NEW TECHNIQUES FOR HIGHER-ORDER CALCULATIONS IN LEPTON AND HADRON COLLISIONS

in collaboration with F. Driencourt-Mangin, R. Hernández-Pinto and G. Rodrigo

Dipartimento di Fisica, UniMi; INFN Milano (Italy) and Institut de Física Corpuscular, UV-CSIC (Spain)

LFC17 workshop

Trento, Italy – Sep 12th, 2017

Content

- Basic introduction and Loop-tree duality
- LTD/FDU approach
 - Location of IR singularities and renormalization
 - Toy-model examples; generalizations at NLO
- \square Physical example I: $A^* \to q \bar{q}(g)$ @NLO
- Physical example II: Higgs @NLO
- Towards two-loops (new!!)
- Conclusions and perspectives
 - 1. Catani et al, JHEP 09 (2008) 065
 - 2. Rodrigo et al, Nucl.Phys.Proc.Suppl. 183:262-267 (2008)
 - 3. Buchta et al, JHEP 11 (2014) 014

Rodrigo et al, JHEP 02 (2016) 044; JHEP 08 (2016) 160; JHEP 10 (2016) 162; arXiv:1702.07581 [hep-ph]

Theoretical motivation

3

- When computing **IR-safe observables**, divergences cancel combining the real and virtual corrections (**KLN** theorem)
- For IR singularities, phase-space integrals of real radiation should originate the same structures that appear in **Feynman integrals for loop diagrams b** Loop-tree theorems!

Pole cancellation AFTER performing real-virtual integrals!!

Physical

F WANT INTEGRAND LEVEL CANCELLATION!!!

```
Virtual corrections
                                                                   (PS integrals)
                                                                                   Real corrections
observable
                                  (loop integrals)
                                         \int \frac{d^D q}{(2\pi)^D} \int \frac{d^{D-1} \vec{q}}{(2\pi)^{D-1} 2q_0} = \int \frac{d^D q}{(2\pi)^D} (2\pi) \delta\left(q^2\right) \theta(q_0)
                                                   Renormalization counter-terms
                                                    (E poles times leading order)
                                                            \frac{C_r}{d\sigma} \times d\sigma^{(0)}
```

4 **Dual representation of one-loop integrals**

Loop
Feynman
integral
Dual
integral

$$L^{(1)}(p_1, \dots, p_N) = \int_{\ell} \prod_{i=1}^{N} G_F(q_i) = \int_{\ell} \prod_{i=1}^{N} \frac{1}{q_i^2 - m_i^2 + i0}$$

$$Dual
integral
$$L^{(1)}(p_1, \dots, p_N) = -\sum_{i=1}^{N} \int_{\ell} \tilde{\delta}(q_i) \prod_{j=1, j \neq i}^{N} G_D(q_i; q_j)$$
Sum of phase-
space integrals!

$$G_D(q_i, q_j) = \frac{1}{q_j^2 - m_j^2 - i0\eta(q_j - q_i)} \quad \tilde{\delta}(q_i) = i2\pi \,\theta(q_{i,0}) \,\delta(q_i^2 - m_i^2)$$

$$\int_{p_N} \int_{\cdots p_{i+1}}^{p_1} \int_{i=1}^{p_2} \int_{i=1}^{p_{i-1}} \int_{i=1}^{\delta(q)} \int_{i=1}^{p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{p_i} \int_{i=1}^{q_i^2 - i0\eta p_i} \int_{i=1}^{q_$$$$

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044

5 Derivation (one-loop)

Idea: «Sum over all possible 1-cuts» (but with a modified prescription...)

Apply Cauchy's residue theorem to the Feynman integral:

$$L^{(N)}(p_1, p_2, \dots, p_N) = \int_{\mathbf{q}} \int dq_0 \quad \prod_{i=1}^N G(q_i) = \int_{\mathbf{q}} \int_{C_L} dq_0 \quad \prod_{i=1}^N G(q_i) = -2\pi i \int_{\mathbf{q}} \sum_{i=1}^N \operatorname{Res}_{\{\operatorname{Im} q_0 < 0\}} \left[\prod_{i=1}^N G(q_i) \right]$$

Compute the residue in the poles with negative imaginary part:

$$\operatorname{Res}_{\{i-\text{th pole}\}} \left[\prod_{j=1}^{N} G(q_j) \right] = \left[\operatorname{Res}_{\{i-\text{th pole}\}} G(q_i) \right] \left[\prod_{\substack{j=1\\j\neq i}}^{N} G(q_j) \right]_{\{i-\text{th pole}\}} dq_0 \delta_+(q_i^2) \left[\prod_{j\neq i}^{N} G(q_j) \right]_{\{i-\text{th pole}\}} = \prod_{j\neq i}^{N} \frac{1}{q_j^2 - i0 \eta(q_j - q_i)} dq_0 \delta_+(q_i^2) \left[\prod_{j\neq i}^{N} G(q_j) \right]_{\{i-\text{th pole}\}} dq_0 \delta_+(q_i^2) dq_0 \delta_+(q_i^2)$$

Put on-shell the particle crossed by the cut

R

Introduction of «dual propagators» (η prescription, a future- or light-like vector)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044

6 **Derivation (general facts)**

It is crucial to keep track of the prescription! Duality relation involves the presence of dual propagators:

$$L^{(N)}(p_1, p_2, \dots, p_N) = -\int_q \sum_{i=1}^N \widetilde{\delta}(q_i) \prod_{\substack{j=1\\j\neq i}}^N \frac{1}{q_j^2 - i0 \eta(q_j - q_i)}$$

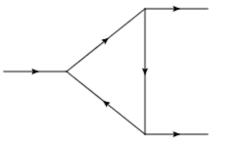
- The prescription involves a future- or light-like vector (arbitrary) and could depend on the loop momenta (at 1-loop is always independent of q). It is related with the finite value of **iO** in intermediate steps
- Connection with Feynman Tree Theorem: dual prescription encodes the information contained in multiple cuts
- Implement a shift in each term of the sum to have the same measure: the loop integral becomes a phase-space integral!
- The unification of coordinates allows a cancellation of singularities among dual components (UV and soft/collinear divergences remaining)

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044

Motivation and introduction

Two different kinds of physical singularities: UV and IR

IR divergences: massless triangle



IDEA: Define a proper MOMENTUM MAPPING to generate REAL EMISSION KINEMATICS, and use REAL TERMS as fully local IR counter-terms!

UV divergences: bubble with massless propagators

$$L^{(1)}(p,-p) = \int_{l} \prod_{i=1}^{2} G_{F}(q_{i}) = c_{\Gamma} \frac{\mu^{2\epsilon}}{\epsilon (1-2\epsilon)} (-p^{2} - i0)^{-\epsilon} \longrightarrow UV \text{ pole}$$

IDEA: Define an INTEGRAND LEVEL REPRESENTATION of standard UV counterterms, and combine it with the DUAL REPRESENTATION of virtual terms!

