

Top quark phenomenology at the LHC

LFC 2017: old and new strong interactions from LHC to Future Colliders

ECT, Villa Tambosi, Villazzano (Trento)

13/9/2017

<u>Alberto Orso Maria Iorio</u>

Top quarks at LHC and beyond

CMS Experiment at LHC, CERN Data recorded: Thu Jul 9 01:29:29 2015 CEST Run/Event: 251252 / 85041479 CMS 40000 45 r Integrated Luminosity [fb⁻¹] Lumi section: 140 Orbit/Crossing: 36595725 / 2078 40 35000 35 2016 muon 30000 jet from W iet 30 25000 jet from W 25 2012 20000 20 extra jet 2017 15000 15 10000 10 2011 5000 5 2015 0 0 02-May 31-Aug 02-Mar 01-Jul 31-Oct 31-Dec Event: 193690558 2015-06-13 23:52:26 CEST

LHC: a top quark factory? Yes indeed...

Run: 267638

Alberto Orso Maria Iorio

x10³ top quark pairs at 13 TeV pp

Top quarks at LHC and beyond

LHC: a top quark factory? Yes indeed...

x10³ top quark pairs at 13 TeV pp

\rightarrow top quarks are part of our toolbox for studying SM and BSM

Pert. QCD, PDF, hadronisation \rightarrow cross sections, decay properties **Coupling properties** $\rightarrow \alpha_s$, top quark polarisation, w-helicity **Fundamental parameters** \rightarrow Top quark mass, charge, Vtb **Search for new physics** \rightarrow Associated production, FCNC.

Outline

• Introduction on top quark:

- production mechanisms
- detection channels

• Top quark measurements:

- strong production:
 - inclusive measurements and interpretation
 - differential measurements and properties
 - MC tuning and PDF measuremetns
- electroweak single top production
- top quark mass
- spin properties

More results can be found here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP https://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-Physics-Results

DISCLAIMER! The top quark physics at LHC is an ever-growing and expanding field: there is a plethora of aspects that for brevity couldn't be summarized here

→ Additional material, including projections and

top-quark production in the standard model @LHC

 $LO \propto (\alpha_s/m_{top})^2$

~172/246/830 pb

Production mechanism...

...cross section...

...LO diagrams

- tt pairs via strong interaction:
- dominant at the LHC and Tevatron
- depends on α_{S}
- sensitive to pdf
- single-tops:
- weak charged current interactions
- t-, s-channel and W-associated
- tWb vertex in production
- Sensitive to Vtb

- **LO** \propto (α *|**V**_{tb}|)²
- pp collisions @7/8/13 TeV:

pp collisions @7/8/13 TeV:

- ~ 66/85/217 pb (*t*-ch.)
- ~ 15/22/72 pb (tW)
- ~ 4.4/5.5/11 pb (*s*-ch.)

• **top** + X :

- top pair and single top + W, Z, γ ...
- way to probe neutral current vertices involving top quark

top-quark decays

Main mechanism is electroweak: no hadronisation

tt production

Top quark pairs physics snapshot

Pair production: what can we learn?

 \rightarrow Pert. QCD at higher orders \rightarrow PS tuning

 \rightarrow Top width

 \rightarrow M_{top} from decays hadronisation

 \rightarrow V-A in decays

 \rightarrow Model for

For each of our measurements:

- How sensitive are we?
- Where can we push the envelope?

Top quark pairs physics snapshot

Pair production: what can we learn?

 \rightarrow Top width

 \rightarrow V-A in decays

 \rightarrow PDF α_{s} M_{top} \rightarrow Spin correlations

 \rightarrow Pert. QCD at higher orders \rightarrow PS tuning

For each of our measurements:

• How sensitive are we?

• Where can we push the envelope?

Top quark pairs physics snapshot

Pair production: what can we learn?

 \rightarrow PDF α_{s} M_{top} \rightarrow Spin correlations

 \rightarrow Pert. QCD at higher orders \rightarrow PS tuning

 \rightarrow Top width

- \rightarrow Model for
- \rightarrow V-A in decays
- \rightarrow M_{top} from decays hadronisation

For each of our measurements:

- How sensitive are we?
- Where can we push the envelope?

