

Past and future of the muon g-2 experiments

Anna Driutti

INFN Trieste g.c. Udine & University of Udine

on behalf of the Muon g-2 Collaboration

LFC17: Old and New Strong Interactions from LHC to Future Colliders

Trento, September 11 - 15, 2017

Interest in the muon anomaly

• a_{μ} could be used to test the Standard Model theory, which predicts:

$$a_{\mu}^{\text{SM}} = \frac{g_{\mu} - 2}{2} = a_{\mu}(\text{QED}) + a_{\mu}(\text{EW}) + a_{\mu}(\text{Had}) = (116591802 \pm 49) \times 10^{-11}$$

 A discrepancy with the SM value could be a hint of SUSY, dark photons, extra dimensions, or other new physics. $\begin{tabular}{c|c} Val.\pm Err. & (\times 10^{-11}) \\ \hline QED & 116584718.951 \pm 0.080 \\ EW & 153.6 \pm 1 \\ \hline Had: \\ HVP (lo) & 6949 \pm 43 \\ HVP (ho) & -98.4 \pm 0.7 \\ HLbL & 105 \pm 26 \\ \hline \end{tabular}$

SM Accuracy 420 ppb

History of the experimental measurement

- <u>current status</u>: <u>discrepancy</u> > 3σ between theoretical prediction (WA CODATA 2008) and experimental measurement (BNL E821 final report 2008)
- future:
 - FNAL E989: final goal of 140 ppb (commissioning run completed July, 2017)
 - J-PARC E34: initial goal of 340 ppb then 100 ppb (data-taking expected to begin in 2021)

Measurement method

Polarized muons are injected into a magnetic storage ring and will precess in the magnetic field.

Precession Frequency is related to the muon anomaly:

anomalous freq. Spin freq. Cyclotron freq.
$$\omega_{a} = \omega_{5} - \omega_{C}$$

$$= \frac{g_{\mu}eB}{2mc} + (1-\gamma)\frac{eB}{\gamma mc} - \frac{eB}{mc\gamma}$$

$$= \left(\frac{g_{\mu}-2}{2}\right)\frac{eB}{mc} = a_{\mu}\frac{eB}{mc}$$

Measurement method

Anomalous freq. depends on electric and magnetic fields:

$$\vec{\omega}_{a} = -\frac{Qe}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

and two different approaches:

CERN III, BNL E821, FNAL E989:

$$p_{\mu}^{\text{magic}} = 3.094 \text{GeV}/c \Rightarrow \gamma = 29.3$$

$$\Rightarrow \left[\left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \sim 0\right]$$

J-PARC:

$$E=0\Rightarrow \boxed{\vec{\beta}\times\vec{E}=0}$$

Final formula

In the final analysis the anomaly is extracted with:

$$a_{\mu} = \frac{\frac{g_{e}}{2} \frac{m_{\mu}}{m_{e}} \frac{\omega_{a}}{\overline{\omega}_{p}}}{\frac{\mu_{e}}{\mu_{p}}}$$

Get from CODATA^[3]: $g_e = -2.002 \ 319 \ 304 \ 361 \ 82(52) \ (0.00026 \ ppb)$ $m_{\mu}/m_e = 206.768 \ 2826(46) \ (22 \ ppb)$ $\mu_e/\mu_p = -658.210 \ 6866(20) \ (3.0 \ ppb)$ [3] Rev. Mod. Phys. 88. no. 3. 035009 (2016) [arXiv:1507.07956]

- ω_a anomalous spin precession frequency is extracted from decay positron time spectra
- $\overline{\omega}_p$ average magnetic field seen by the muons is measured by NMR
- δa_{μ} is determined by precision of ω_a and ω_p measurements:

δa_{μ}	BNL (ppb)	FNAL goal (ppb)
ω_a statistic	480	100
ω_a systematic	180	70
ω_p systematics	170	70
Total	540	140

Muon g-2 Experiment at Fermilab

<u>Aim:</u> reduction of the experimental uncertainty by a <u>factor of 4</u> with respect to BNL result:

$$\delta(a_{\mu})^{\text{exp.}}: 540 \text{ ppb} \rightarrow 140 \text{ ppb}$$

If a_{μ} value is confirmed (using current theory uncertainty):

$$\mathbf{a}_{\mu}^{\mathsf{FNAL}} - \mathbf{a}_{\mu}^{\mathsf{SM}} > \mathbf{5}\sigma$$

FNAL improvements over BNL:

- muon beam: more statistics and fewer pions thanks to FNAL accelerator
- improved detectors, stored muon beam dynamics, field uniformity, field measurement and calibration procedures

Production of the muon beam

- Recycler Ring: 8 GeV protons from Booster are rebunched
- Target Station: protons are collided with the target e and π^+ with $p = 3.1 \text{ GeV/}c \ (\pm 10\%)$ are collected
- Beam Transfer and Delivery Ring: in the decay line muons from the pion decay are selected, while in the circular ring the muons are separated from protons and pions
- Muon Campus: a beam of μ^+ polarize is ready to be injected into the storage ring. We expect 21 times BNL statistics

Journey of the storage ring: from BNL to FNAL

FNAL Muon g-2 Experimental Hall

Beam Injection

Measurement of ω_a

Injected polarized muons decay: $\mu^+ \rightarrow e^+ + \nu_e + \nu_\mu$:

 \Rightarrow high energy e^+ are emitted with electron momentum direction strongly correlated with μ^+ spin.

