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Basic introduction and LTD
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 When computing IR-safe observables, divergences cancel combining the

real and virtual corrections (KLN theorem)

 For IR singularities, phase-space integrals of real radiation should

originate the same structures that appear in Feynman integrals for loop

diagrams Loop-tree theorems!

Physical

observable

Virtual corrections

(loop integrals)

Real corrections

(PS integrals)

Renormalization counter-terms

(ε poles times leading order)

Pole cancellation AFTER 

performing real-virtual 

integrals!!

Theoretical motivation

WE WANT INTEGRAND 

LEVEL CANCELLATION!!!
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4 Dual representation of one-loop integrals

Loop

Feynman

integral

Dual 

integral

Sum of phase-

space integrals!

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044

Even at higher-

orders, the number

of cuts is equal the

number of loops



Basic introduction and LTD
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 Idea: «Sum over all possible 1-cuts» (but with a modified prescription…)

 Apply Cauchy’s residue theorem to the Feynman integral:

 Compute the residue in the poles with negative imaginary part:

Put on-shell the particle

crossed by the cut

Introduction of «dual propagators» (η prescription, 

a future- or light-like vector)

Derivation (one-loop)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044



Basic introduction and LTD
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 It is crucial to keep track of the prescription! Duality relation involves the

presence of dual propagators:

 The prescription involves a future- or light-like vector (arbitrary) and could depend

on the loop momenta (at 1-loop is always independent of q). It is related with the 

finite value of i0 in intermediate steps

 Connection with Feynman Tree Theorem: dual prescription encodes the information 

contained in multiple cuts

 Implement a shift in each term of the sum to have the same measure: the loop

integral becomes a phase-space integral!

 The unification of coordinates allows a cancellation of singularities among dual 

components (UV and soft/collinear divergences remaining)

Derivation (general facts)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044



LTD/FDU approach
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 Two different kinds of physical singularities: UV and IR

 IR divergences: massless triangle

 UV divergences: bubble with massless propagators

Motivation and introduction

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

IR pole

UV pole

IDEA: Define a proper MOMENTUM MAPPING to generate REAL EMISSION

KINEMATICS, and use REAL TERMS as fully local IR counter-terms!

IDEA: Define an INTEGRAND LEVEL REPRESENTATION of standard UV counter-

terms, and combine it with the DUAL REPRESENTATION of virtual terms!



LTD/FDU approach
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 To find the dual representation of Feynman integrals, we follow some steps:

 If there are only single poles, we replace standard propagators with dual ones. 

Otherwise, we compute the residue and remove the energy integral:

 Parametrize momenta; for instance, for 1->2 processes we used

in the massless case (analogous expressions when massive particles are present)

 Factorize the measure in D-dimensions
IMPORTANT: We implement the

method within DREG to establish a 

comparison with traditional results!

General strategy

Scalar

variables

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162
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 Reference example: Massless scalar three-point function in the time-like region

 This integral is UV-finite (power counting); there are only IR-singularities, 

associated to soft and collinear regions

 OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at 

integrand level (i.e. no epsilon should appear, 4D representation) 

LTD

To regularize

threshold

singularity

IR singularities

LTD/FDU approach

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

I1

I3

I2



LTD/FDU approach
10 Location of IR singularities in the dual-space

 Analize the dual integration region. It is obtained as the positive energy 

solution of the on-shell condition:

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160

• Forward (backward) on-shell

hyperboloids associated with

positive (negative) energy

solutions.

• Degenerate to light-cones for

massless propagators.

• Dual integrands become

singular at intersections (two

or more on-shell propagators)

Massless case: light-conesMassive case: hyperboloids



LTD/FDU approach
11 Location of IR singularities in the dual-space

• Only forward-backward interferences

originate threshold or IR poles (other

propagators become singular in the

integration domain)

• Forward-forward singularities cancel among

dual contributions

• Threshold and IR singularities associated with

finite regions (i.e. contained in a compact 

region)

• No threshold or IR singularity at large loop

momentum

 The application of LTD converts loop-integrals into PS ones: integration over

forward light-cones.

 This structure suggests how to perform real-virtual combination! Also, how to 

overcome threshold singularities (integrable but numerically unstable)

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160



 The application of LTD converts loop-integrals into PS ones: integration over

forward light-cones.

