LFC17: Old and New Strong Interactions from LHC to Future Colliders ECT* 14.9.2017

Measuring quark polarizations at ATLAS and CMS

Yevgeny Kats

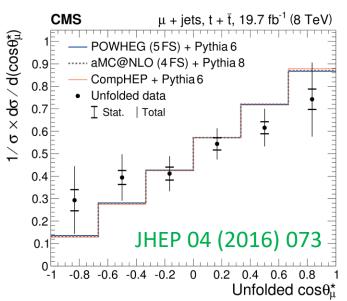
Based on:

JHEP 11 (2015) 067 [arXiv:1505.02771] with Galanti, Giammanco, Grossman, Stamou, Zupan Phys. Rev. D 92, 071503 (2015) [arXiv:1505.06731] JHEP 11 (2016) 011 [arXiv:1512.00438]

Motivation

ATLAS and CMS already measure top quark polarization.

 $\begin{array}{ccc} 1/\sigma \ d\sigma/d(cos(\theta_1^{\star})) \\ 0.0 \\$


0.5

0.45

0.4

0.35

-1

single top production

PRL 112, 182001 (2014)

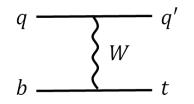
0

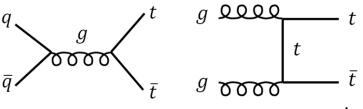
top pair production

Data-bkg.) unfolded

C@NLO parton level

Syst. uncertainty

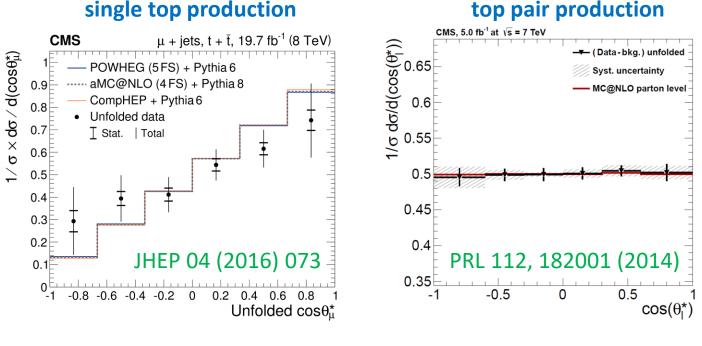

0.5


 $\cos(\theta_{i}^{*})$

CMS, 5.0 fb⁻¹ at √s = 7 TeV

-0.5

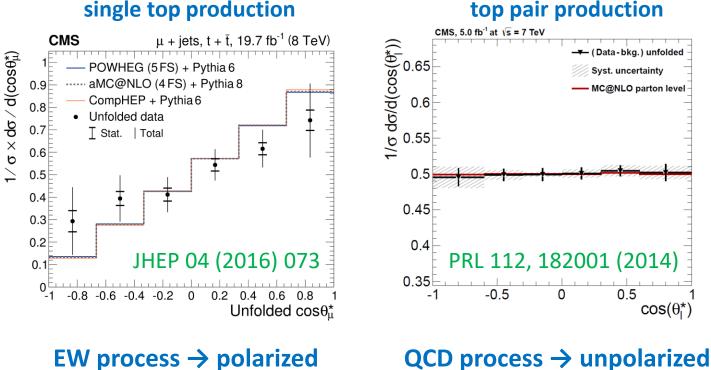
EW process \rightarrow polarized



Motivation

ATLAS and CMS already measure top quark polarization.

single top production


EW process \rightarrow polarized

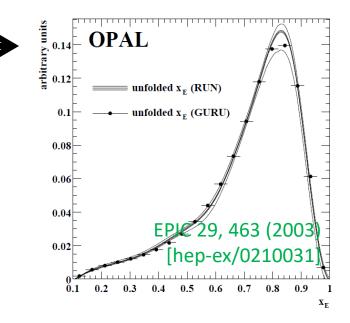
QCD process \rightarrow unpolarized

Polarization of tops from **new physics** processes will teach us about their production mechanism.

Motivation

ATLAS and CMS already measure **top quark** polarization.

single top production


Polarization of tops from **new physics** processes will teach us about their production mechanism.

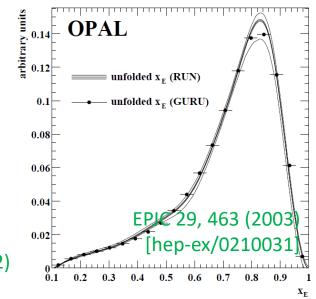
Can we do analogous measurements for the **other quarks**?

Heavy quarks (b, c)

For heavy quarks, $m_q \gg \Lambda_{
m QCD}$

The quark is carried by a very energetic heavy-flavored hadron.

Heavy quarks (b, c)


For heavy quarks, $m_q \gg \Lambda_{
m QCD}$

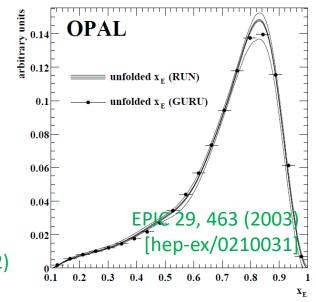
- The quark is carried by a very energetic heavy-flavored hadron.
- ➤ When it is a **baryon**, O(1) fraction of the polarization is expected to be retained.

Mannel and Schuler, PLB 279, 194 (1992)

Close, Körner, Phillips, Summers, J. Phys. G 18, 1703 (1992)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]

Heavy quarks (b, c)


For heavy quarks, $m_q \gg \Lambda_{
m QCD}$

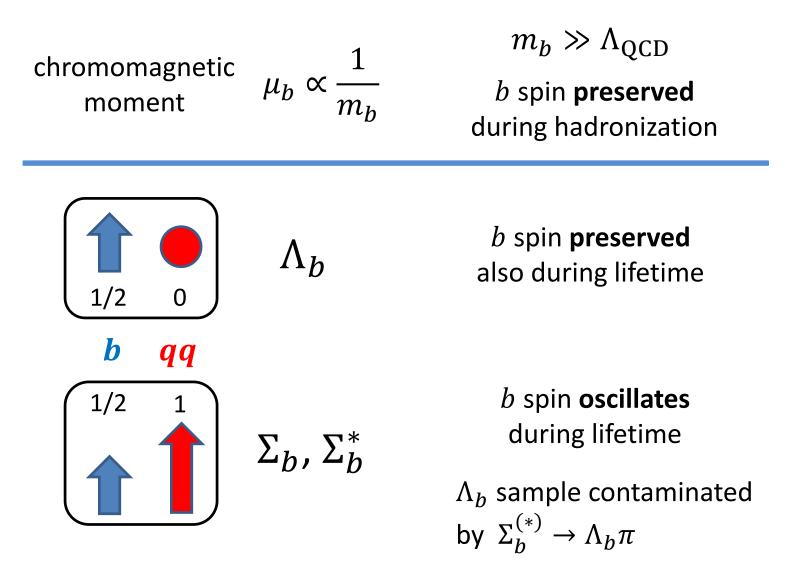
- The quark is carried by a very energetic heavy-flavored hadron.
- ➤ When it is a **baryon**, O(1) fraction of the polarization is expected to be retained.

Mannel and Schuler, PLB 279, 194 (1992)

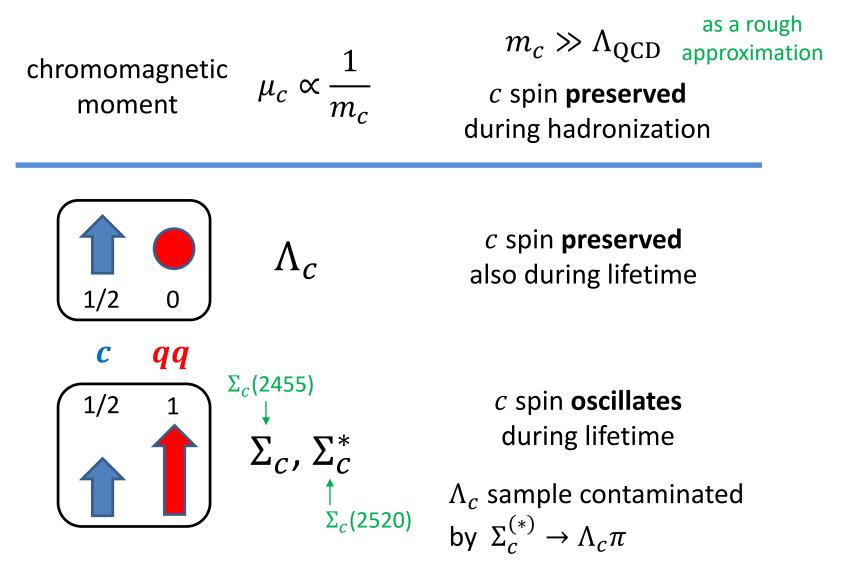
Close, Körner, Phillips, Summers, J. Phys. G 18, 1703 (1992)

Falk and Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]

Evidence observed at LEP via Λ_b ($\approx bud$) baryons in $Z \rightarrow b\overline{b}$.


