LIGO

Characterization of black holes with gravitational waves

Salvatore Vitale MIT

Università di Pisa – April 18 2017

 Compact objects such as neutron stars (NS) and black holes (BH) host some of the most extreme conditions in the universe

4GO

Black holes

- Leftovers of massive stars
- Produce extreme gravitational fields
- Does general relativity still hold true near a BH?
- How fast can they spin?
- How big can they get?
- When did the first BHs form?

CO

Neutron stars

- The most dense objects we can observe
 - A mass of 1.4 M_{\odot} contained in a sphere with radius of 10 Km
- How does matter behave in these extreme conditions?
- Are neutron stars related to GRBs? And to metal production?
- What is the maximum mass of a neutron star?

CO

Neutron stars

- The most dense objects we can observe
 - A mass of 1.4 M $_{\odot}$ contained in a sphere with radius of 10 Km
- How does matter behave in these extreme conditions?
- Are neutron stars related to GRBs? And to metal production?
- What is the maximum mass of a neutron star?

VCDAI

BH spins (with EM)

- Traditionally, the spin of black holes has been estimated through its effects on a surrounding disk
- Need an accreting black hole (e.g. in a X-ray binary)

19 April 2017

BH spins (with EM)

- If a BH is spinning, the radius of the innermost stable circular orbit will get closer (Continuum fitting)
- If the debris in the disk reflect light, the spectral lines will be distorted by GR effects which depend on the spin (FE-line)

- Both methods rely on a good understanding of the disk physics and are *indirect* measurement of spin
- Sometime in tension with each other

System	a _* (CF)	a _* (Fe line)	No. obs.	References	
Cygnus X-1	> 0.983	0.97 ± 0.02	<mark>9 / 1</mark>	Gou+ 2011, 2014 Fabian+ 2012	
LMC X-1	0.92 ± 0.06	0.72 – 0.99	19/1	Gou+ 2009 Steiner+ 2012	
GRS 1915+105	> 0.95	0.98 ± 0.01	<mark>6 / 1</mark>	McClintock +2006 Miller +2013	
XTE J1550-564	0.34 ± 0.24	0.55 ± 0.20	60 / 2	Steiner, Reis+ 2011	
GRO J1655-40	0.8 ± 0.1	> 0.9	33 / 2	Shafee+ 2006 Reis+ 2009	×
4U 1543-47	0.7 ± 0.1	0.3 ± 0.1	34 / 1	Shafee+ 2006 Miller+ 2009	×

8

J. McClintock

BH mass (with EM)

- Also rely on having a luminous companion
- Requires period, radial velocity, inclination, companion mass
- Indirect measurement

Gravitational waves

- When two compact objects orbit around each other, they emit gravitational waves (GW) that encode all of the system's properties
- Compact binary systems can thus be used to study BH and NS without the need for light just measuring the GW they emit.

Compact Binaries Coalescences

GW emitted by compact binaries are the best understood

Parameter estimation

- The (unknown) parameters of a CBC source can be estimated using Bayesian methods
 - Explore a high dimensionality parameter space using stochastic samplings (MCMC, nested sampling)

 $\propto p(d|\theta)p(\theta)$

Courtesy of J. Veitch

12

CIO

Salvatore Vitale

Mass estimation (with GW)

- The masses of the two objects directly affect the phasing evolution of a GW signal
 - Very good at estimating "chirp" mass
 - Worse for component masses
- This is a *direct* measurement, the masses directly affect the amount and frequency of GW emitted

Mass estimation (with GW)

 Typically, longer signals (i.e. lower masses) will lead to better estimation of masses, since we can "follow" the signal for more cycles

LVC, PRX 6.041015

Comparison with EM

Salvatore Vitale

- Some of the BHs we discovered had masses significantly larger than what known from the EM
- High masses tell something about metallicity and winds of progenitor stars (LVC, ApjL 818 L22)

15

BH spin (with GW)

- Spins enter the waveform at higher PN orders
- They are harder to measure than mass parameters