General strategy

8

□ To find the dual representation of Feynman integrals, we follow some steps:

If there are only single poles, we replace standard propagators with dual ones.
 Otherwise, we compute the residue and remove the energy integral:

$$\operatorname{Res}(f, z_0) = \frac{1}{(n-1)!} \left[\frac{\partial^{n-1}}{\partial z^{n-1}} \left((z-z_0)^n f(z) \right) \right]_{z=z_0} \longrightarrow \int d\vec{q}_i \operatorname{Res}\left(\prod_j G_F(q_j), q_{i,0}^{(+)} \right) d\vec{q}_j$$

 \checkmark Parametrize momenta; for instance, for 1->2 processes we used

in the massless case (analogous expressions when massive particles are present)

✓ Factorize the measure in D-dimensions $d[\xi_{i,0}] = \frac{\mu^{2\epsilon} (4\pi)^{\epsilon-2}}{\Gamma(1-\epsilon)} s_{12}^{-2\epsilon} \xi_{i,0}^{-2\epsilon} d\xi_{i,0}$ $d[v_i] = (v_i(1-v_i))^{-\epsilon} dv_i$

IMPORTANT: We implement the method within DREG to establish a comparison with traditional results!

9 IR singularities

Reference example: Massless scalar three-point function in the time-like region

$$L^{(1)}(p_{1}, p_{2}, -p_{3}) = \int_{\ell} \prod_{i=1}^{3} G_{F}(q_{i}) = -\frac{c_{\Gamma}}{\epsilon^{2}} \left(-\frac{s_{12}}{\mu^{2}} - i0\right)^{-1-\epsilon} = \sum_{i=1}^{3} I_{i}$$

$$I_{1} = \frac{1}{s_{12}} \int d[\xi_{1,0}] d[v_{1}] \xi_{1,0}^{-1} (v_{1}(1-v_{1}))^{-1}$$

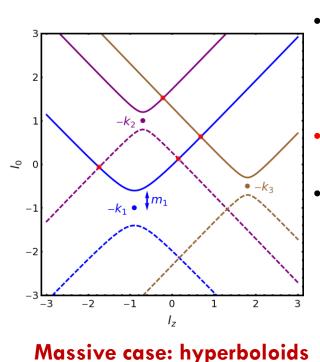
$$I_{2} = \frac{1}{s_{12}} \int d[\xi_{2,0}] d[v_{2}] \frac{(1-v_{2})^{-1}}{1-\xi_{2,0}+i0}$$

$$I_{3} = \frac{1}{s_{12}} \int d[\xi_{3,0}] d[v_{3}] \frac{v_{3}^{-1}}{1+\xi_{3,0}-i0}$$
To regularize threshold singularity

- This integral is UV-finite (power counting); there are only IR-singularities, associated to soft and collinear regions
- **OBJECTIVE:** Define a *IR-regularized* loop integral by adding real corrections at integrand level (i.e. no epsilon should appear, 4D representation)

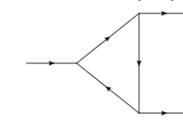
- 10 Location of IR singularities in the dual-space
 - Analize the dual integration region. It is obtained as the positive energy solution of the on-shell condition:

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i0 = 0$$



 Forward (backward) on-shell hyperboloids associated with positive (negative) energy solutions.

- Degenerate to light-cones for massless propagators.
- Dual integrands become singular at intersections (two or more on-shell propagators)



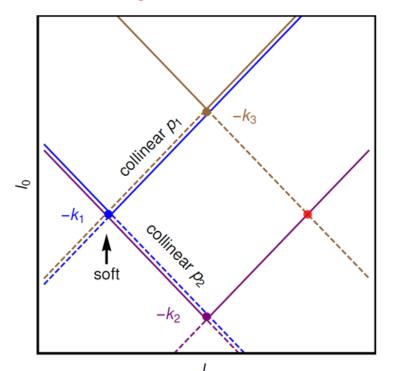
$$\begin{array}{c}
1.0\\
0.5\\
0.0\\
-0.5\\
-1.0\\
-1.5\\
-2.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.0\\
-1.5\\
-1.5\\
-1.0\\
-1.5\\
-1.5\\
-1.0\\
-1.5\\
-1.5\\
-1.0\\
-1.5\\
-1.5\\
-1.0\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-1.5\\
-$$

 $q_{i,0}^{(\pm)} = \pm \sqrt{\mathbf{q}_i^2 + m_i^2 - i0}$

Massless case: light-cones

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160

- 11 Location of IR singularities in the dual-space
 - The application of LTD converts loop-integrals into PS ones: integration over forward light-cones.

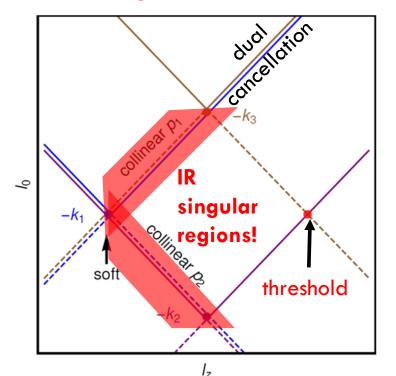


- Only **forward-backward** interferences originate **threshold or IR poles** (other propagators become singular in the integration domain)
- Forward-forward singularities cancel among dual contributions
- Threshold and IR singularities associated with finite regions (i.e. contained in a compact region)
- No threshold or IR singularity at large loop momentum

 This structure suggests how to perform real-virtual combination! Also, how to overcome threshold singularities (integrable but numerically unstable)

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160

- 12 Location of IR singularities in the dual-space
 - The application of LTD converts loop-integrals into PS ones: integration over forward light-cones.



- Only **forward-backward** interferences originate **threshold or IR poles** (other propagators become singular in the integration domain)
- Forward-forward singularities cancel among dual contributions
- Threshold and IR singularities associated with finite regions (i.e. contained in a compact region)
- No threshold or IR singularity at large loop momentum

 This structure suggests how to perform real-virtual combination! Also, how to overcome threshold singularities (integrable but numerically unstable)

Buchta et al, JHEP11(2014)014; Rodrigo et al, JHEP02(2016)044, JHEP08(2016)160

- 13 Real-virtual momentum mapping
 - Suppose one-loop scalar scattering amplitude given by the triangle (scalar toy-model!):
- Virtual $\mathcal{M}^{(0)}(p_1, p_2; p_3) = ig |\mathcal{M}^{(1)}(p_1, p_2; p_3)\rangle = ig |\mathcal{M}^{(1)}(p_1, p_2; p_3)\rangle \Rightarrow \operatorname{Re} \langle \mathcal{M}^{(0)} | \mathcal{M}^{(1)} \rangle$ 1->2 one-loop process 1->3 with unresolved extra-parton Add scalar tree-level contributions with one extra-particle; consider interference terms:

Real
$$p_{3}$$
 p_{r}' $|\mathcal{M}_{ir}^{(0)}(p_{1}',p_{2}',p_{r}';p_{3})\rangle = -ig^{2}/s_{ir}' \Rightarrow \operatorname{Re}\langle \mathcal{M}_{ir}^{(0)}|\mathcal{M}_{jr}^{(0)}\rangle = \frac{g^{4}}{s_{ir}'s_{jr}'}$

Generate 1->3 kinematics starting from 1->2 configuration plus the loop three-momentum \vec{l} !!!

