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Outline

Introduction: High-energy QCD formalism at LO+LL accuracy

Gluon saturation beyond LO+LL
Ex: DIS at NLO

IP-Glasma model and proton shape fluctuations

@ Flow without hydro in pA??
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Kinematical regimes of DIS

Y=In1/x

Dilute system

Saturation,
InQ%(Y)=AY

[}
@
I
>
o

InAZ, nQ?

e For Q% — 400 target more and more dilute due to DGLAP
evolution.
= QCD-improved parton model more and more valid.

@ For xg; — 0: target more and more dense due to BFKL
= Linear BFKL evolution eventually breaks down, as well as the
parton picture.

Onset of nonlinear collective effects: Gluon saturation!
— Regime of strong gauge fields but weak coupling as
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Space-time picture of heavy ion collisions

freeze out

hadronsin eq.
}H hydrodynamics
gluons & quarksin eqg.

gluons & quarks out of eq. — kinetic theory

strong fields —s classical EOMs
Z (beam axis)

Earliest stage of heavy ion collisions:
@ Collision the saturated low-xp; gluons of the incoming nuclei

@ Non-linear out-of-equilibrium evolution of the resulting gluon field
(Glasma)

— Determines initial conditions for later stages: hydro or kinetic theory

— Drives the bulk of particle production (soft and semi-hard)
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Universality of high-energy/CGC factorization

Many high-energy observables can be written in a factorized way in terms
of the same non-perturbative objects (dipole-target amplitude, .. .)

= General program:

ep, eA : Fits of the non-perturbative distributions, using high-energy (N)LL
evolution equations

pp, pA : Check of the universality of the high-energy factorization, and
further constraints

AA : Calculate Glasma initial conditions from first principles and from
previous experimental constraints
— Use JIMWLK factorization formulae for AA from
Gelis, Lappi, Venugopalan (2008-2009)

Preliminary realization of the complete program (but no LL
resummation): IP-Glasma model
Schenke, Tribedy, Venugopalan (2012-2013)
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Eikonal dilute-dense scattering

Recipe for dilute-dense processes at high-energy,
following Bjorken, Kogut and Soper (1971):

@ Decompose the projectile on a Fock basis at the time x* = 0, with
appropriate Light-Front wave-functions.

@ Each parton n scatters independently on the target via a light-like
Wilson line Ug,(x,) through the target:

Ur,(x0) = Proxp | ~ i [ o Th, AL (" x0)

with R, = A, F or F for g, g or § partons.

@ Include final-state evolution of the projectile remnants.

— Light-cone gauge A} = 0 strongly recommended!
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Dipole factorization for DIS at LO

(1—z1)q", xp
® ® >AM
Ut
T =+o0

rt=—o0 xt =0

1
o (x, @) = a5 e /d2x0 d’xq / dz
0
x I8 (o1, 21, Q?) [1 - (501>y]
Bjorken, Kogut, Soper (1971); Nikolaev, Zakharov (1990)
1
Dipole operator: So1 = ﬁTr (UF(X()) U};(xl)>
c
with "rapidity” Y ~ log(1/xg;) for xg; — 0.

— Dependence of (Sp1)y on Y comes from high-energy (low-xg;) LL
resummation.
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Forward single-inclusive particle production in pA at LO
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with x = e |k |/\/s and Y = y + log(|k . |/\/3)

Fragmentation functions and gluon channel can be included as well easily.
— Hybrid factorization
Dumitru, Hayashigaki, Jalilian-Marian (2002-2006)
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B-JIMWLK and BK evolutions

RG evolution for the dipole amplitude at LL accuracy:

20.Cr [ d®xy X2
Oy (So1)y = - / o x§20>1<221 (So12—So01) y
d2X2 X2
S X32X21 (S02821—So1) y

with @ = N.as /7, and the ggg "tripole” operator

So12 =

1 1

T b _
N.Cr Tr (U;E(Xo)fa UE(x1)t ) Up'(x2) = [502 So1 — g501]
New object (Sp12)y or (Sp2S21)y appears = only the first equation in
B-JIMWLK infinite hierarchy.