 This structure suggests how to perform real-virtual combination! Also, how to 

overcome threshold singularities (integrable but numerically unstable)

LTD/FDU approach
12

IR 

singular 

regions!

threshold

Location of IR singularities in the dual-space

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160

• Only forward-backward interferences

originate threshold or IR poles (other

propagators become singular in the

integration domain)

• Forward-forward singularities cancel among

dual contributions

• Threshold and IR singularities associated with

finite regions (i.e. contained in a compact 

region)

• No threshold or IR singularity at large loop

momentum



LTD/FDU approach: toy model
13

 Suppose one-loop scalar scattering amplitude given by the triangle (scalar

toy-model!):

 1->2 one-loop process 1->3 with unresolved extra-parton

 Add scalar tree-level contributions with one extra-particle; consider

interference terms:

 Generate 1->3 kinematics starting from 1->2 configuration plus the loop

three-momentum !!!

Real-virtual momentum mapping

Virtual

Real

Opposite sign!

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



LTD/FDU approach: toy model
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 Mapping of momenta: generate 1->3 real emission kinematics (3 external 

on-shell momenta) starting from the variables available in the dual 

description of 1->2 virtual contributions (2 external on-shell momenta and   

1 free three-momentum)

 Split the real phase space into two regions, i.e. y’1r<y’2r and y’2r<y’1r, to separate 

the possible collinear singularities

 Implement an optimized mapping in each region, to allow a fully local cancellation 

of IR singularities with those present in the dual terms

REGION 1:

REGION 2:

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

Real-virtual momentum mapping



 We combine the dual contributions with the real terms (after applying the 

proper mapping) to get the total decay rate in the scalar toy-model.

 The result agrees perfectly with 

standard DREG.

 Massless limit is smoothly

approached due to proper 

treatment of quasi-collinear

configurations in the RV mapping

15 Example: massive scalar three-point function (DREG vs LTD)

LTD/FDU approach: toy model

LTD

Rodrigo et al, JHEP10(2016)162



16 Location of IR singularities: quasi-collinear limit

 About the quasi-collinear configurations: masses regulate IR singularities, 

but we need smooth transitions at INTEGRAND level to guarantee a 

smooth limit at INTEGRAL level.

 Quasi-collinear

configurations lead to 

Log(m2), which is singular 

in the massless limit

 We request a smooth

behaviour in the massless

limit

Massless case: light-conesMassive case: on-shell hyperboloids

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

LTD/FDU approach: toy model



LTD/FDU approach: multileg
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 Real-virtual momentum mapping with massive particles:

 Consider 1 the emitter, r the radiated particle and 2 the spectator

 Apply the PS partition and restrict to the only region where 1//r is 

allowed (i.e.                                 )

 Propose the following mapping:

with massless four-vectors build using (simplify the expressions)

 Express the loop three-momentum with the same parameterization used for 

describing the dual contributions!

Repeat in each region of the partition…

Real-virtual momentum mapping (GENERAL)

Impose on-shell conditions to 

determine mapping parameters

Rodrigo et al, JHEP10(2016)162



 Reference example: two-point function with massless propagators

 In this case, the integration regions of dual integrals are two energy-displaced 

forward light-cones. This integral contains UV poles only!

 OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV 

counter-terms, and find a purely 4-dimensional representation of the loop 

integral

18

To regularize

threshold

singularity

UV singularities

LTD/FDU approach: renormalization

LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

I1

I2
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 Divergences arise from the high-energy region (UV poles) and can be 
cancelled with a suitable renormalization counter-term. For the scalar 
case, we use

 Dual representation (new: double poles in the
loop energy)

 Loop integration for loop energies larger                                                   
than µUV

Location of UV singularities and local counter-terms

LTD/FDU approach: renormalization

Becker, Reuschle, Weinzierl, 

JHEP 12 (2010) 013

Bierenbaum et al. 

JHEP 03 (2013) 025

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



 LTD must be applied to deal with UV singularities by building local

versions of the usual UV counterterms.

 1: Expand internal propagators around the “UV propagator”

 2: Apply LTD to get the dual representation for the expanded UV 

expression, and subtract it from the dual+real combined integrand.

 3: Take into account wave-function and vertex renormalization constants

(not trivial in the massive case!)

20 UV counterterms and local renormalization

LTD/FDU approach: renormalization

LTD
Becker, Reuschle, Weinzierl, JHEP12(2010)013

LTD extended to deal with multiple poles

(use residue formula to obtain the dual representation)

Rodrigo et al, JHEP10(2016)162



 Self-energy corrections with on-shell renormalization conditions 

 Wave-function renormalization constant (both IR and UV poles): 

 Vertex renormalization (only UV):

 Important features:

 Integrated results agrees with standard UV counter-terms!

