INFN seminario tecnologico Progetto di ricerca finanziato – grant giovani CSN5

Suspended Interferometric Ponderomotive Squeezer

Luca Naticchioni

INFN Roma 1

Overview

Squeezed states of light

Quantum Limit: Shot Noise and Radiation Pressure

Quantization of the EM field: coherent and squeezed states
Generation of squeezed light: OPO and Ponderomotive

- Ponderomotive generation with a SIPS

- Research Framework
- The suspended interferometer: structure and mirror suspension
- Suspension and mirror coating thermal noise
- Interferometer equivalent noise

Project impact

- Sensitivity improvement in IGWD (Adv Virgo, LIGO, ET)
- Scientific & Technological impact in other fields

Project details

- Expected budget & Collaboration duties
- Expected timeline

Squeezed states of light

Squeezed states of light

Quantum Limit: Shot Noise and Radiation Pressure

Photon shot noise (SN) sensing noise:

photons in a laser beam are not equally spaced in time but they follow a Poissonian distribution photo-current time - series fluctuations

Photon Radiation Pressure (RP) back-action noise:

photons transfer their momentum (i.e. a *radiation pressure force*) to the mirror with a temporally inhomogeneous distribution **mirror position fluctuations**

Standard Quantum Limit (SQL): SN and RP fluctuations equal and uncorrelated minimal uncertainty in a coherent state

Squeezed states of light Quantization of the EM field

$$\vec{E}(\vec{r},t) = E_0[X_1\cos(\omega t) - X_2\sin(\omega t)]\vec{p}(\vec{r})$$

Quadrature Operators: Heisenberg principle: $X_2(\vec{r}) = i[a^*(\vec{r}) - a(\vec{r})]$ **Phase:** $\langle (\Delta \hat{X}_1)^2 \rangle \langle (\Delta \hat{X}_2)^2 \rangle \ge \frac{1}{16}$ **Amplitude:** $X_1(\vec{r}) = a^*(\vec{r}) + a(\vec{r})$ **Coherent State** Squeezed State Phase Phase **Ouadrature** Ouadrature squeezed Phase ΔX_{2} ΔX_2 amplitude anti-squeezed

L. Naticchioni – **SIPS** – seminario tecnologico INFN Roma - 2017/04/05

Amplitude

Ouadrature

 ΔX_1

Amplitude

Quadrature

 ΔX_1

Squeezed states of light Quantization of the EM field

Squeezed states of light

Generation of squeezed light: OPO & ponderomotive

- Kerr medium

 Optical Parameter Oscillator (OPO)

3rd and **2nd** susceptibilities induces *correlations* between *phase* and *amplitude* fluctuations

Non-linear processes in dielectric medium

Frequency limitations due to losses mechanisms in the medium (phototermal fluctuations) and stability issues at low frequencies!

Empty cavity with suspended mirrors (ponderomotive)

Radiation pressure on the suspended mirror induces a *coupling* between its *position* and the *intensity of light beam* → *correlation* between *phase* and *amplitude* quadrature of the output state

Squeezed states of light

Generation of squeezed light: OPO & ponderomotive

Rising interest in the ponderomotive technique:

- Application to MOEMS: cheaper than OPO integration, better integration factor;
- Study of coupling between macroscopic opto-mechanic objects and their quantum behavior (theoretical and practical interest);
- Application to IGWD: low frequency performances and stability.

So far realized only in micro-opto-mechanical systems (MOMS):

Squeezed states of light

Generation of squeezed light: OPO & ponderomotive

Credit to M. De Laurentis, 2014

Ponderomotive generation with SIPS

Suspended Interferometric Ponderomotive Squeezer

Research framework

Preliminary R&D on a low frequency ponderomotive squeezer in the last few years (under the acronyms PPPS and POLIS), involving many institutions:

Università di Roma Sapienza & INFN-Roma, Università di Napoli Federico II & INFN-Napoli, Università di Roma Tor Vergata & INFN-Roma2, Università di Pisa & INFN-Pisa, INFN-Genova, INFN-Perugia, Università del Sannio, Università di Firenze & INFN-Firenze, Università di Salerno, Università di Trento & INFN-Padova-Trento & Fondazione B.Kessler, Università di Camerino, Università di Urbino, CNR

PPPS/POLIS legacy:

Design and realization of a **suspended interferometer** (Roma1); **Main laser** (Urbino, Napoli) and **R&D on laser stabilization** (Roma2); **optical benches** (Pisa)...