PDF, as and Mtop through inclusive measurements:

tt inclusive measurement now reached ~1-2% precision

- Relevant common uncertainties:
- \rightarrow luminosity, lepton efficiency, background normalisation CMS
- → MC Modeling, luminosity, lepton efficiency Atlas

Measurements interpretation: top-quark pole mass

• Re-interpretation of cross section measurements:

- top mass m_{top} parameter in the MC :depends on the renormalisation scheme used

Measurements interpretation: top-quark pole mass

• Re-interpretation of cross section measurements:

- top mass m_{top} parameter in the MC :depends on the renormalisation scheme used

Measurements interpretation: top-quark pole mass

• Re-interpretation of cross section measurements:

- top mass m_{top} parameter in the MC :depends on the renormalisation scheme used
- can be taken from the cross section parametrisation (example from cms)
- uncertainties from cross section measurement: luminosity, background yield, lepton reconstruction

$$\sigma_{t\bar{t}}(7 \text{ TeV}, m_t^{MC}) = \exp\left[-0.1718 (m_t^{MC}/\text{GeV} - 178.5)\right] + 170.9 \text{ pb}$$

$$\sigma_{t\bar{t}}(8 \text{ TeV}, m_t^{MC}) = \exp\left[-0.1603 (m_t^{MC}/\text{GeV} - 185.4)\right] + 237.0 \text{ pb}$$

Differential measurements: the tt - pt conundrum

- Discrepancy in top quark pair system pt spectrum seen across the years,
- \rightarrow present since the early years: no clear explanation yet.
- → Difference in rapidity as well.

- CMS adds a reweighting for the top pair momentum
- \circ Atlas finds out slightly harder spectra for the top P_{τ} and m_{tt}

Differential measurements: the tt - pt conundrum

- Discrepancy in top quark pair system pt spectrum seen across the years,
- \rightarrow present since the early years: no clear explanation yet.
- → Difference in rapidity as well.

- CMS adds a reweighting for the top pair momentum
- \circ Atlas finds out slightly harder spectra for the top P_{τ} and m_{tt}

Differential measurements: tt pt for boosted top quarks

• In boosted topologies (top quarks clustered into an AK8 jet) the trend is present as well.

- At 13 TeV will be even more important.
- → Crucial for new physics searches as well!

Differential measurements @13 TeV

- Measurements from 2015, low statistics data set
- \rightarrow still enough to be used for model tuning
- Higher precision will exploit 2016 data
- Similar trends for top pt and highly boosted regime

arXiv:1708.00727

Alberto Orso Maria Iorio

Differential measurements and PDFs

- **Differential distributions** can be used for pdf constraints \rightarrow double differential to improve sensitivity
- highest impact is on high-x gluon PDF

EPJC 77 (2017) 459

Use of tt events for MC tuning

• Jet multiplicity discrepancy with initial configuration of Run-I: POWHEG + Pythia8 with **CUETP8M1** α^{ISR} = 0.1365, hdamp = 172.5 GeV (== m_{top})

Use of tt events for MC tuning

• After this is done, further PYTHIA tuning is performed with PROFESSOR, for the UE, obtaining the parameter used in CUETP8M2T4

Single-top production

The single-top production: top in the the electroweak sector

• All ingle-top quark processes:

	<i>t</i> -channel	W associated (tW)	<i>s</i> -channel
 tWb vertex in production 			
- Top is produced polarised	q' q	b w	q
 non SM couplings can appear cross section and properties 	in b t	b b	
- All channels cross sections: proportional to $\left V_{tb}\right ^2$	g 5 b	g 🤷 💦 t	q'
LHC pp @7 TeV ⁽¹⁾⁽²⁾	63.9±0.2.7 pb	15.7±1.2 pb	4.29±0.18 pb
LHC pp @8 TeV ⁽¹⁾⁽²⁾	85.2±2.2 pb ⁽³⁾	22.4±1.5 pb	5.24±0.21 pb
LHC pp @13 TeV ⁽¹⁾⁽²⁾	217.0±8.4 pb	84.4±4.4 pb	10.32±0.38pb

(1): LHCTopWG: calculations with HATOR, see also https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec

(2): N. Kidonakis Phys. arXiv:1205.3453

(3): M. Burcherseifer, F.Caola, K. Melnikov: arXiv:1404.7116

All with top mass = 172.5 GeV

t-channel Single top production:

t-channel single-top: charge ratio measurement

- Asymmetry in top production :
- stems from valence quark composition: $\sigma(top)/\sigma(antitop)$ ~2
- can be inferred directly from lepton sign

Alberto Orso Maria Iorio

The single-top quark W-associated production

• First measurements at LHC with 8 TeV:

- 2 opposite sign isolated leptons in the final state

 $\sigma_{(8 \text{ TeV})}$ [pb] = 23.0 ± 3.6(Atlas)/23.4 ± 5.4 (CMS)

• tt - tW interference:

- Simulation deals with it with subtraction of diagrams

- Difference in second b pt can be used to differentiate fiducial measurements \rightarrow

• **WbWb:** next step is to use proper simulation of the interference

JHEP01(2016)064

PRL 112,231802

Alberto Orso Maria Iorio

Single-top in the s-channel

First evidence of s-channel: selection on 1 lepton and 2 b-tagged jets using matrix element method to maximize discrimination profile likelihood fit including systematics

$$\sigma_s = 4.8 \pm 0.8(\text{stat.})^{+1.6}_{-1.3}(\text{syst.}) \text{ pb}$$

Statistical significance (expected)/observed: (3.9)3.2 standard deviations

• s-channel at 7 + 8 TeV:

 uses MVA analysis to discriminate from backgrounds

- signal strength correlated amongst two energies
- No profiling of systematics
- Main systematics: background modeling

$$\sigma_s = 7.1 \pm 8.1 \text{ (stat + syst) pb}, \quad 7 \text{ TeV};$$

 $\sigma_s = 13.4 \pm 7.3 \text{ (stat + syst) pb}, \quad 8 \text{ TeV}.$

Top quark properties

Top quark width

- \rightarrow 4 categories are studied for (non)boosted events with 1(>=2) b-jets
- \rightarrow Derive a limit on 0.26 < G < 2.4 @95% cl

Top quark polarisation: *t*-channel single top

Distribution stems from V-A coupling:

$$\frac{d\Gamma}{d\cos\theta_X} = \frac{\Gamma}{2}(1 + P_t \alpha_X \cos\theta_X) \equiv \Gamma(\frac{1}{2} + A_X \cos\theta_X)$$

- $\theta_{\rm X}$ = angle between decay product X and top quark spin axis
- $A_{\rm X}$ = spin asymmetry, from top quark polarisation
- **Can measure:** θ^* leptonic decays:

CP violating top quark physics

• In single top events: CP violation in production

71

 $\vec{N} = s_t x q$

- **Four observables** dthat display asymmetry if CP violation is present

- Measurements in I + jets at 8 TeV

JHEP 03 (2017) 101

top quark mass

Top mass: overview

High precision, systematic dominated measurement:

- Needs time and precise knowledge of the data set!
- → Best measurements at 7-8 TeV
- \rightarrow Combinations allow to gain over systematics
- World combination:

173.34 ±0.36(stat) ±0.67(syst) GeV

• Single experiment combinations :