In practice: truncate the hierarchy with the approx
(S02821)y > (So2)y (S21)y to get the BK equation.
Balitsky (1996); Kovchegov (1999)
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MV model for a large nucleus

Effective content of an ultra-relativistic nucleus:

o Low xgj: shockwave field A (xT,x)

o Larger xg;: eikonal color current J¥(x) = 6" p,(x*,x)
with —AAT (x1,x) = pa(xT,x)

In the absence of LL evolution, and in the large nucleus (A) limit:
Correlations of p,(x*,x) become Gaussian, with

{pa(xT.%) po(y,¥)) 4y = 0ab O (xT =y ™) 6P (x—y) g% 112 (x T, x)
g2 <A;(X+,X) A;(y+7y)>M\/ = 63[7 6(X+_y+) LXY(X+)

Sy =00 [~ [ 6 (Lo + L") = 2Ly 7))

McLerran, Venugopalan (1994)
— Suitable initial condition for high-energy LL evolution
Remark: Ly (x™) depends on a IR cut-off, or gluon mass
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Phenomenology at LO/LL

DIS phenomenology

\ Fit including heavy quarks

‘ Comparison with data on F, e andc,.
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Fits of the reduced DIS cross-section o, and its charm contribution o, at
HERA data with numerical solutions of the running coupling BK
equation.

Albacete, Armesto, Milhano, Quiroga, Salgado (2011)

see also: Kuokkanen, Rummukainen, Weigert (2012);

Lappi, Mantysaari (2013); ...

Good fit, but require a big rescaling of Agcp as extra parameter, to slow
down the BK evolution.

— Mimics missing higher order contributions, like a K-factor.
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Phenomenology for single-inclusive particle production

ok P @200Gev g Biere e e
.:m (only elastic term) A STARN=4T0. Kfaclor=0.4
y :
wk %ot — gamma=1.119.
e

dN/dn/d2pt (GeV-2)

o001 |

00001

000001

v
pt (GeV)

3 0

dN/dn/dpt (GeV'2)

dAu @ 200 Gev
(only elastic term)

L T

®  BRAHMS =22 hs (x200). K-factor=1
B BRAHMS 1=3.2 hs (x50). K factor=1
A STARN=4 0. Kefactor=0.4

1

B
pt (GeV)

3 0

Fits of the single-inclusive hadron or pion production cross-section at
forward rapidity in p-p and d-Au collisions at RHIC, using the hybrid
factorization at LO, and running coupling BK evolution.

Similar results at LHC (p-p and p-Pb) and Tevatron (p-p) at central
rapidity, using k| -factorization.

Albacete, Dumitru, Fujii, Nara (2013)

see also: Albacete, Marquet (2010); Lappi, Méantysaari (2013); ...
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High-energy QCD beyond LO+LL

Higher order corrections needed for higher precision for high-energy QCD
with gluon saturation

— Fixed order NLO corrections to observables:
@ Forward single inclusive hadron production in pA:
Chirilli, Xiao, Yuan (2012)
Original results unstable! Now under control using more consistent
scheme for LL factorization.
lancu, Mueller, Triantafyllopoulos (2016); Ducloué, Lappi, Zhu (2017)

@ DIS structure functions: see next slides

— NLO corrections to the BK and B-JIMWLK equations, to perform
NLL resummation: now available
Balitsky, Chirilli (2008-2013); Kovner, Lublinsky, Mulian (2013-2016)

High-energy NLL equations require collinear resummations (like BFKL,
see Salam (1998) )

Main piece of the collinear resummation already done for NLL BK
G.B. (2014); lancu et al. (2015)
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DIS at NLO: general structure in dipole factorization

ki X ks xo
® ® k% ® ®
g, Q* gt Q*
Kox kox

or.(@ xg) = “"7” [_<801>0}
qq states
b [Tk [ (Sdo] + Ofaenad)
qqg states

@ Perturbative building blocks for NLO DIS:
\Tl;/g’L LFWF at one loop and \I!q;gL LFWF at tree-level
e UV divergences should cancel between gg and ¢gg (— Dim. Reg.)