 $\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20} {}^{+0.08}_{-0.07}$ (ALEPH)PLB 365, 437 (1996) $\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17$ (DELPHI)PLB 474, 205 (2000) $\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09$ (OPAL)PLB 444, 539 (1998) [hep-ex/9808006]

chromomagnetic μ moment


$$u_b \propto \frac{1}{m_b}$$

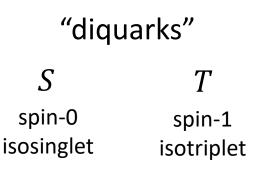
 $m_b \gg \Lambda_{\rm QCD}$

b spin **preserved** during hadronization

fragmentation fraction $f(b \rightarrow baryons) \approx 8\%$

fragmentation fraction $f(c \rightarrow baryons) \approx 6\%$

Dominant polarization loss effect


 $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$ decays

 $r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$

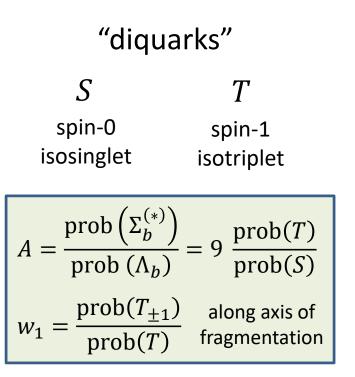
Dominant polarization loss effect $\Sigma_b^{(*)} ightarrow \Lambda_b \pi$ decays

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

Production as a *b* spin eigenstate. Decay as a $\Sigma_b \text{ or } \Sigma_b^*$ mass eigenstate.

e.g.
$$\left|b_{\pm 1/2}\right\rangle \left|T_{0}\right\rangle = -\sqrt{\frac{1}{3}}\left|\Sigma_{b,\pm 1/2}\right\rangle + \sqrt{\frac{2}{3}}\left|\Sigma_{b,\pm 1/2}^{*}\right\rangle$$


Dominant polarization loss effect $\Sigma_b^{(*)} ightarrow \Lambda_b \pi$ decays

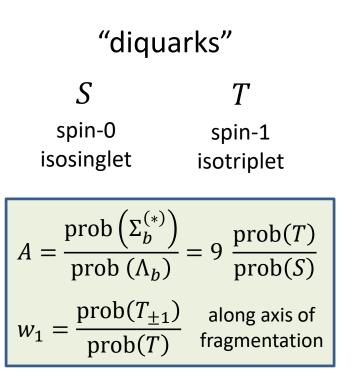
$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

Production as a *b* spin eigenstate. Decay as a $\Sigma_b \text{ or } \Sigma_b^*$ mass eigenstate.

e.g.
$$|b_{\pm 1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,\pm 1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,\pm 1/2}\rangle$$

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

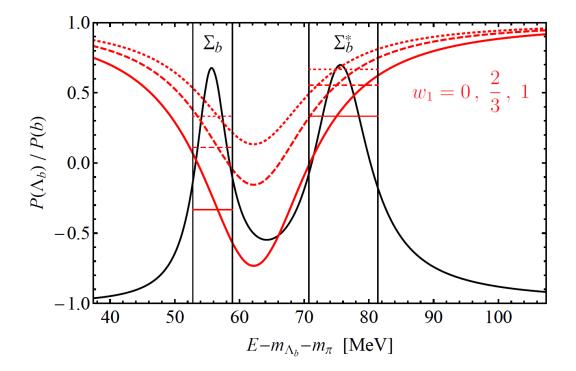
Falk and Peskin PRD 49, 3320 (1994) [hep-ph/9308241]

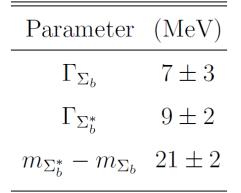

Dominant polarization loss effect $\Sigma_b^{(*)} ightarrow \Lambda_b \pi$ decays

$$\begin{split} \left| \Lambda_{b,+1/2} \right\rangle &= \left| b_{+1/2} \right\rangle \left| S_0 \right\rangle \\ \left| \Sigma_{b,+1/2} \right\rangle &= -\sqrt{\frac{1}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{2}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+1/2}^* \right\rangle &= \sqrt{\frac{2}{3}} \left| b_{+1/2} \right\rangle \left| T_0 \right\rangle + \sqrt{\frac{1}{3}} \left| b_{-1/2} \right\rangle \left| T_{+1} \right\rangle \\ \left| \Sigma_{b,+3/2}^* \right\rangle &= \left| b_{+1/2} \right\rangle \left| T_{+1} \right\rangle \end{split}$$

Production as a
$$b$$
 spin eigenstate.
Decay as a $\Sigma_b \text{ or } \Sigma_b^*$ mass eigenstate.

e.g.
$$|b_{\pm 1/2}\rangle|T_0\rangle = -\sqrt{\frac{1}{3}}|\Sigma_{b,\pm 1/2}\rangle + \sqrt{\frac{2}{3}}|\Sigma_{b,\pm 1/2}\rangle$$


$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ?$$

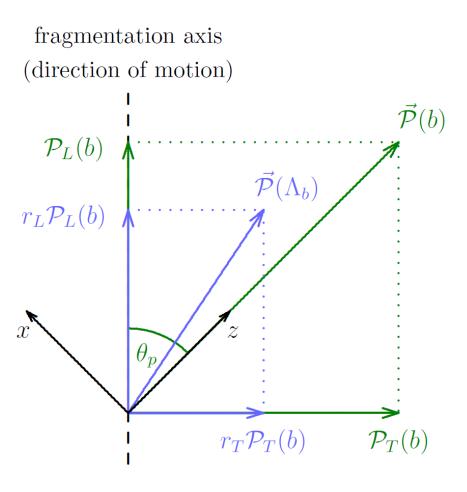


$$r \approx \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

More precisely, need to account	Parameter	(MeV)		
for $\Sigma_b^{(*)}$ widths (interference).	Γ_{Σ_b}	7 ± 3		
	$\Gamma_{\Sigma_b^*}$	9 ± 2		
Can do it by considering $\Sigma_b^{(*)}$ propagation:	$m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2		
$ E\rangle \propto \int d\cos\theta d\phi \sum_{J,M} \langle J, M \frac{1}{2}, +\frac{1}{2}; 1, m\rangle \frac{p_{\pi}(E)}{E - m_J + i\Gamma(E)}$				
$\times \sum_{s} \langle \frac{1}{2}, s; 1, M - s J, M \rangle Y_1^{M-s}(\theta,$	ϕ) $ heta, \phi\rangle s angle$			
$ \rho(E) \propto \operatorname{Tr}_{\theta,\phi} E\rangle \langle E $	pion	$\Lambda_b^{}$ spin		
1	momentum			
$\rho \propto \int_{m_{\Lambda_b}+m_{\pi}}^{\infty} dE p_{\pi}(E) \exp\left(-E/T\right) \rho(E)$				
phase space	statistical hadronization model ($T \approx 165$ MeV) review: PLB 678, 350 (2009) [arXiv:0904.1368]			

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

 $r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$


$$r_L \approx \frac{1 + (0.23 + 0.38 w_1) A}{1 + A}$$

$$r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$$

Directional dependence, since

$$w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

holds along the fragmentation axis.

Heavy quark polarization retention

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$
$$r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and w_1 (for both b and c quarks)?