 Smooth massless limit!

21 UV counterterms and local renormalization

LTD/FDU approach: renormalization

Rodrigo et al, JHEP10(2016)162



22 Results and comparison with DREG

Physical example:                  @NLO

LTD

 Total decay rate for Higgs 

into a pair of massive 

quarks:

 Agreement with the 

standard DREG result

 Smoothly achieves the 

massless limit

 Local version of UV 

counterterms 

succesfully reproduces 

the expected 

behaviour

 Efficient numerical 

implementation

Rodrigo et al, JHEP10(2016)162
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LTD

Results and comparison with DREG

 Total decay rate for a 

vector particle into a pair 

of massive quarks:

 Agreement with the 

standard DREG result

 Smoothly achieves the 

massless limit

 Efficient numerical

implementation

 Cancellation of UV log’s

(as in DREG…)

Physical example:                  @NLO

Rodrigo et al, JHEP10(2016)162
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 The total decay-rate can be expressed using purely four-dimensional 

integrands (which are integrable functions!!)

 We recover the total NLO correction, avoiding to deal with DREG (ONLY 

used for comparison with known results)

 Main advantages:

 Direct numerical implementation (integrable functions for ε=0)

 No need of tensor reduction (avoids the presence of Gram determinants, 

which could introduce numerical instabilities)

 Smooth transition to the massless limit (due to the efficient treatment of 

quasi-collinear configurations)

 Mapped real-contribution used as a fully local IR counter-term for the

dual contribution!

Important remarks

Physical example:                  @NLO

Rodrigo et al, JHEP10(2016)162

Finite integral for ε=0 Integrability with ε=0

With FDU 

is true!



 Application of LTD to compute one-loop Higgs amplitudes:

 They are IR/UV finite BUT still not well-defined in 4D!!! Hidden cancellation of 

singularities leads to potentially undefined results (scheme dependence!!!)

 We start by defining a tensor basis and projecting (amplitude level!):

 Then, scalar coefficients are dualized.

 IMPORTANT: Take into account 1-2 exchange symmetry (different cuts and non-

trivial cancellations!!!)

25 Using LTD to regularize finite amplitudes 

LTD

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]

Physical example: Higgs@NLO

with

Projectors



 Application of LTD to compute one-loop Higgs amplitudes:

with and

 Comments:

 Generic result valid for and               !!

 Process dependence codified in the coefficients. Valid for scalar, fermion and vector 

massive particles inside the loop!!!

26 Using LTD to regularize finite amplitudes 

LTD

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]

Physical example: Higgs@NLO



 Combine expressions (use “zero integrals” in DREG associated with Ward 

identities):

 Use local renormalization (equivalent to Dyson’s prescription…)

 Counter-term mimics UV behaviour at integrand level.

 Term proportional to        used to fix DREG scheme (vanishing counter-term in d-dim!!)

 Valid also for W amplitudes in unitary-gauge (naive Dyson’s prescription fails to subtract

subleading terms due to enhanced UV divergences)

27 Using LTD to regularize finite amplitudes 

LTD

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]

Physical example: Higgs@NLO

Well defined in 4-d!!

Non-commutativity of limit 

and integration!!!!
UV divergent
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LTD

Spin-off: Asymptotic expansions

Physical example: Higgs@NLO

 Infinite-mass limit used to define effective vertices. Equivalent to explore 

asymptotic expansions!

 Expansions at integrand level are non-trivial in Minkowski space (i.e. within

Feynman integrals) and additional factors are neccesary

 Dual amplitudes are expressed as phase-space integrals Euclidean space!!

 Example: Higgs amplitudes with heavy-particles within the loop

Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]

Expansion of the dual propagator (q3 on-shell)

Reproduces all the 

known-results!!
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LTD

Introducing the notation

Towards two loops…

 Dual amplitudes can be defined at higher-orders (even with multiple poles)

 Standard example: two-loop N-point scalar amplitude

 Three possible sets of momenta, according

to their dependence on l1, l2 or l1+l2 (inte-

gration variables)

Driencourt-Mangin, Rodrigo and G.S., in progress

Generic two-loop diagram

Bierenbaum, Catani, Draggiotis, Rodrigo; JHEP 10 (2010) 073
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LTD

Cuts and LTD formula

Towards two loops…

 “The number of cuts equals the number of loops”

 Derivation: “Iterate” the one-loop formula and use propagator properties

 Standard example: two-loop N-point scalar amplitude

where we used

 Remarks and subtleties:

 Modified prescription depends on loop momenta.