@ High-energy LL resummation to be performed at the end

G.B. (2016-2017)
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DIS at NLO: results

Final results, after cancellation of UV divergences and LL resummation

orr = 07 laipoe + 07 (lgsg T 07 lae
= O—A{"[_‘dipolc +2 U;{—J_lqﬂg
Where:
1—2min P 2

0] ldipole = 4Nc tem 0(1—22min) Zef/ dz 4Q%z 21—2)2/ S St
Zmin
as G 1 2 2.5

<1 (6olo | [ (ovatbn)| {H( ) { log (12.)] gﬂ}}

with zpi, = %’ %

And similar expression for o |dipole

G.B. (2017)
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DIS at NLO: results

1—Zmin
0)lgsg = 4NeoemO(1— 2zm,n)asCFZ / dz 4Q?22(1-2) dg

m\n
‘min

X /d227xr° e d;’?{f %(Ko(0x012))2(1—<8$)2>y2)
()] o) (1-(s82), ) - (2 )]

with:
2 2 2.2 2
Xoo = (1-8)z(1—2)xg1 +&(1-E8)z°x0 + E2(1—2)x3
Zmin = f()(()) )2)3; and Y =log <Z§Z )

And similar (but longer) expression for o 7|q—g

G.B. (2017)
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DIS at NLO: preliminary numerical study

|l L@P=1Gev? v T,Q%=1GeV?
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301

FNLO/FLO

FNLO /Lo

10

100
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Ducloué, Hanninen, Lappi, Zhu (2017)

Numerical results with a simplified LL factorization scheme:
@ NLO results overall well behaved

o At fixed coupling, larger NLO corrections for F; than Fr

@ But: sign of NLO correction to Fr changes sign when switching to
running coupling (parent dipole), due to large transient effects in xg;

= Need to check in case of more realistic RC prescriptions and/or
high-energy LL factorization scheme

— Next step: new fits to DIS, at NLO
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Homogeneous target approximation and beyond

Approx. used in all the practical applications presented so far:
/d2X0 d2X1 f(X01) |:1 — <801>Yi| = /d2b d2l’ f(l’) |:]_ — <Sb+£’b,£>yi|
o /dzr f(r) (N(r))y

1

@ Might be justified for a large nucleus
@ Simplifies the numerics

@ Avoid facing issues of non-pert. QCD arising at large b

Problems:

@ Cannot address more b-sensitive observables
o Insufficient in order to get initial conditions for AA collisions
@ Avoid facing issues of non-pert. QCD arising at large b (and r)
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IP-Glasma model for initial conditions

State of the art model for initial conditions in AA collisions: IP-Glasma
model Schenke, Tribedy, Venugopalan (2012)

Idea:

@ initial conditions for hydro or kinetic theory at 7 = 79 from
numerical simulations of classical YM

@ starting from the collision of two fluctuating shockwaves

@ color fluctuations in each incoming nucleus/shockwave driven by the
Qs(xgj, b) extracted from b-dependent model (IP-Sat) fitted on DIS

— IP-Glasma + Hydro: very successful in AA collisions

See talks by G. Roland and by P. Bozek
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IP-Glasma model for initial conditions

IP-Sat model (proton), fitted on inclusive and exclusive DIS data:
(S50 £ g1y = &P [71 Fxa1: 1) To(b)]
2
F(xgj,r) = o5 as(ug + 4/v°) xs; g(xsj, 11 + 4/r°)

_b2

To(b) = ﬁ e

Nucleus case:

A
T,(b) > Ta(b ZT,,
i=1

= Qs(xgj, b) for proton and nuclei

Finally, for each incoming proton or nucleus: MV model
(Pa(x™,%) po(y ™, y)) = 8ab 6(x ™ —y ") 6 (x—y) g% *(x)

with g% u?(x) o< Q?(xagj, x)
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Exclusive diffractive vector meson production in DIS

Y 2O J/V, p.
— .If]! VN
ddip |p
» - »
1
A'Y*pHVP(X]P,Q2,A) — i/dzrd2b/ dz efiA-[bf(lfz)r]
0

< (4i0)(r,2,Q?) [1 =gy
Coherent contribution (intact target):

*
v p—Vp
dacoh. —

1
dt — 16w

(AP VP(xp, Q, A)>'°g(1/xﬂ’)

— Sensitive to average dipole amplitude
Incoherent contribution (target breaks up):

do P vP*

. * 2 *
“neh— = o [<|A7 Ve >|og(1/x]p) - ‘<A7 P D tog1 )

— Sensitive to fluctuations of the dipole amplitude

]
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Proton geometric fluctuations from HERA: IP-Sat

Standard IP-Sat model for proton: No fluctuations = no incoherent
contribution

Extension of IP-Sat to proton shape fluctuations:

—(b—b;)?