R&D and integration of crucial parts (optics, monolithic suspension, local control...) still to do in order to convert the suspended interferometer in an effective ponderomotive squeezer!

Suspended bench

Requirements:

- Suspension of very small mirrors in order to observe the **RP**
- High suppression of **seismic** and **thermo-elastic** noises

Superattenuator of Virgo

inverted pendulum + a chain of pendula, passive+active damping. Provides a seismic attenuation of -180dB at 10Hz

Monolithic suspension:

SiO₂ fibers welded to mirrors as in Virgo and LIGO IGWD: low thermoelastic losses respect to metallic wires

Suspended bench

Bench Requirements: must be compliant with the allowed size and weight in order to be suspended at the **SAFE** (Super Attenuator Facility at **EGO-Virgo**):

Height: 800 mm Diameter: 960 mm (allowing two cavities 440mm-long) Weight: ~ 150 kg

Material: anticorodal (Al-alloy)

Upper plate

-

(auxiliary bench)

Cylindrical baffles

Main optical bench

The structure must combine <u>high stiffness</u> (to push up the mechanical mode frequencies) and <u>low mass</u> (< SA limit).

Suspended bench

Lower bench layout (main opt bench)

Ponderomotive generation (SIPS)

Suspended bench

Input + BS payloads

Engineering drawing

Ponderomotive generation (SIPS)

Suspended bench

Engineering drawing

Mini-payloads

Requirements: the fundamental constraint is that the suspension thermal noise of the lighter (end) mirror must be below $10^{-16} m/\sqrt{Hz}$ at 10 Hz; if not squeezing would be not observable.

Payload Design: double pendulum suspension (monolithic suspension of the mirrors). $| \uparrow$

Ponderomotive generation (SIPS)

Mini-payloads

Ponderomotive generation (SIPS)

Mini-payloads

Ponderomotive generation (SIPS) Current state of the mechanic structure

Ponderomotive generation (SIPS) Activity in progress before project start

Suspension thermal noise

From the Fluctuation-Dissipation Theorem:

ation-Dissipation Theorem: Suspension

$$S_X^{FDT}(\omega) = \frac{4k_b T}{m\omega} \frac{\omega_0^2 \phi(\omega)}{(\omega^2 - \omega_0^2)^2 + [\omega_0^2 \phi(\omega)]^2}$$

n thermal noise The overall Φ is given mainly by the Thermoelastic and Surface loss angles:

$\phi - \lambda \qquad \omega \tau$	$(1 + od_s)$	suspension wires:	
$ \phi_{te} = \Delta \frac{1}{1 + (\omega \tau)^2} ; \phi_s = 1 $	$\varphi_{bulk}(1+8\frac{d}{d})$	Marionette	e Mirror
	Parameter	C85 steel	Fused silica
where:	density $\rho [\text{kg/m}^3]$	7.9×10^3	2.2×10^3
	specific heat $c [J/K/kg]$	502	772
$\Delta = \frac{YT}{c\rho} \left(\alpha - \beta \frac{\sigma}{Y\pi} \right)^2$	thermal conductivity $k [W/K/m]$	50	1.38
	thermal expansion coefficient α [1/K]	1.4×10^{-7}	3.9×10^{-7}
	temperature T [K]	294	294
	young modulus Y [Pa]	2.1×10^{11}	$7.2 imes 10^{10}$
$a a d^2$	fractional change of Y(T) β [1/K]	-	$1.52 imes 10^{-4}$
$\tau = \frac{c\rho a}{c\rho a}$	wire radius r [m]	$1.5 imes 10^{-4}$	1.5×10^{-4} (Input)
$2.16 \cdot 2\pi k$			2.5×10^{-5} (End)
	$\varphi_{bulk,SiO_2} = 4 \times 10^{-10}$; $\varphi_{bulk,C85}$	$= 10^{-4}$; d_s	$_{SiO_2} = 1.5 \times 10^{-2}$