1×7	\mathbf{C}	DI	V	6 1	n/	11	Ω	15	
LV	C,		\mathbf{N}	0.0	04	Г <u>Т</u>	U	ТЭ)

							0		
		GW150914			GW151226			LVT151012	
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall
Detector frame									
Total mass M/M_{\odot}	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm 5}_{-3\pm 0}$
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71^{+0.08}_{-0.07}$	$9.72^{+0.06}_{-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1\substack{+0.8\\-0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$
Secondary mass m_2/M_{\odot}	$30.6^{+5.1}_{-4.2}$	$32.7^{+3.1}_{-4.9}$	$31.7^{+4.0\pm0.1}_{-4.9\pm1.2}$	$8.3^{+2.5}_{-2.9}$	$8.1^{+2.5}_{-2.1}$	$8.2^{+2.6\pm0.2}_{-2.5\pm0.5}$	15^{+5}_{-6}	16^{+4}_{-6}	$16^{+5\pm0}_{-6\pm1}$
Final mass $M_{ m f}/{ m M}_{\odot}$	$67.8^{+4.0}_{-3.6}$	$67.9^{+3.2}_{-2.9}$	$67.8^{+3.7\pm0.6}_{-3.3\pm0.7}$	$22.5_{-1.4}^{+8.2}$	$22.8^{+5.3}_{-1.6}$	$22.6^{+6.7\pm2.2}_{-1.5\pm0.1}$	43^{+17}_{-4}	42^{+13}_{-2}	$42^{+16\pm 5}_{-3\pm 0}$
Source frame									
Total mass $M^{\rm source}/M_{\odot}$	$65.5^{+4.4}_{-3.9}$	$65.1^{+3.6}_{-3.1}$	$65.3^{+4.1\pm1.0}_{-3.4\pm0.3}$	$21.6^{+7.4}_{-1.6}$	$21.9^{+4.7}_{-1.7}$	$21.8^{+5.9\pm2.0}_{-1.7\pm0.1}$	38^{+15}_{-5}	37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+2.1}_{-1.6}$	$28.1^{+1.6}_{-1.4}$	$28.1^{+1.8\pm0.4}_{-1.5\pm0.2}$	$8.87^{+0.35}_{-0.28}$	$8.90^{+0.31}_{-0.27}$	$8.88^{+0.33\pm0.01}_{-0.28\pm0.04}$	$15.2^{+1.5}_{-1.1}$	$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$
Primary mass $m_1^{\rm source}/{ m M}_{\odot}$	$37.0^{+4.9}_{-4.4}$	$35.3^{+5.1}_{-3.1}$	$36.2^{+5.2\pm1.4}_{-3.8\pm0.4}$	$14.0^{+10.0}_{-3.5}$	$14.5^{+6.6}_{-3.7}$	$14.2^{+8.3\pm2.4}_{-3.7\pm0.2}$	24^{+19}_{-7}	23^{+16}_{-5}	$23^{+18\pm5}_{-6\pm0}$
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$28.3^{+4.6}_{-3.9}$	$29.9^{+3.0}_{-4.5}$	$29.1^{+3.7\pm0.0}_{-4.4\pm0.9}$	$7.5^{+2.3}_{-2.6}$	$7.4^{+2.3}_{-2.0}$	$7.5^{+2.3\pm0.2}_{-2.3\pm0.4}$	13^{+4}_{-5}	14^{+4}_{-5}	$13^{+4\pm0}_{-5\pm0}$
Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1^{+3.3}_{-2.8}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36^{+15}_{-4}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$
Energy radiated $E_{\rm rad}/(M_{\odot}c^2)$	$2.98\substack{+0.55\\-0.40}$	$3.02\substack{+0.36\\-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02\substack{+0.09\\-0.24}$	$0.99\substack{+0.11\\-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48\substack{+0.39\\-0.41}$	$1.51\substack{+0.29\\-0.44}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$
Mass ratio q	$0.77\substack{+0.20 \\ -0.18}$	$0.85\substack{+0.13 \\ -0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54\substack{+0.40\\-0.33}$	$0.51\substack{+0.39\\-0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53\substack{+0.42\\-0.34}$	$0.60\substack{+0.35\\-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$
Zano di chimpinat opini Acii	0.00+0.12	0.05+0.11	0.05+0.14+0.02	0.04+0.24	0.22+0.15	0.01+0.20+0.07	0.05±0.31	0.01+0.26	0.00+031+0.08
Primary spin magnitude a1	0.33+0.39	$0.30^{+0.54}_{-0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42^{+0.35}_{-0.37}$	$0.55_{-0.42}^{+0.35}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31^{+0.46}_{-0.27}$	0.31+0.50	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$
Secondary spin magnitude a_2	$0.62\substack{+0.35\\-0.54}$	$0.36^{+0.53}_{-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	0.51-0.44	$0.52\substack{+0.42\\-0.47}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49_{-0.44}^{+0.45}$	$0.42^{+0.50}_{-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$