N i
Tp(b) = Niq > zﬂlsp e %

proton ~ 3 "constituent quarks”

1
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O zq ©
- £ 0
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107!
-1
0.0 05 10 15 20 25 T 0 1 T 0 1 0.00
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Mantysaari, Schenke (2016)
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Proton geometric fluctuations from HERA: IP-Glasma

Original IP-Glasma model for proton: non-zero but small incoherent
contribution from color fluctuations

Update of IP-Glasma from IP-Sat with proton shape fluctuations : ok!

10° B - 80Ge 1 5, - 036GV Goherent H1 10

ciee By =4GeV? i Gonerent ZEUS =

N Incoherent ZEUS E 0

=
10° R : 0.8
0.4
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100

do/dt [nb/GeV?|

IP-Glasma

107!

Mantysaari, Schenke (2016)
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Impact of proton shape fluctuations on flow in pA

IP-Glasma init. cond. + Hydro (MUSIC) + hadronic cascade (UrQMD)
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Q ® o ° Q p+Pb 5.02 TeV
F P S 008 bl ]
> 004l o ° | > 0_067110<N°?' <140 |
. z
0.04 |- e
o —
002 L g8 g e 2 R
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Including proton shape fluctuations fitted on HERA:

= ~ b times larger v» and v3: now agree with the high multiplicity pA
data

Mantysaari, Schenke, Shen, Tribedy (2017)
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Minimalistic MV-based model for pA

I E’}_cl

X
X X
] 5 ]
X3 P X3
Xy ; Xy
A"9...§... %

@ p projectile — bunch of uncorrelated quarks (color, momentum, ...)

@ eikonal scattering of each quark on the shockwave target,
event-by-event

@ b-independent MV model for target averages

x2 452

m
d™N _ 1 2. 125 AipLi-(Xi—%;) o— ot H ~
d®pri--d’pim — (47B)7 /Hd x; d°%; e e 8 Swi.%,
i=1 j=1 MV
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Flow coefficients from 2 and 4 particles correlations

f2h = (("P)) = w2} = Va2
ofay = ((erorsonoa)) o (oo oy 4y = [~y

In this model: Flow coefficients from n-particle correlations require the
knowledge of the n-dipole correlator

Correlations of A7 (x1,x) local in x™
= Perform the Gaussian averaging slice by slice in x™:

<SX17i18X2,)_<2>L++dX+ = Olxy %1,%2,%2 <SX1,>_<1SX232>L++ﬂx1,)_<1,xz,)_(2 <QX1’?1,X2,?2>L+

= Non-trivial mixing between the double dipole and the single-trace
quadrupole !
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Calculating the 4-dipole correlator

Averaging inside each longitudinal layer in the target mixes the 4-dipole
correlator with other objects:

( ) ( D) ( DZ] —
C . C . C . )
( )} ( Y %ﬁi
( ). ( i §
..l
l....

But: exponentiation of the 24*24 transition matrix tractable numerically
Dusling, Mace, Venugopalan (2017)
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Results for flow in pA from the MV model
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e Hierarchy of v,{2}, non-zero for odd n. And v»2{2} > v, {4}
@ Results also available for p, -dependent v»{2} and v»{4}, and for
S5C(n,n").
@ In abelien/QED approx: MV averages straightforward even with
more particles = Result: v»{2} > v»p{4} ~ v»{6} ~ v»{8}
Dusling, Mace, Venugopalan (2017)

Related analytic results at large N, also available
Fukushima, Hidaka (2017)
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Conclusion

@ Ongoing NLO/NLL revolution for high-energy QCD with gluon
saturation
— All the ingredients available to perform fits to DIS at NLO+LL
accuracy, and possibly even at NLO+NLL

@ State of the art initial conditions for hydrodynamics with maximal
QCD content: IP-Glasma

o Works well for flow observables in AA

o When including proton shape fluctuations required by incoherent
exclusive DIS data, works also for flow observables in pA

© However, qualitative behavior of flow observables in pA reproduced
by a simplistic purely initial-state model

— Is hydrodynamics (and/or QGP) really relevant to pA?
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