Heavy quark polarization retention

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$
$$r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

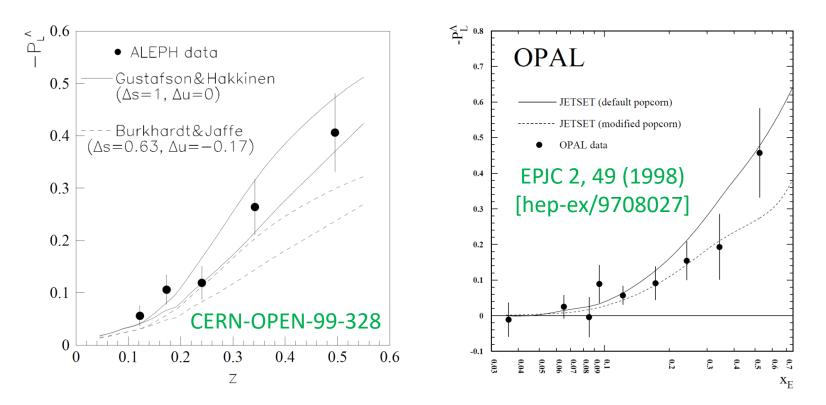
What is known about A and w_1 (for both b and c quarks)?

Pythia tunes $0.24 \leq A \leq 0.45$ (based on light hadron data)DELPHI (LEP) $1 \leq A \leq 10$ (b) $w_1 = -0.36 \pm 0.30 \pm 0.30$ (b)DELPHI-95-107 $A \approx 1.1$ (c)CLEO (CESR) $w_1 = 0.71 \pm 0.13$ (c)PLB 379, 292 (1996)PRL 78, 2304 (1997)Statistical hadronization $A \approx 2.6$ (b and c)Statistical hadronization $A \approx 6$ (b and c) $w_1 \approx 0.41$ (b), 0.39 (c)PRD 64, 014021 (2001) $A \approx 6$ (b and c) $w_1 \approx 0.41$ (b), 0.39 (c)

Heavy quark polarization retention

$$r_{L} \approx \frac{1 + (0.23 + 0.38w_{1})A}{1 + A} \qquad A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$
$$r_{T} \approx \frac{1 + (0.62 - 0.19w_{1})A}{1 + A} \qquad w_{1} = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

What is known about A and w_1 (for both b and c quarks)?


Overall, $A \sim \mathcal{O}(1)$, $0 \leq w_1 \leq 1 \implies r_L, r_T \sim \mathcal{O}(1)$

 r_L consistent with Λ_b

results from LEP

Cannot argue for polarization retention using heavy-quark limit.
Cannot argue for polarization loss either!

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- $\succ \Lambda$ polarization studies were done in Z decays at LEP.

- Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
- > Λ polarization studies were done in Z decays at LEP. For z > 0.3:

 $\mathcal{P}(\Lambda) = -0.31 \pm 0.05$ Aleph, Cern-Open-99-328

 $\mathcal{P}(\Lambda) = -0.33 \pm 0.08$ OPAL, EPJC 2, 49 (1998) [hep-ex/9708027]

Contributions from all quark flavors are included.

For strange quarks only (non-negligible modeling uncertainty):

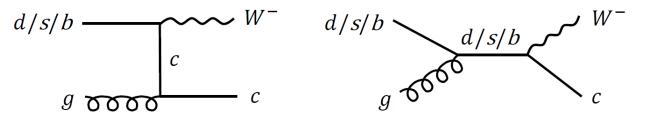
 $-0.65 \lesssim \mathcal{P}(\Lambda) \lesssim -0.49$

Sizable polarization retention!

Nice sources of polarized quarks

Top pair production $pp \rightarrow t\bar{t}$

- > Easy to select a clean $t\overline{t}$ sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- \succ Statistics in Run 2 is as large as in Z decays at LEP.


Nice sources of polarized quarks

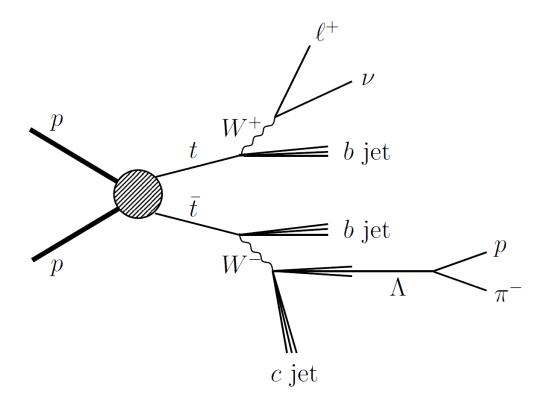
Top pair production $pp \rightarrow t\bar{t}$

- \succ Easy to select a clean $t\overline{t}$ sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- \succ Statistics in Run 2 is as large as in Z decays at LEP.

W+*c* production $pp \rightarrow W^-c$

 \succ Polarized *c* quarks.

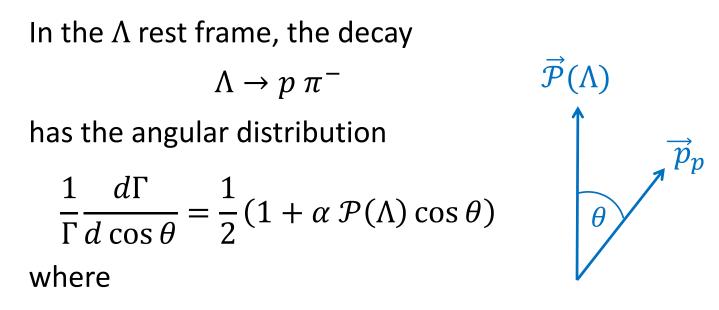
Nice sources of polarized quarks


Top pair production $pp \rightarrow t\bar{t}$

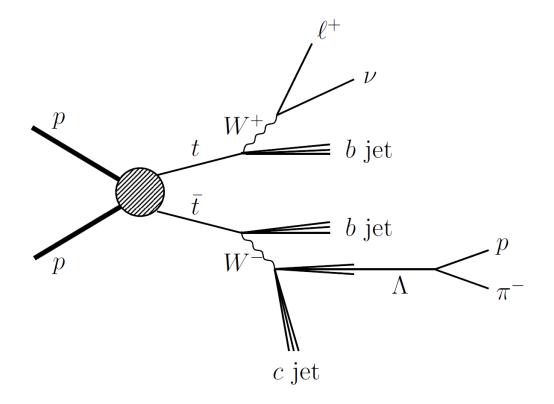
- > Easy to select a clean $t\overline{t}$ sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- \succ Statistics in Run 2 is as large as in Z decays at LEP.

W+*c* production $pp \rightarrow W^-c$

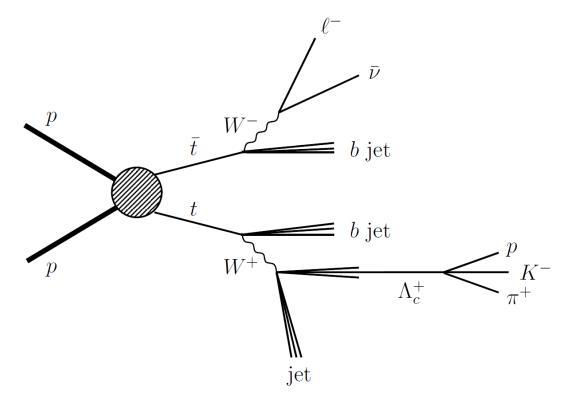
- Polarized *c* quarks.
- > Order-of-magnitude higher statistics than $t\overline{t}$, although backgrounds are higher too.


Measurement of s polarization in $t\bar{t}$

Main steps:


- > Typical single-lepton $t\bar{t}$ selection
- Typical kinematic reconstruction and global event interpretation
- Charm tagging
- $\succ \Lambda$ reconstruction and polarization measurement

Λ polarization measurement

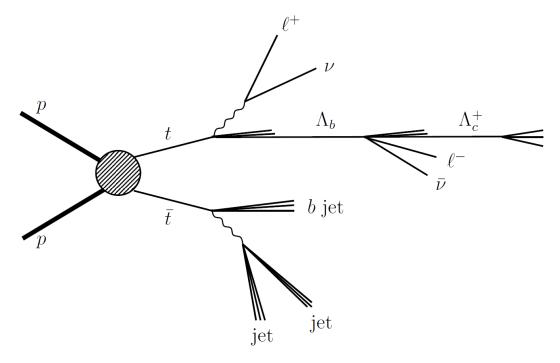

$$\alpha = 0.642 \pm 0.013$$

Measurement of s polarization in $t\bar{t}$

Statistical precision of roughly 16% possible at ATLAS/CMS in Run 2 (with 100 fb⁻¹ of data).