BH spin (with GW)

- Spins enter the waveform at higher PN orders
- They are harder to measure than mass parameters

LVC, PRX 6.041015

					_				
		GW150914			GW151226			LVT151012	
	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall	EOBNR	IMRPhenom	Overall
Detector frame									
Total mass M/M_{\odot}	$71.0^{+4.6}_{-4.0}$	$71.2^{+3.5}_{-3.2}$	$71.1^{+4.1\pm0.7}_{-3.6\pm0.8}$	$23.6^{+8.0}_{-1.3}$	$23.8^{+5.1}_{-1.5}$	$23.7^{+6.5\pm2.2}_{-1.4\pm0.1}$	45^{+17}_{-4}	44^{+12}_{-3}	$44^{+16\pm 5}_{-3\pm 0}$
Chirp mass \mathcal{M}/M_{\odot}	$30.4^{+2.3}_{-1.6}$	$30.7^{+1.5}_{-1.5}$	$30.6^{+1.9\pm0.3}_{-1.6\pm0.4}$	$9.71^{+0.08}_{-0.07}$	$9.72^{+0.06}_{-0.06}$	$9.72^{+0.07\pm0.01}_{-0.06\pm0.01}$	$18.1^{+1.3}_{-0.9}$	$18.1\substack{+0.8\\-0.8}$	$18.1^{+1.0\pm0.5}_{-0.8\pm0.1}$
Primary mass m_1/M_{\odot}	$40.2^{+5.2}_{-4.8}$	$38.5^{+5.4}_{-3.3}$	$39.4^{+5.4\pm1.3}_{-4.1\pm0.2}$	$15.3^{+10.8}_{-3.8}$	$15.8^{+7.2}_{-4.0}$	$15.6^{+9.0\pm2.6}_{-4.0\pm0.2}$	29^{+23}_{-8}	27^{+19}_{-6}	$28^{+21\pm5}_{-7\pm0}$
Secondary mass m_2/M_{\odot}	3 0 5			0.012.5	2 S	<u>+ 26+0</u> 2	1015	16+4	$16^{+5\pm0}_{-6\pm1}$
Final mass $M_{\rm f}/{ m M}_{\odot}$								42^{+13}_{-2}	$42^{+16\pm 5}_{-3\pm 0}$
Source frame		ELAI	IVE S	SPII	N EK	KOK:	5		
Total mass $M^{\text{source}}/M_{\odot}$	6							37^{+11}_{-4}	$37^{+13\pm4}_{-4\pm0}$
Chirp mass <i>M</i> ^{source} /M _☉				100	0/			$15.0^{+1.3}_{-1.0}$	$15.1^{+1.4\pm0.3}_{-1.1\pm0.0}$
Primary mass $m_1^{\text{source}}/M_{\odot}$	3			LUU	170			23^{+16}_{-5}	$23^{+18\pm 5}_{-6\pm 0}$
Secondary mass $m_2^{\rm source}/M_{\odot}$	2							14^{+4}_{-5}	$13^{+4\pm0}_{-5\pm0}$
Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.5^{+3.9}_{-3.5}$	$62.1^{+3.3}_{-2.8}$	$62.3^{+3.7\pm0.9}_{-3.1\pm0.2}$	$20.6^{+7.6}_{-1.6}$	$20.9^{+4.8}_{-1.8}$	$20.8^{+6.1\pm2.0}_{-1.7\pm0.1}$	36^{+15}_{-4}	35^{+11}_{-3}	$35^{+14\pm4}_{-4\pm0}$
Energy radiated $E_{\rm rad}/(M_{\odot}c^2)$	$2.98\substack{+0.55\\-0.40}$	$3.02\substack{+0.36\\-0.36}$	$3.00^{+0.47\pm0.13}_{-0.39\pm0.07}$	$1.02\substack{+0.09\\-0.24}$	$0.99\substack{+0.11\\-0.17}$	$1.00^{+0.10\pm0.01}_{-0.20\pm0.03}$	$1.48\substack{+0.39\\-0.41}$	$1.51_{-0.44}^{+0.29}$	$1.50^{+0.33\pm0.05}_{-0.43\pm0.01}$
