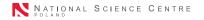
Mapping of longitudinal correlations through collective expansion

Piotr Bożek

AGH University of Science and Technology, Kraków



Longitudinal dynamics is important

- Initial stage
 - what is the initial density distribution
 - what is the initial energy density
 - what is the nature of thermalization mechanism
 - fluctuations
- Early dynamics
 - what is the pressure asymmetry
 - from initial fluctuations to final correlations

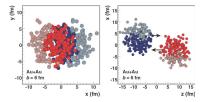
two unknowns

- pressure asymmetry
- initial distribution $\label{eq:constraint}$ this talk

study of longitudinal dynamics \longrightarrow to get experimental insight

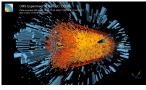
通 と く ヨ と く ヨ と

Hydrodynamics - forward and backward assymetry in initial state



Ann.Rev.Nucl.Part.Sci. 57 (2007) 205

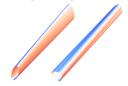
- Glauber Monte Carlo model \longrightarrow different forward and backward distributions
- different fireball shape at forward and backward rapidities



multiplicity-multiplicity correlations

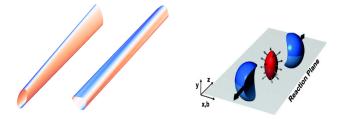
dozens of years, hundreds of papers

many effects sum up ...



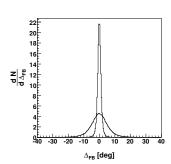
PB. W. Broniowski, J.Moreira : 1011.3354

Twisted event-plane angles - torque effect



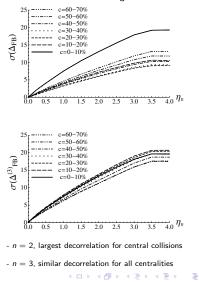
- due to fluctuations
- left-right orientation and magnitude are fluctuating
- only "smooth" long range twist
- random decorrelations on small scale, difficult to observe

Twist angle distribution - Glauber model



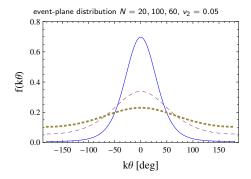
 $\Psi_2(\eta) - \Psi_2(-\eta), \quad \Delta \eta = 1, 5$

- very forward (backward), maximal decorrelation
- in between, intermediate
- linear around $\eta = 0$



width of the twist angle distribution

Event-plane resolution at finite multiplicity



- event-plane resolution much worse than signal

- $\Delta \Psi$ cannot be measured directly

- observables must be quadratic in $\Delta \Psi$

・ロト ・回ト ・ヨト ・ヨト

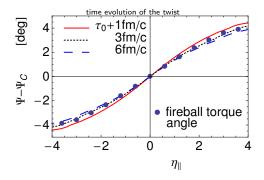
æ

One-shot 3+1D hydro evolution (2010)

initial density with a twist

$$s(x, y, \eta) \propto \rho_+(Rx, Ry)f_+(\eta) + \rho_-(R^T x, R^T y)f_-(\eta)$$

forward (backward) participants rotated in the transverse plane



- the twist survives the hydrodynamic evolution

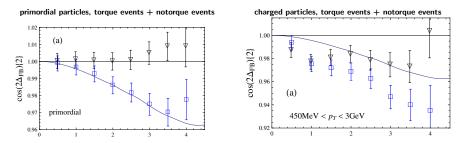
Image: A math a math

< ∃⇒

æ

2-bin observable

$$cos(2\Delta\Psi) = rac{<< cos[2(\phi_i(F)-\phi_j(B))]>>}{\sqrt{< v_2^2(F)>}\sqrt{< v_2^2(B)>}}$$



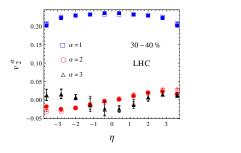
substantial nonflow contribution

2-bin observables in η dominated by nonflow!

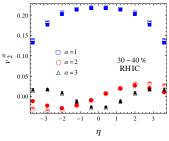
臣

< 1[™] >

PCA - nonflow strikes again



Principal Component Analysis (Bhalerao et al. PRL 114 (2015) 152301)



torque (full symbols), notorque (open symbols)

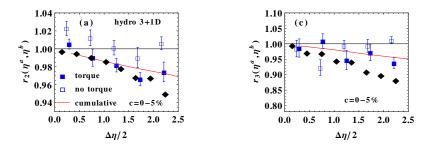
or was it the other way round?