Measurement of c polarization in $t\bar{t}$

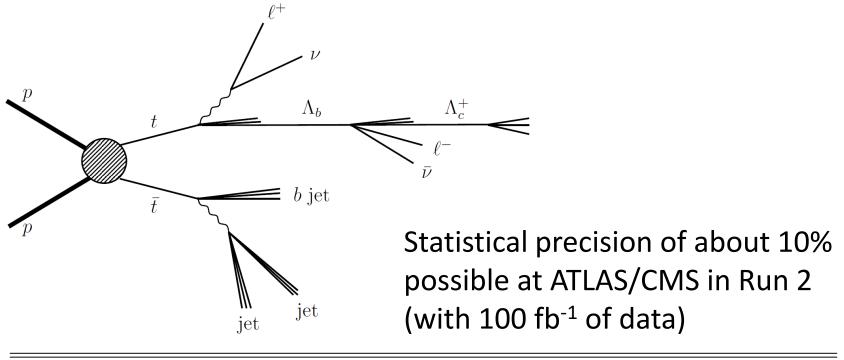
Main steps:


- > Typical single-lepton $t\overline{t}$ selection
- > Typical kinematic reconstruction and global event interpretation
- $\succ \Lambda_c$ reconstruction and polarization measurement

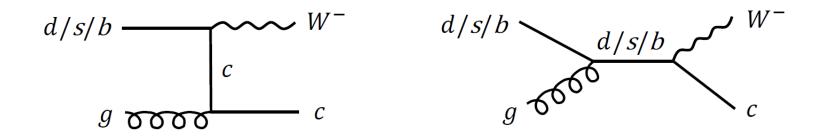
Measurement of c polarization in $t\bar{t}$

		ℓ^- $\bar{\nu}$ b jet b jet Λ_c^+	$\overset{p}{\underset{\pi^+}{\leftarrow}} K^-$
			$\alpha_i r_L = 0.6$
Selection	Expected events	Purity (example)	$\Delta \mathcal{A}_{FB} / \mathcal{A}_{FB}$
Baseline	$1.7 \times 10^6 t\bar{t} + \mathcal{O}(10^5)$ bkg		
$\Lambda_c^+ \to p K^- \pi^+$	$810 \times (\epsilon_{\Lambda_c}/25\%)$	$20\% \\ 100\%$	$26\% \\ 11\%$

Statistical precision of order 10% possible at ATLAS/CMS in Run 2 (with 100 fb⁻¹ of data).


Measurement of b polarization in $t\bar{t}$

Main steps:


- > Typical single-lepton $t\bar{t}$ selection (w/soft-muon b tag)
- > Typical kinematic reconstruction and global event interpretation
- > Λ_b reconstruction (using inclusive, semi-inclusive or exclusive approach) and polarization measurement

Measurement of *b* polarization in $t\bar{t}$

Selection	Expected events		
Baseline	$3 \times 10^6 t\bar{t} + \mathcal{O}(10^6)$ bkg		
Soft-muon b tagging	$5 \times 10^5 t\bar{t} + \mathcal{O}(10^4)$ bkg		$r_L = 0.6$
Signal events $(t$	$\rightarrow b \rightarrow \Lambda_b \rightarrow \mu \nu X_c)$	Purity (example)	$\Delta A_{FB} / A_{FB}$
Inclusive	34400	$\mathcal{O}(f_{\text{baryon}})$ (e.g., 7%)	$\pm 7\%$
Semi-inclusive	$2300 imes (\epsilon_{\Lambda}/30\%)$	70%	$\pm 8\%$
Exclusive	$1040 \times (\epsilon_{\Lambda_c}/25\%)$	30%	$\pm 19\%$
	$1040 \times (\epsilon_{\Lambda_c}/25/0)$	100%	$\pm 10\%$

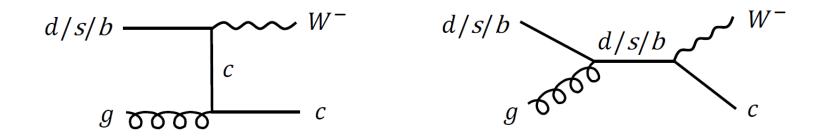
Measurement of *c* polarization in *W*+*c*

ATLAS and CMS measured W+c cross section at 7 TeV

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263] CMS, JHEP 1402, 013 (2014) [arXiv:1310.1138]

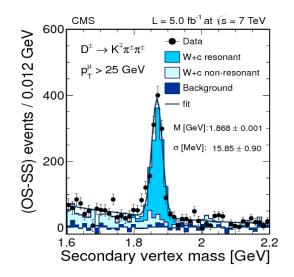
in particular by relying on the decays

$$D^+ \rightarrow K^- \pi^+ \pi^+$$


Similar to our decay of interest

$$\Lambda_c^+ \to p K^- \pi^+$$

(See backup slides for more details.)



Measurement of *c* polarization in *W*+*c*

ATLAS and CMS measured W+c cross section at 7 TeV

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263] CMS, JHEP 1402, 013 (2014) [arXiv:1310.1138]

in particular by relying on the decays

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

Similar to our decay of interest

$$\Lambda_c^+ \to p K^- \pi^+$$

(See backup slides for more details.)

Measurement of *b* polarization in QCD events

Inclusive QCD production: $pp \rightarrow b\overline{b} + X$

• Enormous cross section, but **unpolarized**

at the leading order.

Measurement of b polarization in QCD events

Inclusive QCD production: $pp \rightarrow b\overline{b} + X$

- Enormous cross section, but **unpolarized** at the leading order.
- At NLO \rightarrow transverse polarization

(an opportunity to measure r_T)

- \rightarrow strong kinematic dependence
- → suppressed at high momenta

$$\mathcal{P}(b) \sim \alpha_s \frac{m_b}{p_b}$$

Bernreuther, Brandenburg, Uwer, PLB 368, 153 (1996) Dharmaratna and Goldstein, PRD 53, 1073 (1996)

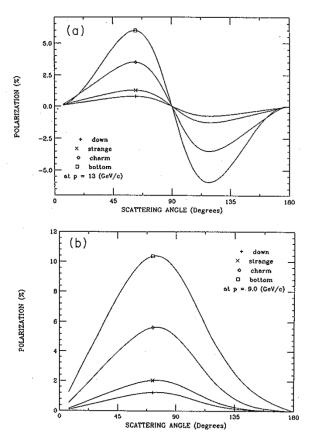


FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.

Measurement of b polarization in QCD events

Inclusive QCD production: $pp \rightarrow b\overline{b} + X$

- Enormous cross section, but **unpolarized** at the leading order.
- At NLO \rightarrow transverse polarization

(an opportunity to measure r_T)

- \rightarrow strong kinematic dependence
- → suppressed at high momenta

$$P(b) \sim \alpha_s \frac{m_b}{p_b}$$

Existing LHCb analysis:

 $\begin{array}{l} \text{Measurements of the } \Lambda^0_b \rightarrow J/\psi \,\Lambda \\ \text{decay amplitudes and the } \Lambda^0_b \\ \text{polarisation in } pp \text{ collisions at} \\ \sqrt{s} = 7 \,\text{TeV} \end{array}$

PLB 724, 27 (2013) [arXiv:1302.5578] $\mathcal{P}(\Lambda_b) = 0.06 \pm 0.07 \pm 0.02$

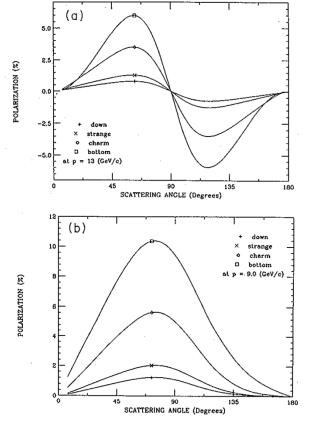


FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.

Suboptimal due to inclusiveness over the kinematics.

Measuring A directly

A is simply the ratio of the $\Sigma_b^{(*)}$ and direct Λ_b yields, independent of the *b* polarization:

$$A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

Can be measured by any experiment that can reconstruct

$$\Sigma_b^{(*)\pm,0} \to \Lambda_b \pi^{\pm,0}$$

In particular, LHCb, ATLAS, CMS in inclusive QCD samples.