14 Real-virtual momentum mapping

- Mapping of momenta: generate 1->3 real emission kinematics (3 external on-shell momenta) starting from the variables available in the dual description of 1->2 virtual contributions (2 external on-shell momenta and 1 free three-momentum)
 - ✓ Split the real phase space into two regions, i.e. $y'_{1r} < y'_{2r}$ and $y'_{2r} < y'_{1r}$, to separate the possible collinear singularities
 - Implement an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual terms

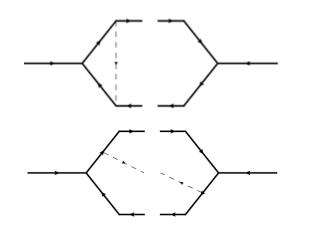
$$\begin{array}{ll} \text{REGION 1:} & p_{r}^{\prime\mu} = q_{1}^{\mu} \,, \quad p_{1}^{\prime\mu} = p_{1}^{\mu} - q_{1}^{\mu} + \alpha_{1} \, p_{2}^{\mu} \,, \\ p_{2}^{\prime\mu} = (1 - \alpha_{1}) \, p_{2}^{\mu} \,, \quad \alpha_{1} = \frac{q_{3}^{2}}{2q_{3} \cdot p_{2}} \,, \end{array} \qquad \begin{array}{ll} y_{1r}^{\prime} = \frac{0 + \zeta_{1,0}}{1 - (1 - v_{1}) \, \xi_{1,0}} & y_{12}^{\prime} = 1 - \xi_{1,0} \\ y_{2r}^{\prime} = \frac{(1 - v_{1})(1 - \xi_{1,0}) \, \xi_{1,0}}{1 - (1 - v_{1}) \, \xi_{1,0}} \end{array}$$

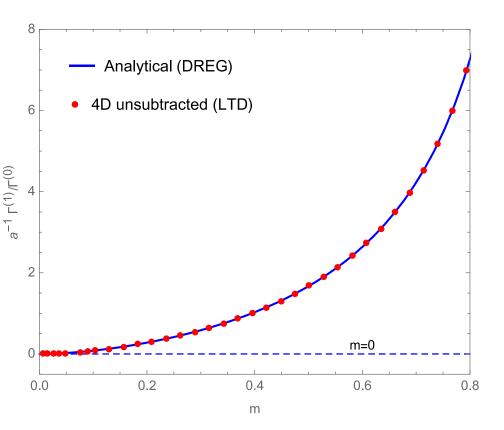
$$\begin{array}{l} \text{REGION 2:} & p_{2}^{\prime\mu} = q_{2}^{\mu} \,, \quad p_{r}^{\prime\mu} = p_{2}^{\mu} - q_{2}^{\mu} + \alpha_{2} \, p_{1}^{\mu} \,, \\ p_{1}^{\prime\mu} = (1 - \alpha_{2}) \, p_{1}^{\mu} \,, \quad \alpha_{2} = \frac{q_{1}^{2}}{2q_{1} \cdot p_{1}} \,, \end{array} \qquad \begin{array}{l} y_{1r}^{\prime} = 1 - \xi_{2,0} \, y_{2r}^{\prime} = \frac{(1 - v_{2}) \, \xi_{2,0}}{1 - v_{2} \, \xi_{2,0}} \\ y_{12}^{\prime} = \frac{v_{2} \, (1 - \xi_{2,0}) \, \xi_{2,0}}{1 - v_{2} \, \xi_{2,0}} \end{array}$$

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

11. 5.0

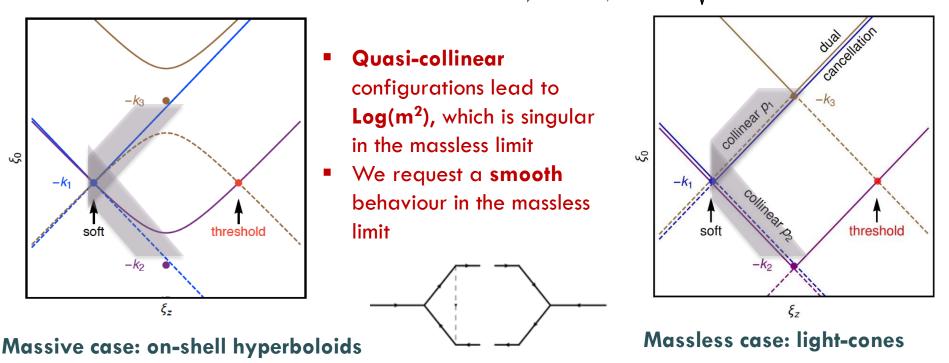
- 15 Example: massive scalar three-point function (DREG vs LTD)
 - We combine the dual contributions with the real terms (after applying the proper mapping) to get the total decay rate in the scalar toy-model.
 - The result agrees perfectly with standard DREG.
 - Massless limit is smoothly approached due to proper treatment of quasi-collinear configurations in the RV mapping





- 16 Location of IR singularities: quasi-collinear limit
 - About the quasi-collinear configurations: masses regulate IR singularities, but we need smooth transitions at INTEGRAND level to guarantee a smooth limit at INTEGRAL level.