PCA in η dominated by nonflow! PCA works for oversampled events

3-bin measure of event-plane decorrelation (CMS)

$$r_2(\eta_a, \eta_b) = \frac{\langle \cos[n(\phi_i(-\eta_a) - \phi_j(\eta_b))] \rangle \rangle}{\langle \cos[n(\phi_i(\eta_a) - \phi_j(\eta_b))] \rangle \rangle} \simeq \frac{\cos[n(\Psi(-\eta_a) - \Psi(\eta_b)]}{\cos[n(\Psi(\eta_a) - \Psi(\eta_b))]}$$

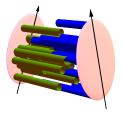
only pairs with large rapidity gap $\eta_a - \eta_b$



- nonflow under control
- torque effect seen in the CMS data
- semiquantitative agreement
- does not work for p-Pb !

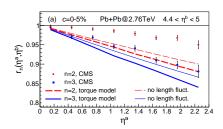
A ■

Fluctuations in energy deposition from each source

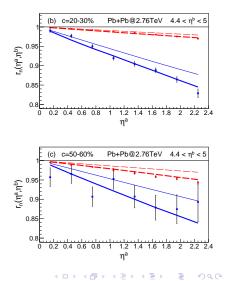


- the position (in rapidity) of string ends is random
- long range fluctuations
- each source fluctuates differently \longrightarrow event-plan decorrelation in p-Pb
- short range fluctuations possible, but irrelevant for the CMS r_2
- average deposition same as in old model (linear in η)

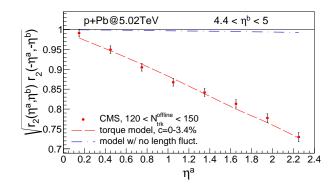
Fluctuating strings $r_n(\eta_a, \eta_b)$ (initial state only)



fluctuations improve description of r_2 in Pb-Pb except for r_2 in central collisions

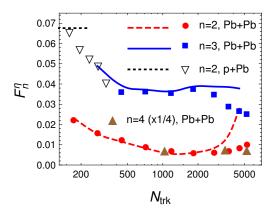


Fluctuating strings p-Pb



- fluctuations essential to describe event-plane decorrelation in p-Pb

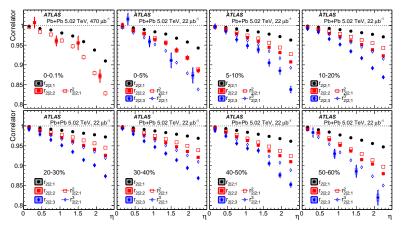
F slope



- fair description of mid-central collisions
- overestimates decorrelation in central collisions
- $F_4 \simeq 4F_2$

higher order correlators (ATLAS 1709.02301)

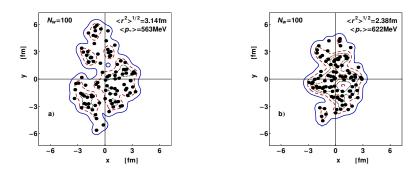
$$r_{2|2,k} = \frac{\langle (v_2(\eta_1)v_2(\eta_2))^k \cos(2k\Delta\Phi(\eta_1+\eta_2)) \rangle}{\langle (v_2(\eta_1)v_2(-\eta_2))^k \cos(2k\Delta\Phi(\eta_1-\eta_2)) \rangle}$$



イロト イヨト イヨト イヨト

æ

Size fluctuations $\leftrightarrow p_{\perp}$ fluctuations another manifestation of collective flow



proposed by Broniowski et al. Phys.Rev. C80 (2009) 051902 :