Could have been done even at the Tevatron.

CDF, PRL 99, 202001 (2007) [arXiv:0706.3868] **CDF**, PRD 85, 092011 (2012) [arXiv:1112.2808]

Measuring A directly

A is simply the ratio of the $\Sigma_b^{(*)}$ and direct Λ_b yields, independent of the *b* polarization:

$$A = \frac{\operatorname{prob}\left(\Sigma_{b}^{(*)}\right)}{\operatorname{prob}\left(\Lambda_{b}\right)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)}$$

Can be measured by any experiment that can reconstruct

$$\Sigma_b^{(*)\pm,0} \rightarrow \Lambda_b \pi^{\pm,0}$$

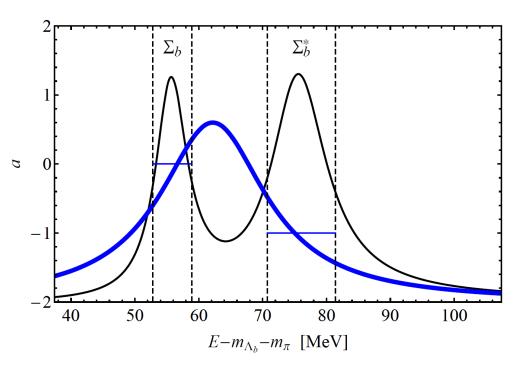
In particular, LHCb, ATLAS, CMS in inclusive QCD samples.

Same holds for

$$\Sigma_c^{(*)++,+,0} \rightarrow \Lambda_c^+ \pi^{\pm,0}$$

where *B* factories can also help.

Belle, PRD 89, 091102 (2014) [arXiv:1404.5389]


Measuring w₁ directly

The angular distribution of $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$ is sensitive to w_1 , independent of the *b* polarization:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta} = \frac{1}{2} + \frac{9}{8}a\left(w_1 - \frac{2}{3}\right)\left(\cos^2\theta - \frac{1}{3}\right)$$

where a is given in the plot.

Can be measured by any experiment that can reconstruct these decays (e.g., LHCb, ATLAS, CMS).

Same holds for $\Sigma_c^{(*)}$ and Λ_c .

Summary: motivated measurements

In $t\bar{t}$ production (ATLAS, CMS)

- > Longitudinal Λ_b polarization in b jets $\rightarrow r_L$ for bottom
- > Longitudinal Λ_c polarization in c jets $\rightarrow r_L$ for charm
- > Longitudinal Λ polarization in s jets \rightarrow long. pol. FF for strange

In W+c production (ATLAS, CMS, maybe LHCb)

> Longitudinal Λ_c polarization $\rightarrow r_L$ for charm (Esp. LHCb may also try separating out the $\Sigma_c^{(*)}$ contributions.)

In QCD production (LHCb, ATLAS, CMS)

> Transverse Λ_b (and Λ_c ?) polarization as a function of the event kinematics $\rightarrow r_T$ for bottom (charm?)

Summary: motivated measurements

In QCD production (LHCb, ATLAS, CMS)

- $\succ \Sigma_b^{(*)} \text{ yields (relative to direct } \Lambda_b) \rightarrow A$ and pion angular distribution $\rightarrow w_1$ for bottom
- $\succ \Sigma_c^{(*)} \text{ yields (relative to direct } \Lambda_c) \rightarrow A \\ \text{and pion angular distribution } \rightarrow w_1 \\ \end{cases} \text{ for charm}$

In new-physics samples, once discovered (ATLAS, CMS)

> Measure quark polarizations \rightarrow learn about the new physics (Statistics will likely be a severe limitation.)

In $t\bar{t}$ and W+c production in the long term (ATLAS, CMS, LHCb)

Measurements of polarized fragmentation functions.

Thank You!

Supplementary Slides

Mass splittings and widths

bottom system

 $m_{\Lambda_b} = 5619.5 \pm 0.4 \text{ MeV}$

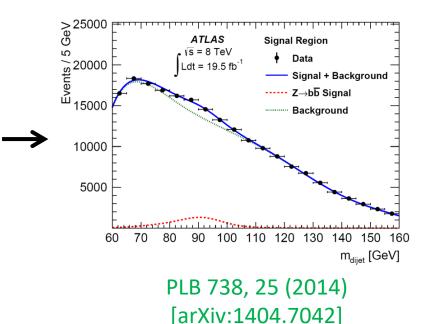
Parameter	(MeV)
$m_{\Sigma_b} - m_{\Lambda_b}$	194 ± 2
$m_{\Sigma_b^*} - m_{\Lambda_b}$	214 ± 2
$\Delta \equiv m_{\Sigma_b^*} - m_{\Sigma_b}$	21 ± 2
Γ_{Σ_b}	7 ± 3
$\Gamma_{\Sigma_b^*}$	9 ± 2

charm system

 $m_{\Lambda_c} = 2286.5 \pm 0.2 \text{ MeV}$

_	Parameter	(MeV)
_	$m_{\Sigma_c} - m_{\Lambda_c}$	167.4 ± 0.1
	$m_{\Sigma_c^*} - m_{\Lambda_c}$	231.9 ± 0.4
	$\Delta \equiv m_{\Sigma_c^*} - m_{\Sigma_c}$	64.5 ± 0.5
	Γ_{Σ_c}	2.2 ± 0.2
	$\Gamma_{\Sigma_c^*}$	15 ± 1

Measurement of b polarization in Z decays


Z production: $pp \rightarrow Z \rightarrow b\overline{b}$

- Longitudinally polarized b quarks (similar to $t\overline{t}$)
- Large cross section

 $\frac{\sigma(pp\to Z\to b\bar{b})}{\sigma(pp\to t\bar{t}\to W^+W^-b\bar{b})}\sim 10$

• Large QCD background (at 8 TeV, S/B \approx 1/15 even for p_T^Z > 200 GeV) dilutes the asymmetry.

Probably less effective than $t\overline{t}$.

Which Λ_b decay to use?

We picked **semileptonic** mode **inclusive** in charm hadrons (large BR, no hadronic uncertainties).

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda^0_b)$	(5.8 ± 0.8) $\times 10^{-5}$
Γ2	$pD^0\pi^-$	(5.9 $^{+4.0}_{-3.2}$) $\times10^{-4}$
Γ ₃	р D ⁰ К ⁻	(4.3 $^{+3.0}_{-2.4}$) $\times10^{-5}$
Γ ₄	$\Lambda_c^+ \pi^-$	(5.7 $^{+4.0}_{-2.6}$) $\times10^{-3}$
Γ ₅	$\Lambda_c^+ K^-$	(4.2 $^{+2.6}_{-1.9}$) $\times10^{-4}$
Г ₆	$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen
Γ ₇	$\Lambda_c^+ \pi^+ \pi^- \pi^-$	(8 $\substack{+5\\-4}$) $ imes$ 10 $^{-3}$
Г ₈	$egin{aligned} &\Lambda_c(2595)^+\pi^- ,\Lambda_c(2595)^+ & o\ &\Lambda_c^+\pi^+\pi^- \end{aligned}$	$(3.7 \ {+2.8 \atop -2.3}$) $ imes$ 10 ⁻⁴
Γ ₉	$\Lambda_c(2625)^+ \pi^-$, $\Lambda_c(2625)^+ o \Lambda_c^+ \pi^+ \pi^-$	(3.6 $^{+2.7}_{-2.1}$) $\times10^{-4}$
Γ ₁₀	$\Sigma_c(2455)^0\pi^+\pi^-$, $\Sigma_c^0 o \Lambda_c^+\pi^-$	$(6 {+5 \atop -4}) imes 10^{-4}$
Γ ₁₁	$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} ightarrow$	(3.5 $^{+2.8}_{-2.3}$) $\times10^{-4}$
Γ <u>12</u>	$\Lambda K^{0} 2\pi^{+} 2\pi^{-}$	
Γ ₁₃	$arLambda_{m{c}}^+ \ell^- \overline{ u}_\ell$ anything	[a] (9.9 ± 2.2)%
Γ ₁₄	$\Lambda_{c}^{+} \ell^{-} \overline{ u}_{\ell}$	(6.5 $^{+3.2}_{-2.5}$) %
Γ ₁₅	$\Lambda_{c}^{+} \pi^{+} \pi^{-} \ell^{-} \overline{\nu}_{\ell}$	(5.6 \pm 3.1) %
Γ ₁₆	$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$	(8 ± 5) $ imes$ 10 $^{-3}$
Γ ₁₇	$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$	$(1.4 \begin{array}{c} +0.9 \\ -0.7 \end{array})$ %
Γ ₁₈ Γ ₁₉	$\Sigma_c(2455)^0 \pi^+ \ell^- \overline{ u}_\ell onumber \Sigma_c(2455)^{++} \pi^- \ell^- \overline{ u}_\ell$	
	p h ⁻	$[b] < 2.3 imes 10^{-5}$
Γ ₂₁	$p\pi^-$	$(4.1 \pm 0.8) \times 10^{-6}$
Г ₂₂ Г ₂₃	$^{ m hoK^-}_{ m \Lambda\mu^+\mu^-}$	$egin{array}{rl} (4.9 \ \pm 0.9 \) imes 10^{-6} \ (1.08 \pm 0.28) imes 10^{-6} \end{array}$
	$\Lambda \mu^+ \mu^-$ $\Lambda \gamma^-$	$< 1.3 \times 10^{-3}$
		$< 1.3 \times 10^{-3}$