172.84 ±0.34(stat) ±0.61(syst) GeV Atlas

172.44 ±0.13(stat) ±0.47(syst) GeV CMS

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary, √ s = 7-8 TeV	May 2017		
World Comb. Mar 2014, [7]				
total uncertainty	total stat			
$m_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$	m. + total (stat + syst)	s Bef		
ATLAS, I+iets (*)	$172.31 \pm 1.55 (0.75 \pm 1.35)$	7 TeV [1]		
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]		
CMS, I+jets	$173.49 \pm 1.06 (0.43 \pm 0.97)$	7 TeV [3]		
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]		
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]		
LHC comb. (Sep 2013)	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [6]		
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]		
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]		
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]		
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]		
ATLAS, single top	$172.2 \pm 2.1 \ (0.7 \pm 2.0)$	8 TeV [10]		
ATLAS, dilepton	$172.99 \pm 0.85 \; (0.41 \pm 0.74)$	8 TeV [11]		
ATLAS, all jets	$173.72 \pm 1.15 \; (0.55 \pm 1.01)$	8 TeV [12]		
ATLAS comb. (June 2016)	172.84 \pm 0.70 (0.34 \pm 0.61)	7+8 TeV [11]		
CMS, I+jets	172.35 \pm 0.51 (0.16 \pm 0.48)	8 TeV [13]		
CMS, dilepton	172.82 \pm 1.23 (0.19 \pm 1.22)	8 TeV [13]		
CMS, all jets	$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [13]		
CMS, single top	172.95 \pm 1.22 (0.77 \pm 0.95)	8 TeV [14]		
CMS comb. (Sep 2015)	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [13]		
۲۸ [1] ГА [1]	LAS-CONF-2013-046 [6] ATLAS-CONF-2013-102 LAS-CONF-2013-077 [7] arXiv:1403.4427	[11] Phys.Lett.B761 (2016) 350 [12] arXiv:1702.07546		
(*) Superseded by results	IEP 12 (2012) 105 [8] Eur. Phys.J.C75 (2015) 330 r.Phys.J.C72 (2012) 2202 [9] Eur.Phys.J.C75 (2015) 158	[13] Phys.Rev.D93 (2016) 072004 [14] arXiv:1703.02530		
	r.Phys.J.C74 (2014) 2758 [10] ATLAS-CONF-2014-055			
165 170 17	5 180	185		
m [Oo]/]				
m _{top} [Gev]				

Top mass vs systematics: "standard" approaches

- Standard top mass measurements: tt pairs,
- \rightarrow Have to cope with jet energy scale calibration
- → In particular: b flavoured jets!
- Most common approach: derive in-situ jet energy scale with top mass
- Notable case: lepton + jet analysis
- \rightarrow 1 lepton + 4 jets selection
- $\rightarrow m_{top}$ from kinematic fit used as observable
- → Fit performed taking into account all permutations
- → Different parameter factorisation possible

PRD 93 (2016) 72004

Top mass vs systematics: "standard" approaches

- Standard top mass measurements: tt pairs,
- \rightarrow Have to cope with jet energy scale calibration
- → In particular: b flavoured jets!
- Most common approach:

derive in-situ jet energy scale with top mass

- Notable case: lepton + jet analysis
- \rightarrow 1 lepton + 4 jets selection
- $\rightarrow m_{top}$ from kinematic fit used as observable
- → Fit performed taking into account all permutations

→ Different parameter factorisation possible

PRD 93 (2016) 72004

CMS	6 Lepto	on+jets, 19.	7 fb ⁻¹ (8 Te	eV)
> 12000	tī correct	Si	ngle t	
Ğ I	tī wrong		⊦jets	
10000	tī unmatch	ed w. fit	type	_
Lepton+jets channel	Data	2D	1D	hybrid
2 8000	$\delta m_{\rm t}^{ m 2D}({ m GeV})$	δJSFter P	$\delta m_{\rm t}^{\rm 1D} ({\rm GeV})$	δm_t^{hyb} (GeV)
Experimental uncertainties				
Method calibration	0.04	0.001	0.04	0.04
Jet energy corrections				
– JEC: Intercalibration	< 0.01	< 0.001	+0.02	+0.01
- JEC: In situ calibration	-0.01	+0.003	+0.24	+0.12
- JEC: Uncorrelated non-pileup	+0.09	-0.004	-0.26	-0.10
- JEC: Uncorrelated pileup	+0.06	-0.002	-0.11	-0.04
Lepton energy scale	+0.01	< 0.001	+0.01	+0.01
$E_{\rm T}^{\rm miss}$ scale	+0.04	< 0.001	+0.03	+0.04
Jet energy resolution	-0.11	+0.002	+0.05	-0.03
b tagging	+0.06	< 0.001	+0.04	+0.06
Pileup 0 5	-0.12	+0.002	+0.05	-0.04
Backgrounds	+0.05	200<0.001	800+0.01	40+0.03
Modeling of hadronization			mit roa	1/1
JEC: Flavor-dependent			-m ^t [Ge	V
– light quarks (u d s)	+0.11	-0.002	-0.02	+0.05
– charm	+0.03	< 0.001	-0.01	+0.01
- bottom	-0.32	< 0.001	-0.31	-0.32
– gluon	-0.22	+0.003	+0.05	-0.08
b jet modeling				
 b fragmentation 	+0.06	-0.001	-0.06	< 0.01
- Semileptonic b hadron decays	-0.16	< 0.001	-0.15	-0.16
Modeling of perturbative QCD				
PDF	0.09	0.001	0.06	0.04
Ren. and fact. scales	$+0.17\pm0.08$	-0.004 ± 0.001	-0.24 ± 0.06	-0.09 ± 0.07
ME-PS matching threshold	$+0.11\pm0.09$	-0.002 ± 0.001	-0.07 ± 0.06	$+0.03\pm0.07$
ME generator	-0.07 ± 0.11	-0.001 ± 0.001	-0.16 ± 0.07	-0.12 ± 0.08
Top quark $p_{\rm T}$	+0.16	-0.003	-0.11	+0.02
Modeling of soft QCD		T		
Underlying event	$+0.15\pm0.15$	-0.002 ± 0.001	$+0.07\pm0.09$	$+0.08\pm0.11$
Color reconnection modeling	$+0.11\pm0.13$	-0.002 ± 0.001	-0.09 ± 0.08	$+0.01\pm0.09$
Total systematic	0.59	0.007	0.62	0.48
Statistical	0.20	0.002	0.12	0.16
Total	0.62	0.007	0.63	0.51
-				
	172	17	25	