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i0 = 0$$
 $q_{i,0}^{(\pm)} = \pm \sqrt{\mathbf{q}_i^2 + m_i^2 - i0}$



LTD/FDU approach: multileg

17 Real-virtual momentum mapping (GENERAL)

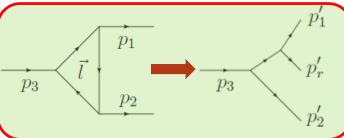
Real-virtual momentum mapping with massive particles:

- Consider 1 the emitter, r the radiated particle and 2 the spectator
- Apply the PS partition and restrict to the only region where 1//r is allowed (i.e. $\mathcal{R}_1 = \{y'_{1r} < \min y'_{kj}\}$)
- Propose the following mapping:

$$p_r^{\prime \mu} = q_1^{\mu}$$

$$p_1^{\prime \mu} = (1 - \alpha_1) \, \hat{p}_1^{\mu} + (1 - \gamma_1) \, \hat{p}_2^{\mu} - q_1^{\mu}$$

$$p_2^{\prime \mu} = \alpha_1 \, \hat{p}_1^{\mu} + \gamma_1 \, \hat{p}_2^{\mu}$$



Impose on-shell conditions to determine mapping parameters

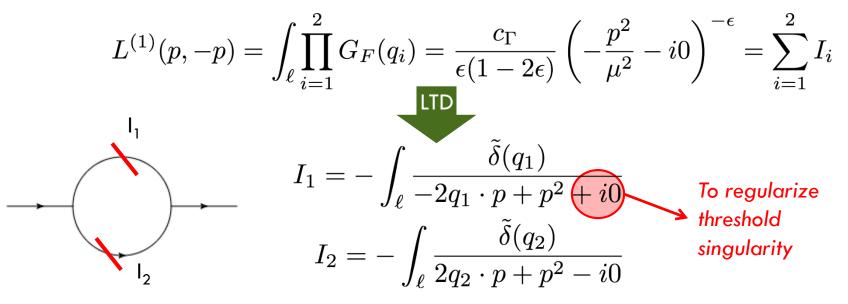
with \hat{p}_i massless four-vectors build using p_i (simplify the expressions)

Express the loop three-momentum with the same parameterization used for describing the dual contributions!

Repeat in each region of the partition...

18 UV singularities

Reference example: two-point function with massless propagators



- In this case, the integration regions of dual integrals are two energy-displaced forward light-cones. This integral contains UV poles only!
- OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV counter-terms, and find a purely 4-dimensional representation of the loop integral

- 19 Location of UV singularities and local counter-terms
 - Divergences arise from the high-energy region (UV poles) and can be cancelled with a suitable renormalization counter-term. For the scalar case, we use

$$I_{\rm UV}^{\rm cnt} = \int_{\ell} \frac{1}{(q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0)^2}$$

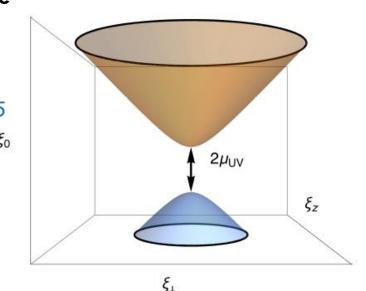
Becker, Reuschle, Weinzierl, JHEP 12 (2010) 013

Dual representation (new: double poles in the loop energy)

$$I_{\mathrm{UV}}^{\mathrm{cnt}} = \int_{\ell} rac{ ilde{\delta}(q_{\mathrm{UV}})}{2\left(q_{\mathrm{UV},0}^{(+)}
ight)^2} \quad \stackrel{\mathrm{Bierenbaum\ et\ al.}}{\overset{\mathrm{JHEP\ 03\ (2013)\ 025}}{\xi_0}}$$

$$q_{\rm UV,0}^{(+)} = \sqrt{\mathbf{q}_{\rm UV}^2 + \mu_{\rm UV}^2 - i0}$$

 Loop integration for loop energies larger than µ_{UV}



20 UV counterterms and local renormalization

- LTD must be applied to deal with UV singularities by building local versions of the usual UV counterterms.
- I: Expand internal propagators around the "UV propagator"

$$\frac{1}{q_i^2 - m_i^2 + i0} = \frac{1}{q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0}$$
 Becker, Reuschle, Weinzierl, JHEP12(2010)013
 $\times \left[1 - \frac{2q_{\rm UV} \cdot k_{i,\rm UV} + k_{i,\rm UV}^2 - m_i^2 + \mu_{\rm UV}^2}{q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0} + \frac{(2q_{\rm UV} \cdot k_{i,\rm UV})^2}{(q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0)^2} \right] + \mathcal{O}\left((q_{\rm UV}^2)^{-5/2}\right)$

2: Apply LTD to get the dual representation for the expanded UV expression, and subtract it from the dual+real combined integrand.

LTD extended to deal with multiple poles (use residue formula to obtain the dual representation)

 3: Take into account wave-function and vertex renormalization constants (not trivial in the massive case!)

- 21 UV counterterms and local renormalization
 - Self-energy corrections with on-shell renormalization conditions

$$\Sigma_R(\not p_1 = M) = 0 \qquad \qquad \frac{d\Sigma_R(\not p_1)}{d\not p_1}\Big|_{\not p_1 = M} = 0$$

Wave-function renormalization constant (both IR and UV poles):

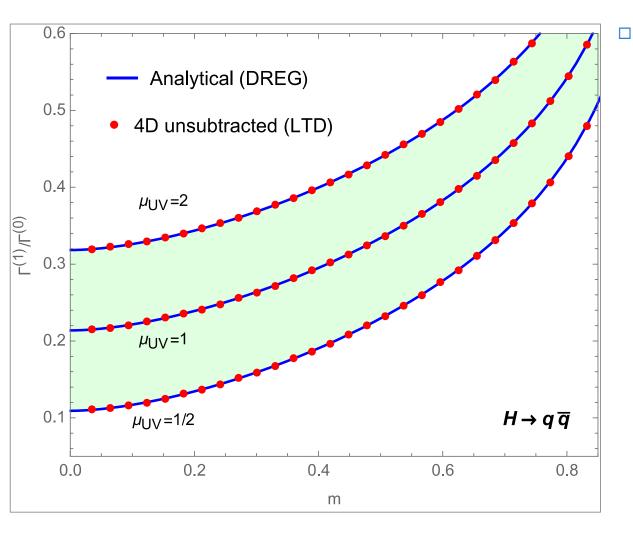
$$\Delta Z_2(p_1) = -g_{\rm S}^2 C_F \int_{\ell} G_F(q_1) G_F(q_3) \left((d-2) \frac{q_1 \cdot p_2}{p_1 \cdot p_2} + 4M^2 \left(1 - \frac{q_1 \cdot p_2}{p_1 \cdot p_2} \right) G_F(q_3) \right)$$

Vertex renormalization (only UV):

- Important features:
 - Integrated results agrees with standard UV counter-terms!
 - Smooth massless limit!