Which Λ_b decay to use?

We picked **semileptonic** mode **inclusive** in charm hadrons (large BR, no hadronic uncertainties).

 $\Lambda_b o p \, D^0 \, \ell^- \bar{
u}_\ell \quad \text{small contribution}$

		Mode	Fraction (Γ_i/Γ)
	Γ ₁	$J/\psi(1S)$ $\Lambda imes$ B($b o \Lambda^0_b$)	(5.8 ± 0.8) $\times 10^{-5}$
7	Г ₂	$pD^0\pi^-$	$(5.9 \ +4.0 \ -3.2$ $) imes 10^{-4}$
	Γ ₃	р D ⁰ К ⁻	(4.3 $^{+3.0}_{-2.4}$) $\times10^{-5}$
	Г ₄	$\Lambda_c^+ \pi^-$	$(5.7 \ +4.0 \ -2.6 \) imes 10^{-3}$
	Γ ₅	$\Lambda_c^+ K^-$	(4.2 $\substack{+2.6\\-1.9}$) $\times10^{-4}$
	Г ₆	$\Lambda_{c}^{+}a_{1}(1260)^{-}$	seen
	Γ ₇	$\Lambda_c^+ \pi^+ \pi^- \pi^-$	$(8 {+5\atop-4}) imes 10^{-3}$
	Г ₈	$\Lambda_c(2595)^+\pi^-$, $\Lambda_c(2595)^+ o \Lambda_c^+\pi^+\pi^-$	$(3.7 \begin{array}{c} +2.8 \\ -2.3 \end{array}) \times 10^{-4}$
	۲ ₉	$\Lambda_{c}(2625)^{+}\pi^{-}$, $\Lambda_{c}(2625)^{+} \rightarrow \Lambda_{c}^{+}\pi^{+}\pi^{-}$	$(3.6 \begin{array}{c} +2.7 \\ -2.1 \end{array}) \times 10^{-4}$
	Γ ₁₀	$\Sigma_c(2455)^0\pi^+\pi^-$, $\Sigma_c^0 ightarrow$	$(6 \stackrel{+5}{})\times 10^{-4}$
	Γ ₁₁	$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} ightarrow \Lambda_c^+\pi^+$	$(3.5 \begin{array}{c} +2.8 \\ -2.3 \end{array}) \times 10^{-4}$
	Γ_{12}	$\Lambda K^{0} 2\pi^{+} 2\pi^{-}$	
	Γ ₁₃	$arLambda_{m{c}}^+ \ell^- \overline{ u}_\ell$ anything	[a] (9.9 \pm 2.2)%
	Г ₁₄	$\Lambda_c^+ \ell^- \overline{ u}_\ell$	(6.5 $\substack{+3.2\\-2.5}$)%
	Γ ₁₅	$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 \pm 3.1) %
	Γ ₁₆	$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$	$(8 \pm 5) imes 10^{-3}$
	Γ ₁₇	$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	$(1.4 \begin{array}{c} +0.9 \\ -0.7 \end{array})$ %
	Γ ₁₈ Γ ₁₉	$\Sigma_c(2455)^0 \pi^+ \ell^- \overline{ u}_\ell onumber \Sigma_c(2455)^{++} \pi^- \ell^- \overline{ u}_\ell$	
	Γ ₂₀	ph ⁻	$[b] < 2.3 imes 10^{-5}$
	Γ_{21}^{20}	$p\pi^-$	(4.1 ± 0.8) $\times 10^{-6}$
	Γ ₂₂		$(4.9 \pm 0.9) \times 10^{-6}$
	Г ₂₃ Гал	$\Lambda\mu^+\mu^-$ $\Lambda\gamma$	$(1.08\pm0.28) imes10^{-6}\ < 1.3 imes10^{-3}$
	Γ ₂₄		$< 1.3 \times 10^{-3}$

For the inclusive semileptonic decays

$$\Lambda_b \to X_c \ell^- \bar{\nu}$$

 Λ_b polarization is encoded in the angular distributions

$$\frac{1}{\Gamma_{\Lambda_b}} \frac{d\Gamma_{\Lambda_b}}{d\cos\theta_i} = \frac{1}{2} \left(1 + \alpha_i \mathcal{P}\left(\Lambda_b\right) \cos\theta_i \right) \qquad i = \ell \text{ or } \nu$$

where

$$\alpha_{\ell} = \frac{-\frac{1}{3} + 4x_c + 12x_c^2 - \frac{44}{3}x_c^3 - x_c^4 + 12x_c^2\log x_c + 8x_c^3\log x_c}{1 - 8x_c + 8x_c^3 - x_c^4 - 12x_c^2\log x_c} \approx -0.26$$

$$\alpha_{\nu} = 1$$

$$\alpha_{\nu} = 1$$

$$x_c = \frac{m_c^2}{m_b^2}$$

 $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$ corrections are absent, and α_s corrections are few %.

Manohar, Wise PRD 49, 1310 (1994) [hep-ph/9308246] Czarnecki, Jezabek, Korner, Kuhn, PRL 73, 384 (1994) Czarnecki, Jezabek, NPB 427, 3 (1994)

 $\mathcal{P}(\Lambda_b)$

 θ_i

 $\Lambda_b \rightarrow X_c \ell^- \bar{\nu}$ (BR \approx 10% per flavor)

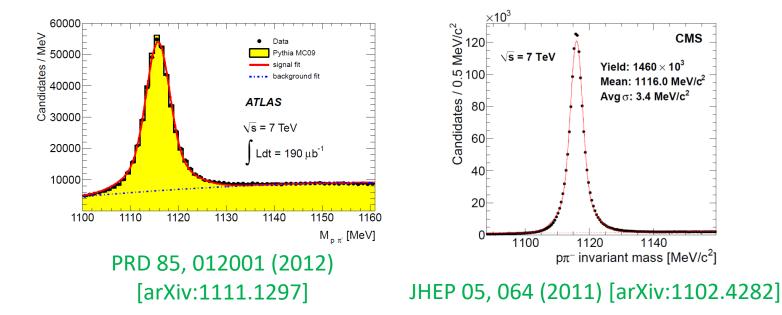
- Soft-muon *b* tagging e.g. CMS-PAS-BTV-09-001
- Neutrino reconstruction using...
 - Λ_b mass constraint
 - Λ_b flight direction

Dambach, Langenegger, Starodumov NIMA 569, 824 (2006) [hep-ph/0607294]

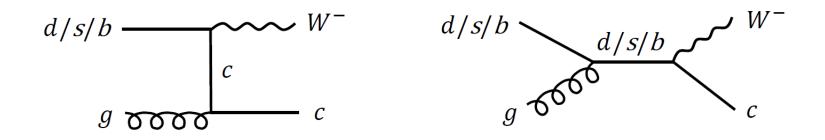
- > Neutrino $A_{\rm FB}$ measurement (in the Λ_b rest frame)

See paper for many additional details...