Mass ratio q	$0.77\substack{+0.20 \\ -0.18}$	$0.85\substack{+0.13 \\ -0.21}$	$0.81^{+0.17\pm0.02}_{-0.20\pm0.04}$	$0.54\substack{+0.40\\-0.33}$	$0.51\substack{+0.39\\-0.25}$	$0.52^{+0.40\pm0.03}_{-0.29\pm0.04}$	$0.53\substack{+0.42 \\ -0.34}$	$0.60\substack{+0.35\\-0.37}$	$0.57^{+0.38\pm0.01}_{-0.37\pm0.04}$
	0.00±0.17	0.05+0.11	0.05+0.14+0.02	0.01±0.24	0.001015	0.01+0.20+0.07	0.05±0.31	0.01+0.26	0.00+0.31+0.08
Primary spin magnitude a_1	$0.33^{+0.39}_{-0.29}$	$0.30^{+0.54}_{-0.27}$	$0.32^{+0.47\pm0.10}_{-0.29\pm0.01}$	$0.42^{+0.35}_{-0.37}$	$0.55^{+0.35}_{-0.42}$	$0.49^{+0.37\pm0.11}_{-0.42\pm0.07}$	$0.31^{+0.46}_{-0.27}$	$0.31^{+0.50}_{-0.28}$	$0.31^{+0.48\pm0.03}_{-0.28\pm0.00}$
Secondary spin magnitude a_2	$0.62\substack{+0.35\\-0.54}$	$0.36\substack{+0.53\\-0.33}$	$0.48^{+0.47\pm0.08}_{-0.43\pm0.03}$	0.51_044	$0.52_{-0.47}^{+0.42}$	$0.52^{+0.43\pm0.01}_{-0.47\pm0.00}$	$0.49\substack{+0.45\\-0.44}$	$0.42\substack{+0.50\\-0.38}$	$0.45^{+0.48\pm0.02}_{-0.41\pm0.01}$

New kid in town

- The two detections allowed for measurement of the local rate of coalescence
- Tens of BBH per year (LVC, PRX 6.041015)
- How well can their parameters be estimated?

Masses

- Component masses will typically be estimated with uncertainties of a few tens of percent
- No apparent correlation with true mass

Mass and redshift

- What we can measure from GW observations is not the true mass, but a redshifted combination: $m^d = (1 + z)m^s$
- The detector-frame mass is what sets the evolution of the detected signals

¹⁹ April 2017 Vitale+, PRD 95 064053

Component spins

- Both magnitude and orientation are astrophysically interesting
- Component spin magnitude and orientation only seldom measurable

For 90% of signals spin magnitude (direction) uncertainty larger than 0.7 (60 degs)

Component spins

19 April 2017

LIGO

Salvalore vilale

Vitale+, PRD 95 064053

Spin measurement vs orientation

- The orientation of the orbit w.r.t. the line of sight impacts spin measurability
- When there is spin precession, smallest uncertainties for edgeon systems