Physical example: $A^* \to q\bar{q}(g)$ (MLO)

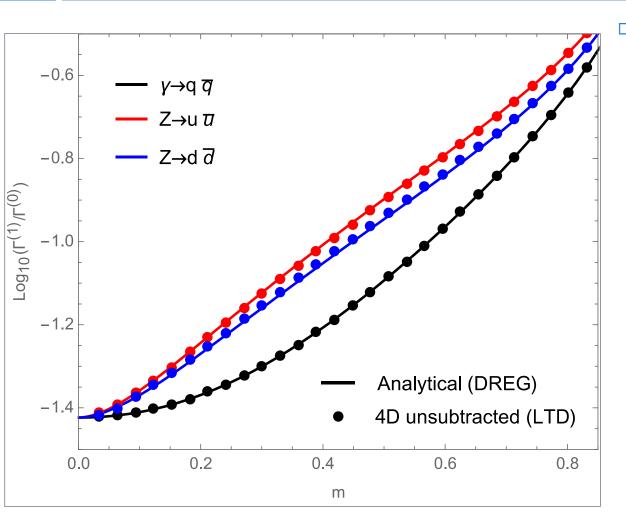
22 Results and comparison with DREG



- Total decay rate for Higgs into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Local version of UV counterterms succesfully reproduces the expected behaviour
 - Efficient numerical implementation

Physical example: $A^* \to q\bar{q}(g)$ (MLO)

23 Results and comparison with DREG



- Total decay rate for a vector particle into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Efficient numerical implementation
 - Cancellation of UV log's (as in DREG...)

Physical example: $A^* \to q\bar{q}(g)$ (Q)NLO

Important remarks 24

- The total decay-rate can be expressed using purely four-dimensional integrands (which are integrable functions!!)
- We recover the total NLO correction, avoiding to deal with DREG (ONLY used for comparison with known results)

Main advantages:

 \checkmark Direct **numerical** implementation (integrable functions for $\epsilon=0$)

Finite integral for $\varepsilon=0$ Integrability with $\varepsilon=0$

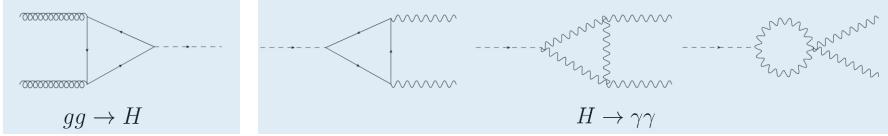
With FDU is true!

No need of tensor reduction (avoids the presence of Gram determinants, which could introduce numerical instabilities)

- Smooth transition to the massless limit (due to the efficient treatment of quasi-collinear configurations)
- Mapped real-contribution used as a fully local IR counter-term for the dual contribution!

25 Using LTD to regularize finite amplitudes

Application of LTD to compute one-loop Higgs amplitudes:



- They are IR/UV finite BUT still not well-defined in 4D!!! Hidden cancellation of singularities leads to potentially undefined results (scheme dependence!!!)
- We start by defining a tensor basis and projecting (amplitude level!):

 $\mathcal{A}_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} \mathcal{A}_{i}^{(1,f)} T_{\mu\nu}^{i} \quad \text{with}$ $P_{1}^{\mu\nu} = \left\{ g^{\mu\nu} - \frac{2 p_{1}^{\nu} p_{2}^{\mu}}{s_{12}}, g^{\mu\nu} , \frac{2 p_{1}^{\mu} p_{2}^{\nu}}{s_{12}}, \frac{2 p_{1}^{\mu} p_{1}^{\nu}}{s_{12}}, \frac{2 p_{2}^{\mu} p_{2}^{\nu}}{s_{12}} \right\}$ $P_{1}^{\mu\nu} = \frac{1}{d-2} \left(g^{\mu\nu} - \frac{2 p_{1}^{\nu} p_{2}^{\mu}}{s_{12}} - (d-1) P_{2}^{\mu\nu} \right)$ $P_{2}^{\mu\nu} = \frac{2 p_{1}^{\mu} p_{2}^{\nu}}{s_{12}} \quad \text{Projectors}$

- Then, scalar coefficients $P_i^{\mu\nu} \mathcal{A}_{\mu\nu}^{(1,f)} = \mathcal{A}_i^{(1,f)}$ are dualized.
- IMPORTANT: Take into account 1-2 exchange symmetry (different cuts and nontrivial cancellations!!!)

26 Using LTD to regularize finite amplitudes

Application of LTD to compute one-loop Higgs amplitudes:

$$\begin{aligned} \mathcal{A}_{1}^{(1,f)} &= g_{f} \int_{\ell} \tilde{\delta}\left(\ell\right) \left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_{0}^{(+)}}{q_{4,0}^{(+)}} + \frac{2\left(2\ell \cdot p_{12}\right)^{2}}{s_{12}^{2} - \left(2\ell \cdot p_{12} - i0\right)^{2}} \right) \left(\frac{s_{12} M_{f}^{2}}{\left(2\ell \cdot p_{1}\right)\left(2\ell \cdot p_{2}\right)} c_{1}^{(f)} \right. \\ &+ c_{2}^{(f)} \right) + \frac{2 s_{12}^{2}}{s_{12}^{2} - \left(2\ell \cdot p_{12} - i0\right)^{2}} c_{3}^{(f)} \right] \\ \mathcal{A}_{2}^{(1,f)} &= g_{f} \frac{c_{3}^{(f)}}{2} \int_{\ell} \tilde{\delta}\left(\ell\right) \left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_{0}^{(+)}}{q_{4,0}^{(+)}} - 2 \right) \end{aligned}$$

with $q_1 = \ell + p_1, q_2 = \ell + p_{12}$ and $q_{1,0}^{(+)} = \sqrt{(\ell + \mathbf{p}_1)^2 + M_f^2}, \quad q_{4,0}^{(+)} = \sqrt{(\ell + \mathbf{p}_2)^2 + M_f^2},$ $q_3 = \ell, q_4 = \ell + p_2$ $\ell_0^{(+)} = q_{2,0}^{(+)} = q_{3,0}^{(+)} = \sqrt{\ell^2 + M_f^2}.$

Comments:

- Generic result valid for $gg \to H$ and $H \to \gamma \gamma \parallel$
- Process dependence codified in the coefficients. Valid for scalar, fermion and vector massive particles inside the loop!!!