Alberto Orso Maria Iorio

m, [GeV]

Alternative approaches

• Most precise measurements: sensitive to hadronisation uncertainties, color reconnection, etc...

8 TeV

Other ideas are explored by the experiments!

- From different observables...

Use observables 0.18 CMS Simulation 0.16 of lepton from top 0.14 decay 0.12 0.1 0.08 less sensitive to ME/PS Dowr 0.06 ME/PS Un hadronisation Scale Dowr 0.04 Scale Up Top p 0.02 Ratio wrt 172.5 GeV - suggested in 1.2 ArXiv:1407.2763 p_(l*l) [GeV] $mt = 171.7 \pm 1.1$ (stat) CMS TOP-16-002 ± 2.9 (syst+theo)

Alternative approaches

Top mass expectations with 14 TeV and at high-luminosity

• Top mass progress:

- Statistics will help forconstraining backgrounds in situ

- Will be possible to have tighter cuts to select more convenient regions of the phase space

- Improvements in syst. Uncertainties understanding are expected

CMS PAS-FRT-16-006

New top-related processes

Associated production: tt + W/Z bosons

EPJC 77 (2017)

40

New channels: tZq

New channels: tZq

Very sensitive to FCNC BSM, both in Production and decay!

What next?

• **Standard model production** at 13 TeV has been revisited:

 \rightarrow Many "old" measurements have been revamped with the experience from Run-I

→ SM has been confirmed in its core features, precision keeps improving on fundamental parameters!

• Potential for many new measurements:

 \rightarrow Statistics will allow for exploration of the extreme regions of the phase space

- \rightarrow Differential measurements in boosted topologies will massively enter the game!
- A mature enough set of measurements to improve modelling parametrisation:
 - \rightarrow PDF of gluons, especially at high x
 - → Tuning of ME + PS models!

• New interesting production modes take spotlight:

- \rightarrow ttW and ttZ as well as tZq!
- → Sensitivity to new physics!

Thanks!

Extra material

Top quarks at LHCb

Top production at LHCb in forward events

Measurement of top quarks at LHCb

Phys.Rev.Lett.115(2015)112001

- first observation with Run-I data in asymmetric p-p collisions
- 75% ttbar / 25% single-top t-channel
- selected events with 1 top \rightarrow Wb \rightarrow µvb
 - 1 muon: p_{T} >25 GeV ; 2.0 < η < 4.5
 - \geq 1 jet 50 < $p_{_T}\!<\!100$ GeV ; 2.2 < η < 4.2
 - jet must be b-tagged
- use of the pre-tag region to reduce uncertainties
 cross-check region with c-jets

Top production at LHCb in forward events

Charge asymmetry and spin correlation

Charge asymmetry in top quark pairs

- Asymmetry in top-antitop quark production:
- at the LHC: a difference in the rapidity spectra
- top quark is more forward than anti-top

Charge asymmetry in top quark pairs

- Asymmetry in top-antitop quark production:
- at the LHC: a difference in the rapidity spectra
- top quark is more forward than anti-top
- Precision measurement, at 7/8 TeV:
- several channels exploited, including top boosted regime

Spin correlation and top polarisation

• Several methdods explored!