 Not a “trivial” iteration: connection with Cauchy’s theorem

and multivariable residues.

 Thesis: “Virtual-real amplitudes mapped with one-loop formulae” (partial cancellations),                                

but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo and G.S., in progress



Conclusions and perspectives
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 Loop-tree duality allows to treat virtual and real contributions in 

the same way (implementation simplified)

 Physical interpretation of IR/UV singularities in loop integrals

(light-cone diagrams)

 Combined virtual-real terms are integrable in 4D!!

 Realistic physical implementation!!!

 Universal & compact expressions for Higgs amplitudes

 Perspectives:

 Automation of multileg processes at NLO (ongoing) and beyond (…)

 Generalization of universality relations and simplified asymptotic expansions

 Carefull comparison with other schemes “Workstop-Thinkstart meeting”

UZH, Zurich, Sep. 2016

Eur.Phys.J. C77 (2017) no.7, 471

arXiv:1705.01827 [hep-ph]



Thanks!!!!
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 Cauchy’s theorem and prescriptions

 Feynman tree theorem

 IR singularities within LTD

 UV regularized bubble with LTD

 γ>qqbar@NLO: 4D formulae

 Higgs amplitudes coefficients



Cauchy’s theorem and prescriptions
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Generic one-loop

Feynman integral

Momenta definition

Feynman propagator

Advanced propagator

Prescriptions are useful

to avoid poles. 

Different prescriptions

are possible; connection

between FTT and LTD 

theorems!

Feynman integrals and propagators



Cauchy’s theorem and prescriptions
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Residue theorem

(from Wikipedia)

Feynman propagator

Advanced propagator

Residue theorem can be 

used to compute integrals

involving propagators: 

the prescription and the

contour that we choose

determine the result!

Feynman integrals and propagators

«If f is a holomorphic function in U/{ai}, and γ a simple 

positively oriented curve, then the integral is given by the

sum of the residues at each singular point ai» 

NO POLES CLOSED BY CL!



Feynman tree theorem
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 Idea: «Sum over all possible m-cuts»

Residue theorem (using a 

proper integration path)

Using PV prescription

m-cut definition:

Derivation



Feynman tree theorem
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 Some remarks:

 Making m-cuts decomposes the original one-loop diagram into m-tree level

terms, all of them using the same prescription

 1-cut = sum over «tree level» terms

Basic 1-cut integral (shift in 

loop momentum)

Loop

Sum of 

multiple

cuts

Derivation
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IR-divergent contributions (x0<1+w)

• Originated in a finite region of the loop

three-momentum

• All the IR singularities of the original 

loop integral

Forward integrals (v<1/2,x0>1)

• Free of IR/UV poles

• Integrable in 4-dimensions!

Backward integrals (v>1/2,x0>1+w)

• Free of IR/UV poles

• Integrable in 4-dimensions!

Compactness of IR singular regions (massless triangle)

 From the previous plots, we define three contributions:

IR singularities within LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



39

 Let’s stop and make some remarks about the structure of these expressions:

 Introduction of an arbitrary cut w to include threshold regions.

 Forward and backward integrals can be performed in 4D because the sum does

not contain poles.

 Presence of extra Log’s in (F) and (B) integrals. They are originated from the

expansion of the measure in DREG, i.e.

for both v and ξ (keep finite terms only). Unify coordinate system to avoid them!

 IR-poles isolated in IIR! IR divergences originated in compact region

of the three-loop momentum!!!

Can be 

done in 4D!

Explicit poles

still present…

Technical details

IR singularities within LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162
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 Using the standard parametrization we define

 Since it is finite, we can express the regularized two-point function in terms 

of 4-dimensional quantities (i.e. no epsilon required!!)

 Physical interpretation of  renormalization scale: Separation between on-shell 

hyperboloids in UV-counterterm is 2µUV. To avoid intersections with forward 

light-cones associated with I1 and I2, the renormalization scale has to be 

larger or of the order of the hard scale. So, the minimal choice that fulfills

this agrees with the standard choice (i.e. ½ of the hard scale).

Cancellation of UV singularities

Regularized

two-point

function

UV regularized bubble with LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



γ>qqbar@NLO: 4D formulae
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 Integration regions:

 Four-dimensional cross-sections:



Higgs amplitudes coefficients
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Driencourt-Mangin, Rodrigo and G.S., arXiv:1702.07581 [hep-ph]