27 Using LTD to regularize finite amplitudes

Combine expressions (use "zero integrals" in DREG associated with Ward identities):

$$\mathcal{A}_{1}^{(1,f)} = g_{f} \int_{\ell} \tilde{\delta}\left(\ell\right) \left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_{0}^{(+)}}{q_{4,0}^{(+)}} + \frac{2\left(2\ell \cdot p_{12}\right)^{2}}{s_{12}^{2} - \left(2\ell \cdot p_{12} - i0\right)^{2}} \right) \frac{s_{12} M_{f}^{2}}{\left(2\ell \cdot p_{1}\right)\left(2\ell \cdot p_{2}\right)} c_{1}^{(f)} \text{Well defined in 4-d!!} \\ + \frac{2 s_{12}^{2}}{s_{12}^{2} - \left(2\ell \cdot p_{12} - i0\right)^{2}} c_{23}^{(f)} \right]_{\mathcal{O}(\epsilon)} \text{Non-commutativity of limit and integration!!!!}$$

Use local renormalization (equivalent to Dyson's prescription...)

$$\mathcal{A}_{1,\mathrm{R}}^{(1,f)}\Big|_{d=4} = \left(\mathcal{A}_{1}^{(1,f)} - \mathcal{A}_{1,\mathrm{UV}}^{(1,f)}\right)_{d=4} \qquad \qquad \mathcal{A}_{1,\mathrm{UV}}^{(1,f)} = -g_f \int_{\ell} \frac{\tilde{\delta}\left(\ell\right) \,\ell_0^{(+)} s_{12}}{2(q_{\mathrm{UV},0}^{(+)})^3} \left(1 + \frac{1}{(q_{\mathrm{UV},0}^{(+)})^2} \frac{3\,\mu_{\mathrm{UV}}^2}{d-4}\right) c_{23}^{(f)}$$

- Counter-term mimics UV behaviour at integrand level.
- Term proportional to $\mu_{\rm UV}^2$ used to fix DREG scheme (vanishing counter-term in d-dim!!)
- Valid also for W amplitudes in unitary-gauge (naive Dyson's prescription fails to subtract subleading terms due to enhanced UV divergences)

$$-i\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_W^2}\right)\frac{1}{q_i^2 - M_W^2 + i0}$$

28 Spin-off: Asymptotic expansions

- Infinite-mass limit used to define effective vertices. Equivalent to explore asymptotic expansions!
- Expansions at integrand level are non-trivial in Minkowski space (i.e. within Feynman integrals) and additional factors are neccesary
- Dual amplitudes are expressed as phase-space integrals => Euclidean space!!

$$\tilde{\delta}(q_3) \ G_D(q_3; q_2) = \frac{\tilde{\delta}(q_3)}{s_{12} + 2q_3 \cdot p_{12} - i0} \xrightarrow{M_f^2 \gg s_{12}} \tilde{\delta}(q_3) \ G_D(q_3; q_2) = \frac{\tilde{\delta}(q_3)}{2q_3 \cdot p_{12}} \sum_{n=0}^{\infty} \left(\frac{-s_{12}}{2q_3 \cdot p_{12}}\right)^n$$

Expansion of the dual propagator $(q_3 \text{ on-shell})$

Example: Higgs amplitudes with heavy-particles within the loop

$$\begin{split} \mathcal{A}_{1,\mathrm{R}}^{(1,f)}(s_{12} < 4M_f^2) \Big|_{d=4} &= \frac{M_f^2}{\langle v \rangle} \int_{\ell} \tilde{\delta}\left(\ell\right) \left[\frac{3\,\mu_{\mathrm{UV}}^2\,\ell_0^{(+)}}{(q_{\mathrm{UV},0}^{(+)})^5} \,\hat{c}_{23}^{(f)} + \frac{M_f^2}{(\ell_0^{(+)})^4} \left(\sum_{n=0}^{\infty} Q_n(z) \left(\frac{s_{12}}{(2\ell_0^{(+)})^2} \right)^n \right) c_1^{(f)} \right] \\ z &= (2\ell \cdot \mathbf{p}_1) / (\ell_0^{(+)}\sqrt{s_{12}}) \quad \text{and} \ Q_n(z) = \frac{1}{1-z^2} \left(P_{2n}(z) - 1 \right) \qquad \begin{array}{l} \text{Reproduces all the known-results!!} \end{array}$$

Towards two loops...

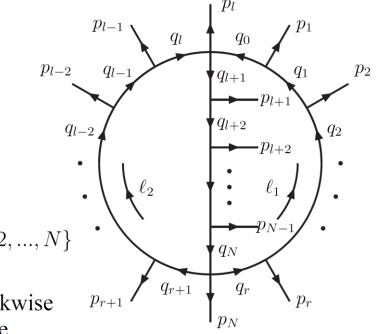
29 Introducing the notation

- Dual amplitudes can be defined at higher-orders (even with multiple poles)
 Bierenbaum, Catani, Draggiotis, Rodrigo; JHEP 10 (2010) 073
- □ Standard example: two-loop N-point scalar amplitude

$$L^{(2)}(p_1, p_2, \dots, p_N) = \int_{\ell_1} \int_{\ell_2} G_F(\alpha_1 \cup \alpha_2 \cup \alpha_3)$$
$$\int_{\ell_i} \bullet = -i \int \frac{d^d \ell_i}{(2\pi)^d} \bullet \quad , \quad G_F(\alpha_k) = \prod_{i \in \alpha_k} G_F(q_i)$$

$$\alpha_1 \equiv \{0, 1, ..., r\}, \alpha_2 \equiv \{r+1, r+2, ..., l\}, \alpha_3 \equiv \{l+1, l+2, ..., N\}$$

$$q_{i} = \begin{cases} \ell_{1} + p_{1,i} & , i \in \alpha_{1} \\ \ell_{2} + p_{i,l-1} & , i \in \alpha_{2} \\ \ell_{1} + \ell_{2} + p_{i,l-1} & , i \in \alpha_{3} \end{cases} \text{ with } \begin{array}{c} \ell_{1} \text{ anti-clock} \\ \ell_{2} \text{ clockwise} \end{array}$$



Generic two-loop diagram

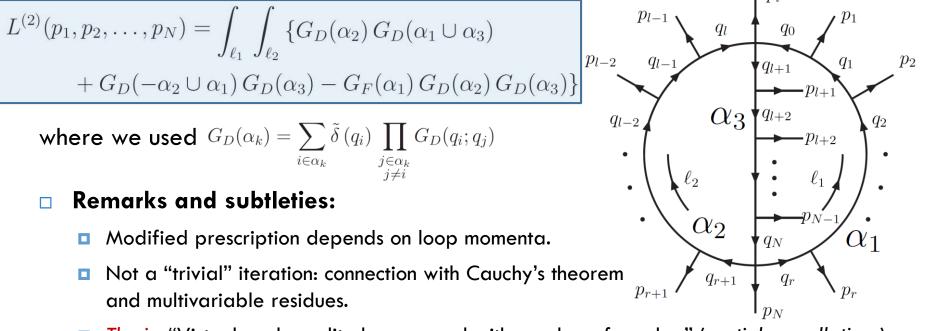
Driencourt-Mangin, Rodrigo and G.S., in progress

Towards two loops...