Vitale+, PRD 95 064053, PRL 112 251101

Distribution of orientations

- More GW energy goes along $\pm L$ than perpendicular to it
- With Advanced detectors, most events will be close to face-on or face-off -> little visible precession and larger errors
- (This will change with the next generation of GW detectors)

CBC and their formation channels

- Measuring masses and spins can help determine channel and environment in which BH and CBC are formed
- Two main formation channels
 - Common envelope evolution
 - Galactic fields

CO

- Final masses not too different
- Aligned spins

– Dynamical capture

- Globular clusters
- Any mass ratio (?)
- Misaligned spins

CBC and their formation channels

- Measuring masses and spins can help determine channel and environment in which BH and CBC are formed
- Two main formation channels
 - Common envelope evolution
 - Galactic fields

CO

- Final masses not too different
- Aligned spins

Dynamical capture

- Globular clusters
- Any mass ratio (?)
- Misaligned spins

Lots of recent studies:

- Rodriguez+ 1609.05916
- Mandel+, MNRAS 458, 2634
- Chatterjee+, 1609.06689
- More!

An example: spin alignment

- Most astronomers believe that CBC formed via common envelope will have aligned spins
- We can use Bayesian methods to verify if and how many systems have aligned spins
- Recent studies
 - Stevenson+
 - Farr+

Results

- 100 NSBH (dashed) and 200 BBH
- Astrophysical distribution

 Can measure the fraction of aligned systems with uncertainties of ~15-20%
 Vitale+, CQG(L) 34 3L1

Effective spin

- One can learn something from the projection of the *total* spin along the orbital angular momentum (Rodriguez+ 1609.05916)
- Its sign says something about the formation channel of the CBC

Population inference

- As more GW will be detected, we will be able to infer the underlying mass distribution of neutron stars and black holes.
- Two main advantages over EM:
 - Direct measurement
 - Can potentially access many more systems

An example

- Suppose all BH in the universe have spins in the range [0.7, 1]
- How long would it take to understand that BH do not have negligible spins?
- Use all BBH!

- With a few dozens sources we can confidently exclude small spins
- See also e.g. Mandel+ 1608.08223, Coughlin+ 1503.03179.

Vitale+, PRD 95 064053

The future

The next generation of GW detectors

 Realistically, we can gain another factor of ~few over design advanced LIGO using existing facilities

- A+

- Voyager (~2.5G)
- Need new facilities for the next big step (3G):
 - Einstein Telescope
 - Cosmic Explorer

Proposed 3G detectors

• Einstein Telescope

- 10 Km long arms
- Triangular shape
- Underground
- Sensitivity down to few Hz

- Cosmic Explorer
 - 40 Km long arms
 - L shaped
 - Over ground
 - Sensitivity down to ~8Hz

What do we need?

- Requires significant R&D
 - Coating

LIGO

- Squeezing
- Newtonian noise
- More
- Over a factor of 10 better than Advanced LIGO

LIGO "We can see black holes as far as there are stars in the universe"

- 3G detectors can observe BBH from most of the Universe
- Many loud signals
- Cosmological distances
- How well can BBH be characterized?

Loud and clear

- BBH detected by 3G detectors will typically be loud
- Their inclination angle distribution will be isotropic
- Most events from redshift of a few

BBH with component masses in range [6,100]M ³⁷

Vitale?@RD(R) 94 121501

Mass selection bias

- 2G detectors have a selection bias for high mass events
- Resolved by 3G detectors

Flat distribution of Mtotal

1.00.8 0.6 $p(M_{tot}^{s})$ 2G3G 0.2 powerlaw 0.0 20 10 15 25 35 40 45 50 30 $M^s_{tot}[M_{\odot}]$

Power law distribution (O1 BBH)

Vitale, PRD(R) 94 121501

Why a network?

