, Rodrigo and G.S., in progress



Towards two loops...
B T

0 “The number of cuts equals the number of loops™
0 Derivation: “lterate” the one-loop formula and use propagator properties

0 Standard example: two-loop N-point scalar amplitude

L(Q) (p17p2a 2906 7pN) = / {GD(O{Q) GD(Oél U Oég) b
{1 J o

Pi—2 -1
+ Gp(—as Uay) Gp(az) — Gr(ay) Gp(as) Gp(as)}
By Q-
where we used Gp(ax) =Y d(a) | Golaig) -
1EQy, JEQ
j

0 Remarks and subtleties:
O Modified prescription depends on loop momenta.

o Not a “trivial” iteration: connection with Cauchy’s theorem

. o o 1
and multivariable residues. Pre

O Thesis: “Virtual-real amplitudes mapped with one-loop formulae” (partial cancellations),
but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo and G.S., in progress



Conclusions and perspectives
I

v

Loop-tree duality allows to treat virtual and real contributions in
the same way (implementation simplified)

Physical interpretation of IR/UV singularities in loop integrals
(light-cone diagrams)

Combined virtual-real terms are integrable in 4D!!

Realistic physical implementation!!!

Universal & compact expressions for Higgs amplitudes

Perspectives:
Automation of multileg processes at NLO (ongoing) and beyond (...)

Generalization of universality relations and simplified asymptotic expansions
“Workstop-Thinkstart meeting”

—————_, UZH, Zurich, Sep. 2016

Eur.Phys.J. C77 (2017) no.7, 471
arXiv:1705.01827 [hep-ph]

Carefull comparison with other schemes






Extra material
N

Cauchy’s theorem and prescriptions

Feynman tree theorem

IR sinqularities within LTD
UV reqularized bubble with LTD
y>qqbar@NLO: 4D formulae

Higas amplitudes coefficients

O O o O O 0O




Cauchy’s theorem and prescriptions

~ 34 | Feynman integrals and propagators

P1 ) 43¢ N
LY (p1,pa2, -+ ,pn) = —1 Grla:
R (P1,D2. pN) / (274 E r(q:)
Generic one-loo :
E | . P ¢ =f+ EPJ:
eynman integral Pt

Momenta definition

Glq) 1
Feynman propagator X
Prescriptions are useful G(q) = > 1 : X
to avoid poles. q° +1i0 to(qs) plane
Different prescriptions
are possible; connection Advanced propagator Galq)
between FTT and LTD | ) 5 _
theorems! Galg) = 54—
q* — 10 qo

qo(q+) plane



Cauchy’s theorem and prescriptions

~ 35 | Feynman integrals and propagators

Residue theorem
(from Wikipedia)

jgf(z) dz = Q?TiZREE(f, ar)

«If f is a holomorphic function in U/{a}, and y a simple
positively oriented curve, then the integral is given by the

sum of the residues at each singular point a»

Residue theorem can be
used to compute integrals
involving propagators:
the prescription and the
contour that we choose
determine the result!

Feynman propagator

G@)™ =0 =

Advanced propagator

Galg)) " =0 =

NO POLES CLOSED BY C,!

go = £+4/q® — il

go = £+/q> + il

LN

X

L
X

x

*
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Feynman tree theorem
N

0 ldea: «Sum over all possible m-cuts»

Residue theorem (using a
LLN} (D1, Doy - - -, PN) = f H Galg) =0 proper integration path)

' Galg) =G(q) + E(q) Using PV prescription
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Feynman tree theorem

0 Some remarks:

O Making m-cuts decomposes the original one-loop diagram into m-tree level
terms, all of them using the same prescription

00 1-cut = sum over ((tree level» terms

N N
LY propas o) = [ 3a) I] 6@
7 =1 1
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5(q) ﬁ 1 Basic 1-cut integral (shift in
) o 2qk; + k3 +i0 loop momentum)
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q
N ] Sum.of
Loop = - Z (¢ +pi)° +10 multiple
= cuts
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IR singularities within LTD
~5: ] Compaciness of IR singular regions (massless friangle)

0 From the previous plots, we define three contributions:

IR-divergent contributions (X,<1+w)

* Oiriginated in a finite region of the loop L (O (C C RN (_Sw - E'U)_
5
three-momentum { . - : {
* All the IR singularities of the original X L—g + (lﬂ (2)In (w) — 5 — 2Ly (—uj) +mln (Q)ﬂ +0O(e)

loop integral

Forward integrals (v<1/2,X,>1) 3 )
- 1 |«

* Free of IR/UV poles A Z I = — [3 —am log(?)] + O(e)
* Integrable in 4-dimensions! i=1 512
Backward integrals (v>1/2,X,>1+w)
. 1 1

Free of IR/UV poles I® o — [QLig (——) —In(2)In (w)] + Ofe)
* Integrable in 4-dimensions! 512 w

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



IR singularities within LTD
B T

0 Let’s stop and make some remarks about the structure of these expressions:
0 Introduction of an arbitrary cut w to include threshold regions.

0 Forward and backward integrals can be performed in 4D because the sum does
not contain poles.

o Presence of extra Log’s in (F) and (B) integrals. They are originated from the
expansion of the measure in DREG, i.e.

—1-2¢ _ §2E~ : 1 In (&) 2
gl = o<a>+(g)c—ze( : )Cw(e)

for both v and € (keep finite terms only). Unify coordinate system to avoid them!

0 IR-poles isolated in IRl |:> IR divergences originated in compact region
of the three-loop momentum!!

LO(p1,po —ps) = 1™+ 1)+ 10
\ )

Y
Explicit poles Can be
still present... done in 4D!

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



UV regularized bubble with LTD

40 [ Cancellation of UV singularities

0 Using the standard parametrization we define

Regularized .
two-point LM (p,—p) — I = cr [_ log (_p_ - ZO) " 2] + O(e)
function MUV

0 Since it is finite, we can express the regularized two-point function in terms
of 4-dimensional quantities (i.e. no epsilon required!!)

o Physical interpretation of renormalization scale: Separation between on-shell
hyperboloids in UV-counterterm is 2|4,,. To avoid intersections with forward
light-cones associated with |, and |,, the renormalization scale has to be
larger or of the order of the hard scale. So, the minimal choice that fulfills
this agrees with the standard choice (i.e. /2 of the hard scale).

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



v>qqbar@NLO: 4D formulae

1—-2
0 Integration regions:  Ry(&,v) = 6(1 — 2v,) 0 ( . A 61,0)

{&1.0,v1}—{&3.0,v3}={&0.v}

Ra(6o,v) =6 (1 + \;m _&])

1 Four-dimensional cross-sections:
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Higgs amplitudes coefficients
I

(/) () (f)

The coefficients ¢;” are written as ¢;”* = ¢;\g + 7 c,g;fl) with rp = 512 /MJ?, and

2 M ) 2 wy _4d-1)  wy _ 2(2d-5)
gf:—<v>sf2’ C;‘Qo:(d_‘l)?a ng,bo):_d_zaﬁ,o T _9 €11 =~ T_95
8 wy_d—4 ) _
Cf(ig,b())zza C%:d_—Q, Cgt)1:—1, Cgf%):& €231 = 75 €30 =4(d—-1),
with o) = o) — ) and 8] = e, = &) =elf), = ) =V =

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]