Spin correlation and top polarisation

- Both dileptonic and semileptonic channels studied
- Measurements of $\Delta \phi$, $\cos \theta^*$, etc.
- Matrix Element method
- good agreement with the standard model, two measurement show a slight tension, however less than $2\sigma_{f_{SM}}$

t-channel single top differential measurements

- Momentum and rapidity of single-top quarks
- Same selection of inclusive analyses can be used
- Potential for signal model discrimination and MC tuning exactly as for tt!

Top BR/ width

The R measurement

- Fraction $R = BR(t \rightarrow Wb)/BR(t \rightarrow Wq)$
- allows measurement of |Vtb|
- Unitariety limit foresees $|V_{tb}| = 0.999146$
- Likelihood fit to jet multiplicity spectrum

$$\Gamma_t = \frac{\sigma_{t-ch}^{obs.}}{B(t \rightarrow Wb)} \frac{\Gamma(t \rightarrow Wb)}{\sigma_{t-ch}^{theo.}} = 1.36^{+0.14}_{0.11}$$

Non-SM couplings / small signals

Top quark pairs + photon

Completes the picture together with W/Z

Probes top quark charge via the coupling

Measurements at 7 (Atlas) and 8 (CMS) TeV :

 $\sigma(tt_{\gamma}) = 68 \pm 17$ fb at 7 TeV (48 fbexpected) $\sigma(tt_{\gamma}) = 2.4 \pm 0.6$ pb at 8 TeV (1.8 pb expected)

Search for non-SM couplings single-top production

Search for non-SM couplings top associated production

Prospects for the future

Run 2 top couplings: FCNC studies @14 TeV LHC

• FCNC in top decays:

- will greatly benefit from the increase of statistics
- signal/background ratio will become far More convenient
- Will become crucial to improve or keep same performances for JES and b-tagging

${\cal B}(t\to Zq)$	$300{\rm fb}^{-1}$ @ 14 TeV	$3000 \text{fb}^{-1} @ 14 \text{TeV}$
Exp. bkg. yield	26.8	268
Expected limit	< 0.027%	< 0.010%
1σ range	0.018 - 0.038%	0.007 - 0.014%
2σ range	0.013 - 0.051%	0.005 - 0.020%

CMS PAS-FRT-16-006

Note: the plot doesn't include all results presented in this talk

What are the perspectives @e+e- colliders?

- Transverse polarisation of the beam: will allow energy calibration through spin depolarization in circular e+e-.

- Longitudinal polarization: can be exploited for asymmetry measurements

@TLEP : at tt threshold energy coul have polarisation $\sim 10\%$ in ~ 3 minutes, faster than @Z pole (see also

Production of tt pairs:

- Production with e+e- beams at 350 GeV: pure ewk process

- will need precise measurement of the beam energy

arXiv:1308.6176

arXiv:1406.0561

@e+e- colliders: studies with polarised beams

- Top production with polarized e+e-:
- Allow to probe features of the ewk vertex ttZ!

- Anomalous form factors might be visible at the vertex

Measurements of top production angles:

- top polarisation and forward-Backward asymmetry in production can be measured!

@e+e- colliders: precision ewk tt threshold scan

• tt ewk production threshold:

- High precision measurements will allow to constrain SM parameters

- top mass, decay width, and yukawa coupling to the Higgs will be measured with an unconceivable precison for LHC

- Main uncertainties: $\alpha_s(m_Z)$ and beam energy

- Experimental effort will be needed in tandem with a specific effort to reduce theoretical uncentainties on electroweak top production

	m_{top}	$\Gamma_{\rm top}$	$\lambda_{ ext{top}}$
TLEP	10 MeV	11 MeV	13%
ILC	31 MeV	34 MeV	40%