Counting the number of e^+ with $E_{e^+} > E_{\text{threshold}}$ as a function of time (wiggle plot) leads to ω_a :

$$N(t) = N_0 e^{-t/\tau} [1 + A \cos(\omega_a t + \phi)]$$

 E_{e^+} and t need to be measured.

Detectors for ω_a measurement

 e^+ from μ decays curve inside the ring and hit the detectors:

24 Calorimeters

- composed of 6×9 PbF₂ crystals with SiPM readout
- custom 800 MHz waveform digitizers
- laser calibration system

Tracker systems

- planning to have 3 stations
- one station installed in front a of a calorimeter
- each station consist of 8 modules of
 100 straws filled with Ar:CO₂

Calorimeters performance at the Test Beam

June 2106: test of a calorimeter with custom waveform digitizers, laser calibration system and DAQ at SLAC TB facility.

Calorimeters performance during the June 2017 run

Laser calibration system

Purpose:

- calorimeter gain stability monitoring
- calibration of the calorimeters at the sub-‰ level
- timing

LASER HUT aser Contro System Filter Wheel Launching sync. trigger Ouartz Fibers optical 1~25 m Laser head Returning minibundle PMMA Fibers Source Monitor Local Monitors COMPUTER ROOM DAO

Tracker performance during the June 2017 run

Single charged particle trajectory

Trackers are useful to determine the spatial muon distribution and to study pileup in the calorimeters.

Momentum of tracks

Distribution of recorded hits

First E989 wiggle plot

ω_P Measurement

- ω_P is proportional to the magnetic field;
- magnetic field is created as uniform as possible (shimming procedure) and kept mechanically and thermally stable
- during data-taking the field is monitored by fixed NMR probes
- field is periodically mapped by a trolley that runs around the inside of the ring and calibrates the stationary probes

Field Measurements

Azimuthally-Averaged Map

Muon g-2 at J- PARC

- Phase 1: a_{μ} result with an uncertainty of 350 ppb
- new method with completely different systematic wrt FNAL measurement
- data taking in about four years

http://g-2.kek.jp/portal/index.html

I- PARC Muon beam

- ultra cold muons beam with 50% polarization
- $\Delta p_T/p_T < 10^{-5}$
- the 300 MeV muons are then injected into 3.0T, 33cm-radius solenoidal magnet

Picture from Journal of Physics: Conference Series 295 (2011) 012032

J- PARC Storage Ring and Detector

Pictures from talk presented by Tsutomu Mibe at Muon g-2 Theory Initiative workshop, June 2017.

Comparison between Muon g-2 BNL and J- PARC

	BNL E821	J-PARC E34
muon momentum	3.09 GeV/c	0.3 GeV/c
storage ring radius	7 m	0.33 m
storage field	1.5 T	3.0 T
focusing field (n-index)	0.14 (electric)	1.5 E-4 (magnetic)
average field uniformity	≈1 ppm	<< 1ppm
(local uniformity)	≈50 ppm	≈1ppm
Injection	inflector + kick	spiral + kick
Injection efficiency	3-5%	80%
muon spin reversal	-	pulse-to-pulse
positron measurement	calorimeters	tracking
positron acceptance*	65%	≈100%
muon polarization	≈100%	≈50%
events to 0.46 ppm	9 x 10 ⁹	5 x 10 ¹¹

^{*} in the energy region of interest

 $Table\ from\ talk\ presented\ by\ Tsutomu\ Mibe\ at\ Muon\ g-2\ Theory\ Initiative\ workshop,\ June\ 2017.$

Summary and Conclusions

2004:

• BNL E821 final report announces a discrepancy a_{μ}^{exp} and $a_{\mu}^{theo} > 3\sigma$

<u>2013:</u>

- begins the construction of FNAL E989
- the aim of the experiment is to measure a_{μ} with one-fourth of the BLN uncertainty
- finished the commissioning run in July, 2017 and plan on starting to collect more data this coming Fall/Winter
- a BNL level result is expected by late 2018

<u>2020:</u>

- J-PARC Muon g-2 experiment expect to begin data-taking
- new experimental method, complementary systematics

Technical Design Report
for
the Measurement of the Muon Anomalous
Magnetic Moment g - 2 and Electric
Dipole Moment at J-PARC

prepared by 144 authors

Mer 15, 2015