30 Cuts and LTD formula

"The number of cuts equals the number of loops"

- Derivation: "Iterate" the one-loop formula and use propagator properties
- Standard example: two-loop N-point scalar amplitude



Thesis: "Virtual-real amplitudes mapped with one-loop formulae" (partial cancellations), but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo and G.S., in progress

Conclusions and perspectives

- Loop-tree duality allows to treat virtual and real contributions in the same way (implementation simplified)
- Physical interpretation of IR/UV singularities in loop integrals (light-cone diagrams)
- Combined virtual-real terms are integrable in 4D!!
- Realistic physical implementation!!!
- Universal & compact expressions for Higgs amplitudes
- Perspectives:

31

- Automation of multileg processes at NLO (ongoing) and beyond (...)
- Generalization of universality relations and simplified asymptotic expansions
- Carefull comparison with other schemes

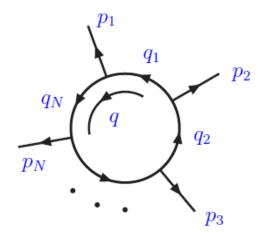
"Workstop-Thinkstart meeting" UZH, Zurich, Sep. 2016 Eur.Phys.J. C77 (2017) no.7, 471 arXiv:1705.01827 [hep-ph]

Extra material

- Cauchy's theorem and prescriptions
- Feynman tree theorem
- IR singularities within LTD
- UV regularized bubble with LTD
- v>qqbar@NLO: 4D formulae
- Higgs amplitudes coefficients

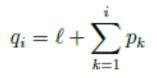
Cauchy's theorem and prescriptions

34 Feynman integrals and propagators



 $L_R^{(N)}(p_1, p_2, \cdots, p_N) = -i \int \frac{d^d \ell}{(2\pi)^d} \prod_{i=1}^N G_R(q_i)$

Generic one-loop Feynman integral



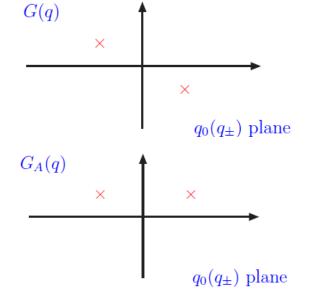
Momenta definition

Prescriptions are useful to avoid poles. Different prescriptions are possible; connection between FTT and LTD theorems! Feynman propagator

$$G(q) \equiv \frac{1}{q^2 + i0}$$

Advanced propagator

$$G_A(q) \equiv \frac{1}{q^2 - i0 \, q_0}$$



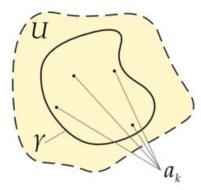
Cauchy's theorem and prescriptions

35 Feynman integrals and propagators

Residue theorem (from Wikipedia)

$$\oint_{\gamma} f(z) \, dz = 2\pi i \sum \operatorname{Res}(f, a_k)$$

«If f is a holomorphic function in U/{ a_i }, and γ a simple positively oriented curve, then the integral is given by the sum of the residues at each singular point a_i »



Residue theorem can be used to compute integrals involving propagators: the prescription and the contour that we choose determine the result!

 Feynman propagator
 $L^{(N)}$
 $[G(q)]^{-1} = 0 \implies q_0 = \pm \sqrt{q^2 - i0}$ $\times \times \times \times \times (C_L)^{q_0}$

 Advanced propagator
 $G_A(q)$
 $[G_A(q)]^{-1} = 0 \implies q_0 \simeq \pm \sqrt{q^2} + i0$ $L_A^{(N)}$

 NO POLES CLOSED BY C_L!
 C_L

Feynman tree theorem

36 **Derivation**

Idea: «Sum over all possible m-cuts»

$$L_A^{(N)}(p_1, p_2, \dots, p_N) = \int_q \prod_{i=1}^N G_A(q_i) = 0$$
Residue theorem (using a proper integration path)
$$G_A(q) = G(q) + \widetilde{\delta}(q)$$
Using PV prescription
$$L_A^{(N)}(p_1, p_2, \dots, p_N) = \int_q \prod_{i=1}^N \left[G(q_i) + \widetilde{\delta}(q_i) \right]$$

$$= L^{(N)}(p_1, p_2, \dots, p_N) + L_{1-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N) + \dots + L_{N-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N)$$
m-cut definition:
$$L_{m-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N) = \int_q \left\{ \widetilde{\delta}(q_1) \dots \widetilde{\delta}(q_m) G(q_{m+1}) \dots G(q_N) + \text{uneq. perms.} \right\}$$

$$L^{(N)}(p_1, p_2, \dots, p_N) = - \left[L_{1-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N) + \dots + L_{N-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N) \right]$$

Feynman tree theorem

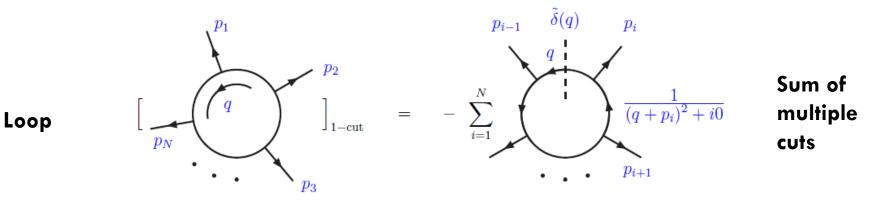
37 Derivation

Some remarks:

- Making m-cuts decomposes the original one-loop diagram into m-tree level terms, all of them using the same prescription
- □ 1-cut = sum over «tree level» terms

$$L_{1-\text{cut}}^{(N)}(p_1, p_2, \dots, p_N) = \int_q \sum_{i=1}^N \widetilde{\delta}(q_i) \prod_{\substack{j=1\\ j \neq i}}^N G(q_j)$$

$$I_{1-\text{cut}}^{(n)}(k_1, k_2, \dots, k_n) = \int_q \widetilde{\delta}(q) \prod_{j=1}^n G(q+k_j) = \int_q \widetilde{\delta}(q) \prod_{j=1}^n \frac{1}{2qk_j + k_j^2 + i0} \quad \text{Basic 1-cut integral (shift in loop momentum)}$$



IR singularities within LTD

- 38 Compactness of IR singular regions (massless triangle)
 - □ From the previous plots, we define three contributions:

IR-divergent contributions ($X_0 < 1 + w$)

- Originated in a finite region of the loop three-momentum
- All the IR singularities of the original loop integral

$$I^{\text{IR}} = I_1^{(\text{s})} + I_1^{(\text{c})} + I_2^{(\text{c})} = \frac{c_{\Gamma}}{s_{12}} \left(\frac{-s_{12} - i0}{\mu^2}\right)^{-\epsilon} \\ \times \left[\frac{1}{\epsilon^2} + \left(\ln\left(2\right)\ln\left(w\right) - \frac{\pi^2}{3} - 2\text{Li}_2\left(-\frac{1}{w}\right) + i\pi\ln\left(2\right)\right)\right] + \mathcal{O}(\epsilon)$$

Forward integrals ($v < 1/2, X_0 > 1$)

- Free of IR/UV poles
- Integrable in 4-dimensions!