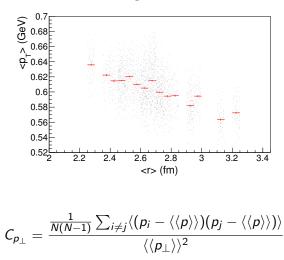
two-shots calculation

イロン イヨン イヨン イヨン

æ

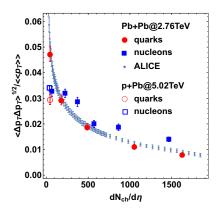
Physical and statistical fluctuations

N_w=100

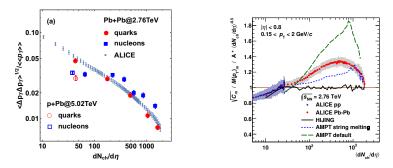


PB, Broniowski 1203.810

Э



Quark Glauber model gives better description of initial volume fluctuations



ALICE 1407.5530

・ロト ・回ト ・ヨト

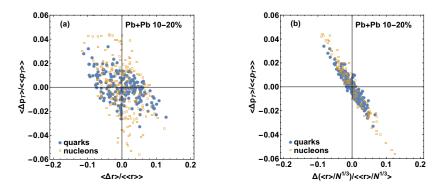
- < ≣ →

æ

more than simple $N^{-1/2}$ scaling

both experiment and theory \longrightarrow not minijets

Size - p_{\perp} correlation



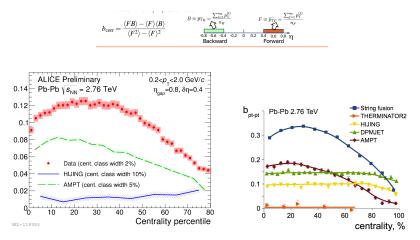
$${N_q^{lpha}\over <\!\!r\!\!>}$$
 - predictor of the final p_{\perp} $(lpha\simeq 0.3-0.4)$

consistent with predcitor of Mazellauskas-Teaney, PRC 2016

・ロン ・回 と ・ ヨン ・ ヨン

Э

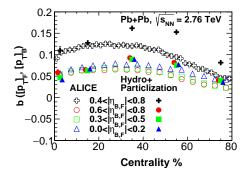
 $p_{\perp} - p_{\perp}$ correlation in rapidity - ALICE preliminary



QM poster I. Altsybeev for ALICE

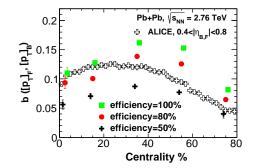
event generators have problems to reproduce data

・ロン ・回 と ・ ヨン ・ ヨン



reasonable description of the data does the model correctly describe rapidity correlations?

 $p_{\perp} - p_{\perp}$ correlation coefficient - statistical fluct.



$$b = \frac{Cov([p]_F, [p]_B)}{\sqrt{Var([p]_F)Var([p]_B)}} \simeq \frac{Cov([p]_F, [p]_B)}{\sqrt{\left(C_{p_T}^F + \frac{1}{N_F}\int dp(p - \langle [p] \rangle)^2 \langle f(p) \rangle\right)(\dots)}}$$

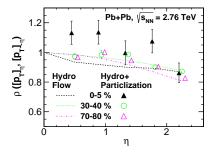
sensitive to accepteance, particle multiplicity

dominated by statistical fluctuations!

Piotr Bożek Longitudinal correlations

$[p_{\perp}] - [p_{\perp}]$ correlation coefficient

$$\frac{\operatorname{Cov}(\int dpf(p)_F, \int dpf(p)_B)}{\sqrt{\operatorname{Var}(\int dpf(p)_F)\operatorname{Var}(\int dpf(p)_B)}} = \frac{\operatorname{Cov}([p]_F, [p]_B)}{\sqrt{C_{\rho_{\perp}}^F C_{\rho_{\perp}}^B}} = \frac{\ldots}{\sqrt{\frac{1}{n_F(n_F-1)}\sum_{i\neq j} p_i^F p_j^F}}.$$

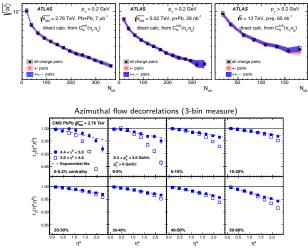


$$\rho([p_T], [p_T]) \simeq 1$$

in the current model - strong correlations

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

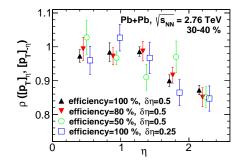
Small decorrelation expected!



small decorrelation of flow and multiplicity in pseudorapidity

(4回) (4回) (4回)

$[p_{\perp}] - [p_{\perp}]$ correlation coefficient

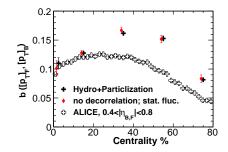


insensitive to acceptance, efficiency, mulitplicity

robust measure of flow-flow correlations

• 3 >

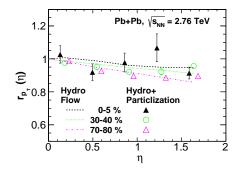
Statistical fluctuations



in our cacluation $b([p_T]_F, [p_T]_B)$ dominated by stat. fluct. $\rho = 1$ or $\rho < 1$ makes almost no difference (even if fireball is FB symmetric in each event $b \simeq 0.1 - 0.15$)

3-bin measure of $[p_{\perp}]$ decorrelation

$$r_{p_{T}}(\Delta \eta) = \frac{Cov([p_{T}], [p_{T}])(\eta_{ref} + \eta)}{Cov([p_{T}], [p_{T}])(\eta_{ref} - \eta)}$$