 $\Lambda_c^+
ightarrow p K^- \pi^+$ (BR pprox 6.7%)


- > Three tracks reconstructing the Λ_c mass.
- Backgrounds under the mass peak can be suppressed in various ways.
- Spin analyzing powers α_i seem to be large for K^- , small for p and π^+ .

NA32: Jeżabek, Rybicki, Ryłko, PLB 286, 175 (1992) Precise values not essential for new physics samples if SM calibration samples are available.


Also, α_i can be determined (e.g., in LHCb) from a sample of Λ_c 's produced from inclusive *b*-hadron decays by calibrating on $\Lambda_c^+ \to \Lambda \pi^+$ (where $\alpha_{\Lambda} = -0.91 \pm 0.15$).

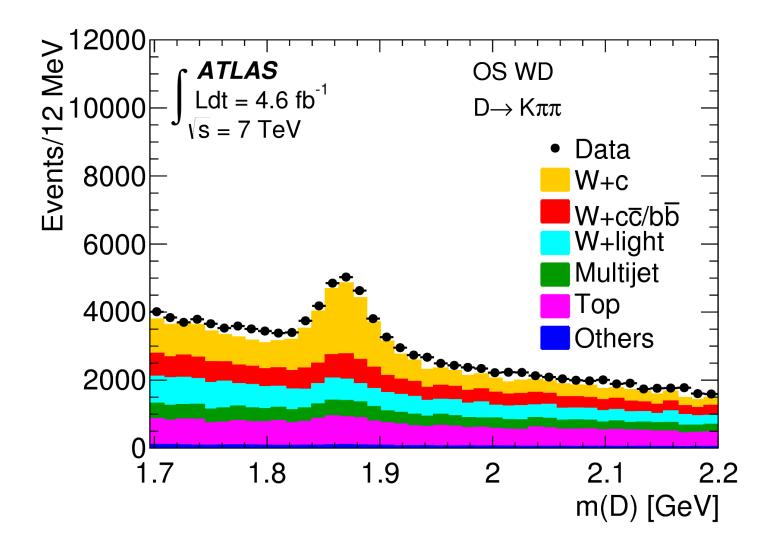
 $\Lambda
ightarrow p \, \pi^-$ (BR ≈ 64%)

- Pair of tracks from a highly displaced vertex reconstructing the Λ mass.
- > Spin analyzing power $\alpha \approx 0.64$
- \succ ATLAS and CMS already have experience with Λ 's

Measurement of *c* polarization in *W*+*c*

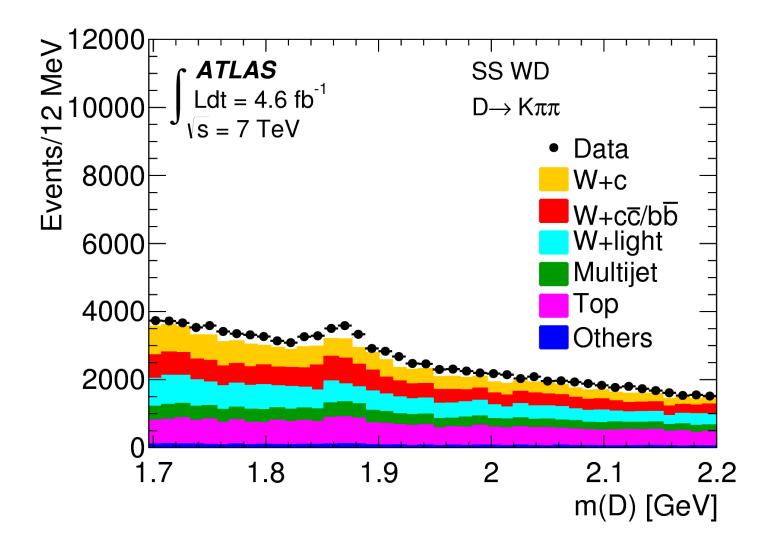
ATLAS and CMS measured *W*+*c* cross section at 7 TeV ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263] CMS, JHEP 1402, 013 (2014) [arXiv:1310.1138]

in particular by relying on the decays

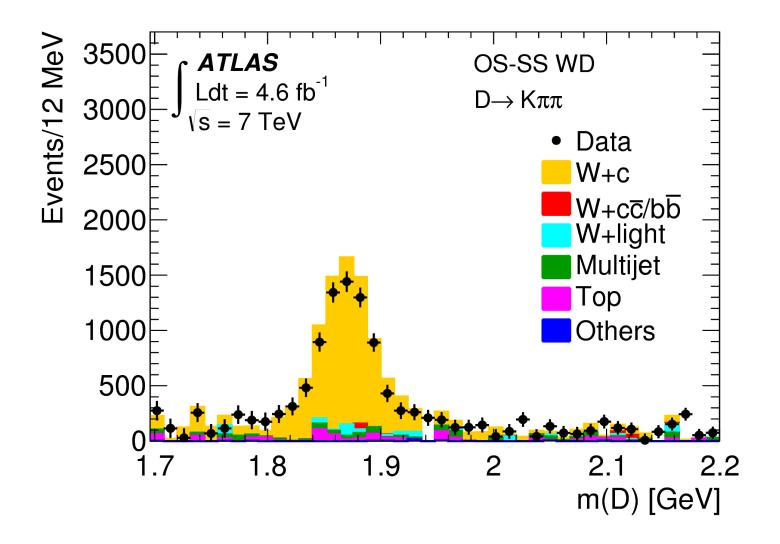

$$D^+ \to K^- \pi^+ \pi^+$$

Similar to our decay of interest

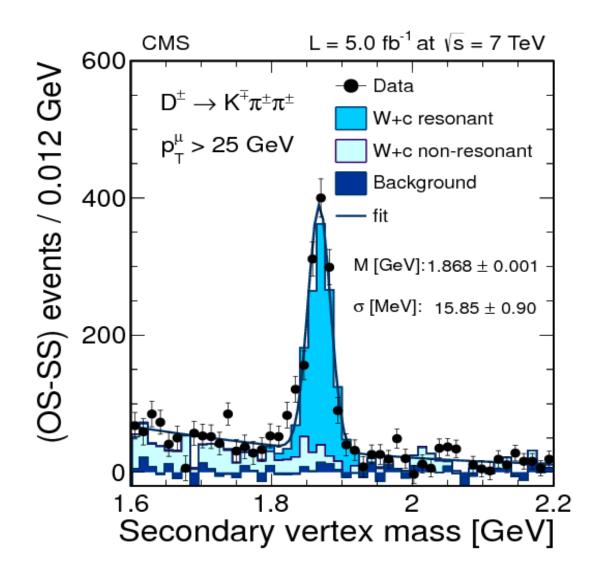
$$\Lambda_c^+ \to p K^- \pi^+$$


Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]


Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]


Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]

Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in CMS

CMS, JHEP 1402, 013 (2014) [arXiv:1310.1138]

$$\Lambda_c^+ \rightarrow p K^- \pi^+$$
 vs. $D^+ \rightarrow K^- \pi^+ \pi^+$

Same signature (3-prong displaced vertex, mass peak), but:

> The $\Lambda_c^+ \rightarrow p K^- \pi^+$ signal peak is smaller:

$$\frac{f(c \to D^+) \mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{f(c \to \Lambda_c^+) \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} \approx 5.3$$

while background is roughly the same.

Ambiguity resolution: in the lab frame, $|\vec{p}(p)| > |\vec{p}(\pi^+)|$.

> The Λ_c^+ vertex is less displaced:

$$\tau_{\Lambda_c^+} \approx \frac{\tau_{D^0}}{2} \approx \frac{\tau_{D_s^+}}{2.5} \approx \frac{\tau_{D^+}}{5}$$

e.g., in CMS analysis, < 20% of events had a good secondary vertex (events contain about 61% D^0 , 24% D^+ , 8% D_s^+ , 6% Λ_c^+)

Improvements for *W***+***c* **in Run 2**

Statistics x 60 (cross section x 3, luminosity x 20)

(S/B remains similar because cross sections increase by similar factors.)