Suspension thermal noise

Calculation based on Fluctuation-Dissipation Theorem for a double pendulum and FEM simulation, considering the project parameters, using a MatLab-based code

Mirror coating thermal noise

Calculated using the Levin approach*:

$$S_X^{Lev}(f) = \frac{4k_B T E_s \phi_{coat}}{\pi f F_0^2}$$

 E_s is the strain energy stored in the dissipation zone, calculated with a harmonic response FEM simulation (F_0 is the peak value of the applied force with intensity profile of a laser Gaussian beam)

coating parameters**

Parameter	value
ρ_{eff}	$4085.8 \ kg/m^3$
Y_{eff}	99.6~GPa
$ u_{eff}$	0.204
ϕ_{coat}	$1.48 imes 10^{-4}$

* Y. Levin, *Phys. Rev. D* vol. 57, 659-663 (1998)

** G. M. Harry et al., *Class. Quantum Grav.* vol. 24, 405 (2007)

Ponderomotive generation (SIPS)

Interferometer equivalent noise

Project impact

Project Impact Improving IGWD sensitivity

Project Impact Improving IGWD sensitivity

Motivation: push the sensitivity of IGWD below the SQL (radiation pressure + shot noise); reduction of the LF radiation pressure increase due to the higher circulating power in the GW interferometer's cavities. **Concept:** generation and injection of squeezed fields into the dark port of the GW interferometers \rightarrow Quantum entanglement \rightarrow SNR reduction

Project Impact Scientific & Technological

- Test quantum limit and entanglement at the boundary between macroscopic and microscopic scale
- Measurement of small forces down to the Heisenberg limit
- Production of SiO₂ micro-fibers (µm-scale)
- Interfaces for quantum communication and quantum computers
- Low dissipation high transparency optics
- Setup of low noise and high balanced optoelectronics
- Development of low noise DAQ, FBK and Homodyne detection electronics
- Development of simulation codes for quantum optics

Project Impact Scientific & Technological

- Test quantum limit and entanglement at the boundary between macroscopic and microscopic scale **Quantum correlation of macroscopic mirrors**
- Measurement of small forces down to the Heisenberg limit
 e.g.: RP measurement to detect solar Chameleon scalar particles
- Production of SiO₂ micro-fibers (µm-scale)

Theory test + applications

Interfaces for quantum communication and quantum computers

e.g.: Cold neutral atoms trapping using nanofiber-guided light and quantum information exchange between light and atoms

- Setup of low noise and high balanced optoelectronics
 Telecommunication network potential applications
- Development of low noise DAQ, FBK and Homodyne detection electronics

Experimental quantum physics applications

- Development of simulation codes for quantum optics

Project details

Project Details

TOTAL BUDGET (over 2 years):

Instrumentation, Consumable, Manufacturing: ~75 kE Grant: 60 kE

SIPS COLLABORATION:

MAIN DUTIES:

INFN-ROMA1 INFN-PERUGIA INFN-PISA Optical setup, FBK controls, Homodyne detection Monolithic suspension, SiO_2 microfibers, Mirrors Optical bench integration, SAFE (SA) setup

former POLIS institutions:

-Univ. Urbino (Main Laser, SiO2 microfiber production support)
 -Univ. & INFN Napoli (Main Laser integration Optical design & support)
 -Univ. & INFN Roma2 (Laser stabilization)

EGO ((())/VIRG) :

- SAFE (SuperAttenuator)

- SiO_2 fiber production facility
- Interaction with AdV OPO squeezer team

Thank you for your attention!