Measure of $[p_T]$ decorrelation in pseudorapidity expect small decorrelation

less sensitive to non flow, no need to define $[p_T]$ variance

Correlations and fluctuations - flow dominated dynamics moments and correlations of flow observables

- ► azimuthal flow coefficients v_n2,..., flow decorrelations in p_T or pseudorapidity
- ▶ $[p]_T$ fluctuations and decorrelations - $[p]_T$ fluctuations $C_{p_T} = \frac{1}{N(N-1)} \sum_{i \neq j} (p_i - \langle [p] \rangle) (p_j - \langle [p] \rangle)$
 - correlations with $[p_T]$, e.g. (1601.04513)

$$\rho([p_T], v_2^2) = \frac{Cov([p_T], v_2^2)}{\sqrt{\frac{1}{N(N-1)}\sum_{i \neq j}(p_i - \langle [p] \rangle)(p_j - \langle [p] \rangle)} Var(v_2^2)}$$

- multiplicity (density) fluctuations
 moments of the density (Bialas, Zalewski 1101.5706)
 < s > ∝ < N >, < s² > ∝ < N² > − < N >, ...
 - correlations with density, e.g.

$$\rho(s, v_2^2) = \frac{Cov(N, v_2^2)}{\sqrt{(- < N > - < N >^2)Var(v_2^2)}}$$

白 と く ヨ と く ヨ と …

Correlations in rapidity

- flow-flow correlations
- ▶ p_T-p_T correlations
- multiplicity correlations
- ...any combination

Methods

- factorization breaking coefficient
- correlation coefficient
- expansion in orthogonal polynomials
- principal component analysis

Observations

- Iongitudinal decorrelation expected due to flucuations
- longitudinal sdecorrelation observed
- could test scenarios of initial sttae
- p-Pb system more sensitive

Studies of rapidity correlations give insight into (largely inexplored) mechanism of energy deposition in the longitudinal direction

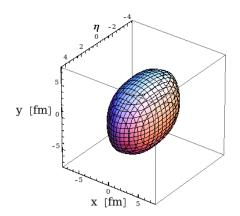
factorization breaking ratio $r_n(\eta_a, \eta_b)$

$$r_n(\eta_a,\eta_b) \simeq 1 - 2n^2 \langle (\Psi_n(0) - \Psi_n(\eta_b)) \frac{d\Psi_n(0)}{d\eta} \rangle \eta_a$$

- ► linear in η_a $r_n(\eta_a, \eta_b) \simeq 1 2f_n\eta_a \simeq exp(-2F_n\eta_a)$
- if $\Psi_4 \simeq \Psi_2$ $F_4 \simeq 4F_2$
- F_n is an estimate of the decorrelation angle variance $F_n \simeq 2n^2 A \frac{(\Psi_n(0) - \Psi_n(\eta_b))^2}{\eta_{range}}$

(本間) (本語) (本語) (語)

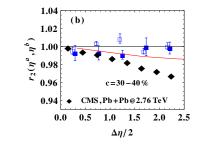
Fireball at different rapidities

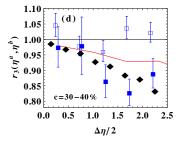


is the shape similar at different rapidities

- same event-planes

often assumed (even for event-by-event simulations)





< 🗇 >

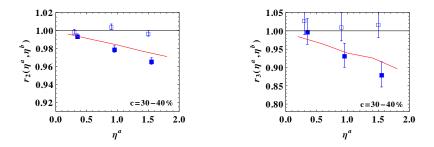
< ≣ >

<= ≣⇒

æ

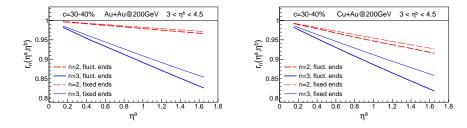
$r_n(\eta_a, \eta_b)$ Au-Au at 200GeV

predictions (3 < η_b < 4.5)



- larger twist angle at RHIC energies

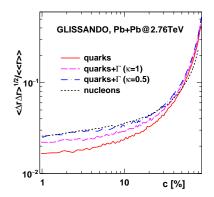
Fluctuating strings $r_n(\eta_a, \eta_b)$ RHIC energies



longitudinal fluctuations can be seen at RHIC stronger decorrelation at lower energies

Image: A math a math

Caution - additional fluctuation may change the results



additional fluctuations of width **Г**?

new constraint on the initial state

A ■