> Upgrades to ATLAS and CMS pixel detectors


ATLAS: installed IBL

Innermost layer at: 3.3 cm (vs. 5.0 cm in Run 1)

Smaller pixel size: 50×250 (vs. 50 x 400) μ m²

CMS: pixel detector upgrade in winter 2016-2017
Innermost layer at: 3.0 cm (vs. 4.4 cm now)
Pixel size unchanged: 100 x 150 μm²

Backgrounds: ATLAS *D*⁺ **example**

Λ_c polarization backgrounds in *W*+*c*

PEAKING COMPONENTS (REAL Λ_c)

- c's in multijet: unpolarized
- $ightarrow W^+
 ightarrow c\overline{s}$ in top: polarized like the signal
- ▶ b's in top, W+bb, multijet: polarization due to
 electroweak b → Λ_c, Σ_c^(*)

Control region with highly-displaced Λ_c 's ($\tau_b \approx 7\tau_{\Lambda_c}$).

 $\gg W + c\overline{c}$: can be estimated from the wrong-sign sample

SMOOTH COMPONENTS (FAKE Λ_c)

At the very least, can be extrapolated from sidebands (up to a certain systematic uncertainty).

Statistical precision for *W*+*c* in Run 2

A variable sensitive to the polarization:

$$A_{\rm FB} = \frac{N(\cos\theta_{K^-} > 0) - N(\cos\theta_{K^-} < 0)}{N}$$

Statistical uncertainty:

$$\sigma(A_{\rm FB}) = \sqrt{\frac{1 - A_{\rm FB}^2}{N}} \approx \frac{1}{\sqrt{N}}$$

The signal contribution:

$$A_{\rm FB,S} = \frac{\alpha_K - \mathcal{P}(\Lambda_c) S}{2N}$$

Significance of observing non-zero $\mathcal{P}(c)$:

$$\frac{|A_{\rm FB,S}|}{\sigma(A_{\rm FB})} = \frac{|\alpha_K - \mathcal{P}(\Lambda_c)|}{2} \frac{S}{\sqrt{N}}$$

Statistical precision for W+c in Run 2

A ballpark figure

- > Start with the ATLAS D^+ peak.
- Account for the difference between the $D^+ \to K^- \pi^+ \pi^+$ and $\Lambda_c^+ \to p K^- \pi^+$ rates.
- > Assume Run 2 statistics (100 fb⁻¹) Without the displacement issue, $S/\sqrt{N} \approx 47$. For, e.g., $|\alpha_{K} - \mathcal{P}(\Lambda_{c})| = 0.4$, this gives 11% precision.

Suppose that relaxed displacement requirements increase N by a factor of 2 while still losing 1/2 of S. Still, 3σ significance for observing non-zero $\mathcal{P}(c)$.

u, *d* polarizations

Cannot use decays of protons or neutrons, but can again consider the Λ (\approx sud).

Naïve quark model: all the Λ spin is on the $s \otimes$ Nucleon DIS + flavor SU(3): u and d carry about -20% each \odot Burkardt and Jaffe, PRL 70, 2537 (1993) [hep-ph/9302232] Jaffe, PRD 54, 6581 (1996) [hep-ph/9605456]

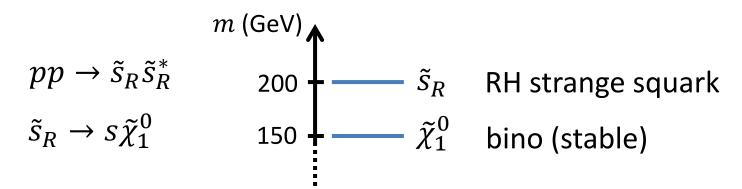
Further inputs possible in the future from:

Polarized DIS and polarized *pp* collisions
 e.g., COMPASS, EPJC 64, 171 (2009)
 Deng (STAR), Phys.Part.Nucl. 45, 73 (2014)

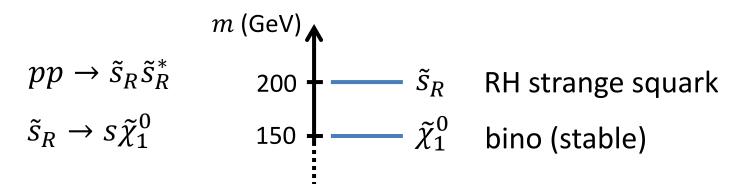
• Lattice QCD

QCDSF, PLB 545, 112 (2002) [hep-lat/0208017] CSSM and QCDSF/UKQCD, PRD 90, 014510 (2014) [arXiv:1405.3019] Chambers et al., PRD 92, 114517 (2015) [arXiv:1508.06856]

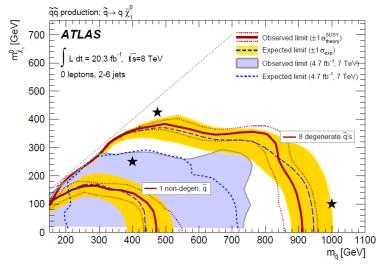
u, d polarizations

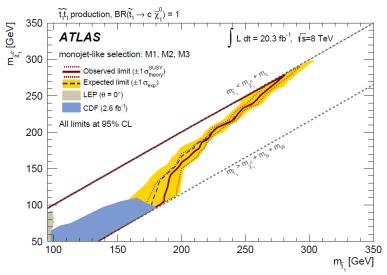

Cannot use decays of protons or neutrons, but can again consider the Λ (\approx sud).

Naïve quark model: all the Λ spin is on the $s \otimes$ Nucleon DIS + flavor SU(3): u and d carry about -20% each \odot Burkardt and Jaffe, PRL 70, 2537 (1993) [hep-ph/9302232] Jaffe, PRD 54, 6581 (1996) [hep-ph/9605456]


Studies of u, d jets in $t\overline{t}$ samples will require **much more** statistics than s, also because:

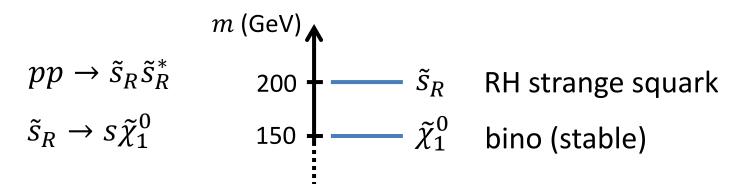
- No u or d tagging; c-tag veto only partially effective
 (Can define separate u and d samples, contaminated
 by c and s respectively, using W_{leptonic} charge.)
- Fragmentation fractions of $u, d \rightarrow \Lambda$ smaller than $s \rightarrow \Lambda$

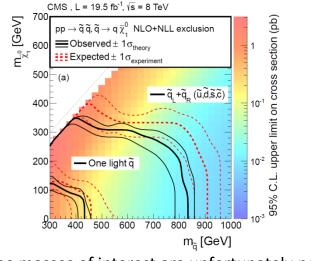

Suppose a jets + MET excess is being attributed to:



Suppose a jets + MET excess is being attributed to:

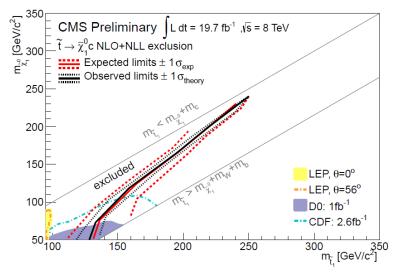
This scenario was barely beyond the reach of Run 1.



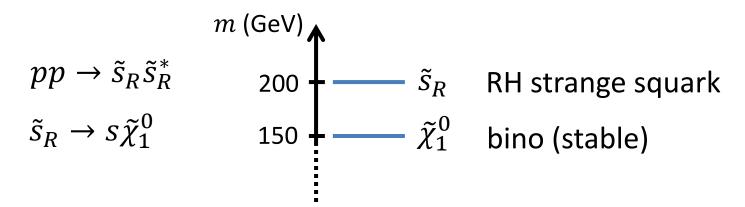

PRD 90, 052008 (2014) [arXiv:1407.0608]

JHEP 09, 176 (2014) [arXiv:1405.7875]

Suppose a jets + MET excess is being attributed to:



This scenario was barely beyond the reach of Run 1.


*The masses of interest are unfortunately not shown.

JHEP 06, 055 (2014) [arXiv:1402.4770]

CMS-PAS-SUS-13-009

Suppose a jets + MET excess is being attributed to:

Test this interpretation by measuring the *s*-quark polarization.

Rough estimate (see paper for details): for 3 ab⁻¹ of 14 TeV data: statistical precision of better than **30%** (even without optimization of selection cuts, without accounting for the expected detector upgrades, and without combining ATLAS and CMS)