$$I^{(f)} = \sum_{i=1}^{3} I_i^{(f)} = c_{\Gamma} \frac{1}{s_{12}} \left[\frac{\pi^2}{3} - \imath \pi \log(2) \right] + \mathcal{O}(\epsilon)$$

Backward integrals ($v > 1/2, X_0 > 1 + w$)

- Free of IR/UV poles
- Integrable in 4-dimensions!

$$I^{(b)} = c_{\Gamma} \frac{1}{s_{12}} \left[2\text{Li}_2 \left(-\frac{1}{w} \right) - \ln(2)\ln(w) \right] + \mathcal{O}(\epsilon)$$

IR singularities within LTD

39 Technical details

- Let's stop and make some remarks about the structure of these expressions:
 - Introduction of an arbitrary cut w to include threshold regions.
 - Forward and backward integrals can be performed in 4D because the sum does not contain poles.
 - Presence of extra Log's in (F) and (B) integrals. They are originated from the expansion of the measure in DREG, i.e.

$$\xi_r^{-1-2\epsilon} = -\frac{Q_S^{-2\epsilon}}{2\epsilon}\delta(\xi_r) + \left(\frac{1}{\xi_r}\right)_C - 2\epsilon \left(\frac{\ln(\xi_r)}{\xi_r}\right)_C + \mathcal{O}(\epsilon^2)$$

for both v and ξ (keep finite terms only). Unify coordinate system to avoid them!

IR-poles isolated in I^R! IR divergences originated in compact region of the three-loop momentum!!!

$$L^{(1)}(p_1, p_2, -p_3) = I^{\text{IR}} + I^{(\text{b})} + I^{(\text{f})}$$

Explicit poles Can be
still present... done in 4D!

UV regularized bubble with LTD

- 40 **Cancellation of UV singularities**
 - Using the standard parametrization we define

Regularized two-point function

$$L^{(1)}(p,-p) - I_{\mathrm{UV}}^{\mathrm{cnt}} = c_{\Gamma} \left[-\log\left(-\frac{p^2}{\mu_{\mathrm{UV}}^2} - i0\right) + 2\right] + \mathcal{O}(\epsilon)$$

- Since it is finite, we can express the regularized two-point function in terms of 4-dimensional quantities (i.e. no epsilon required!!)
- Physical interpretation of renormalization scale: Separation between on-shell hyperboloids in UV-counterterm is $2\mu_{UV}$. To avoid intersections with forward light-cones associated with I_1 and I_2 , the renormalization scale has to be larger or of the order of the hard scale. So, the minimal choice that fulfills this agrees with the standard choice (i.e. 1/2 of the hard scale).

γ>qqbar@NLO: 4D formulae

41

Integration regions:

$$\mathcal{R}_{1}(\xi_{0}, v) = \theta(1 - 2v_{1}) \theta\left(\frac{1 - 2v_{1}}{1 - v_{1}} - \xi_{1,0}\right)\Big|_{\{\xi_{1,0}, v_{1}\} \to \{\xi_{3,0}, v_{3}\} = \{\xi_{0}, v\}}$$
$$\mathcal{R}_{2}(\xi_{0}, v) = \theta\left(\frac{1}{1 + \sqrt{1 - v}} - \xi_{0}\right)$$

Four-dimensional cross-sections:

$$\begin{split} \widetilde{\sigma}_{1}^{(1)} &= \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \int_{0}^{1} d\xi_{1,0} \int_{0}^{1/2} dv_1 \, 4 \, \mathcal{R}_1(\xi_{1,0}, v_1) \left[2 \left(\xi_{1,0} - (1-v_1)^{-1} \right) - \frac{\xi_{1,0}(1-\xi_{1,0})}{(1-(1-v_1)\,\xi_{1,0})^2} \right. \\ \widetilde{\sigma}_{2}^{(1)} &= \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \int_{0}^{1} d\xi_{2,0} \int_{0}^{1} dv_2 \, 2 \, \mathcal{R}_2(\xi_{2,0}, v_2) \, (1-v_2)^{-1} \left[\frac{2 \, v_2 \, \xi_{2,0} \, (\xi_{2,0}(1-v_2)-1)}{1-\xi_{2,0}} \right] \\ \overline{\sigma}_{\rm V}^{(1)} &= \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \int_{0}^{\infty} d\xi \int_{0}^{1} dv \left\{ -2 \, (1-\mathcal{R}_1(\xi, v)) \, v^{-1}(1-v)^{-1} \frac{\xi^2(1-2v)^2+1}{\sqrt{(1+\xi)^2-4v\,\xi}} \right. \\ &+ 2 \, (1-\mathcal{R}_2(\xi, v)) \, (1-v)^{-1} \left[2 \, v \, \xi \, (\xi(1-v)-1) \left(\frac{1}{1-\xi+i0} + i\pi \delta(1-\xi) \right) - 1 + v \, \xi \right] \\ &+ 2 \, v^{-1} \left(\frac{\xi(1-v)(\xi(1-2v)-1)}{1+\xi} + 1 \right) - \frac{(1-2v) \, \xi^3 \, (12-7m_{\rm UV}^2-4\xi^2)}{(\xi^2+m_{\rm UV}^2)^{5/2}} \right] \\ &- \frac{2 \, \xi^2(m_{\rm UV}^2+4\xi^2(1-6v(1-v)))}{(\xi^2+m_{\rm UV}^2)^{5/2}} \right\} \end{split}$$

Higgs amplitudes coefficients

42

The coefficients $c_i^{(f)}$ are written as $c_i^{(f)} = c_{i,0}^{(f)} + r_f c_{i,1}^{(f)}$ with $r_f = s_{12}/M_f^2$, and

$$g_{f} = \frac{2M_{f}^{2}}{\langle v \rangle s_{12}}, \quad c_{23,0}^{(f)} = (d-4)\frac{c_{1,0}^{(f)}}{2}, \quad c_{1,0}^{(\phi)} = \frac{2}{d-2}, \quad c_{1,0}^{(W)} = \frac{4(d-1)}{d-2}, \quad c_{1,1}^{(W)} = -\frac{2(2d-5)}{d-2}, \\ c_{3,0}^{(\phi)} = 2, \quad c_{1,0}^{(t)} = \frac{8}{d-2}, \quad c_{1,1}^{(t)} = -1, \quad c_{3,0}^{(t)} = 8, \quad c_{23,1}^{(W)} = \frac{d-4}{d-2}, \quad c_{3,0}^{(W)} = 4(d-1),$$

with $c_2^{(f)} = c_{23}^{(f)} - c_3^{(f)}$ and $c_{1,1}^{(\phi)} = c_{23,1}^{(\phi)} = c_{3,1}^{(\phi)} = c_{23,1}^{(t)} = c_{3,1}^{(t)} = c_{3,1}^{(W)} = 0.$