- For advanced detectors
 - Sky localization
 - Recognize glitches
 - Increase network duty cycle
- For A+, Voyager, ET, CE
 - All of the abovementioned
 - Mass estimation!! (Through luminosity distance and cosmology)

$$m^s = \frac{m^{det}}{1+z}$$

GO

LIGO

	Longitude	Latitude	Orientation	Type
L	-1.58	0.533	2.83	CE
С	1.82	0.67	1.57	CE
Ι	1.34	0.34	0.57	CE
E	0.182	0.76	0.34	ET
Α	2.02	-0.55	0	CE

Extrinsic parameters

 With 3G detectors, distance estimation is needed to measure intrinsic masses -> need more than 2 instruments!

4GO

Masses

- Especially at large redshifts, having more than 2 sites is important to measure component masses
- Uncertainties of [few-10]% for z<3
- Factor 1.5-2 better with 4 IFOs w.r.t. 2 IFOs

Spins

• Due to larger SNR and isotropic orbital orientation, 3G will get much better spin estimation than 2G

19 Aprilizater+, PRD 95 064053

/IGO

Salvatore Vitale

Vitale+, PRD 95 064052

Facing reality

- Would like to have two (or more!) 3G detectors
- Funding or timelines might in fact result in only 1 3G detector to be online, at least for a while

- We might have
 - -13G

GO

1 or more detectors from previous generations

Heterogeneous networks

- Does it make sense to have 3G running with previous generations detectors?
- 3G-2G. Factor >10 difference. 2G are of no help
- 3G-A+. Factor ~>5 difference. A+ probably of no help
- 3G-Voyager: Voyager might help for sky localization (not detection/range)
- Will focus on BBHs (with full Bayesian parameter estimation)

Range

- Considered population of BBH with component masses in the range [6,100] M
- Uniform in com. vol.
- As long as at least 1 ET detector is included, BBH are detected up to redshift of ~15
- Adding Voyager won't change much
- Adding a CE pushes the typical detection farther away

Extrinsic parameters (2.5G+3G)

- Adding a Voyager significantly improves sky localization - factor ~100
- Will check, but probably similar conclusion will hold for BNS
- However with only 1 3G will rarely have localizations better than 1deg2
- Marginal improvement in distance estimation

Source frame masses (2.5G+3G)

- Adding a Voyager does not improve estimation of component masses
- A factor of ~2 to be gained by adding a second 3G detector

4GO

Spins (2.5G+3G)

- Adding a Voyager does not improve estimation of component spins
- Two (or more) 3G detectors would do better at measuring spins (more SNR, more visible precession)

Conclusions

- Advanced detectors will reveal a wealth of BBH signals in the next few years
 - Characterization of BH mass and spins
 - Formation channels
 - Cosmology

GO

- Tests of general relativity
- Should soon detect neutron stars
 - Equation of state
 - Electromagnetic counterparts
- Unknown sources!

Conclusions

- Advanced detectors will explore the universe up to z~1
- The next generation will open a whole new scenario
 - BBH can be detected as far as there are stars
 - >>Thousands of sources per year
 - Loud signals
 - Precise characterization and precise tests of GR
 - High probability of detected rare or exotic events (e.g. supernovae)

CO

The end

LIGO

Making advanced LIGO better: A+

 Squeezing and coating required R&D required to increase the sensitivity beyond aLIGO

• Could be implemented before design sensitivity is reached

J. Miller , G1601807

Salvatore Vitale

Quantum squeezing

- Demonstrated at Geo and LIGO
- Reduces shot noise (i.e. f>~200 Hz)
- Could be included already in O3

Salvatore Vitale

Squeezing with filter cavity

- In its simpler implementation, squeezing improves high frequency at expense of low frequency (tens of Hz)
 - But these are the frequencies we care most for BBH!
- Squeezing with filter cavity
 - Rotates error ellipse in freq-dependent way
 - Improves both low and high frequencies

The textbook definition

 Gravitational waves are ripples in the space-time continuum, emitted by any system with a non-constant quadrupole moment

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} , \qquad |h_{\mu\nu}| \ll 1$$
$$\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$$
$$\left[h_{ij}^T(t, \mathbf{x})\right]_{\text{quad}} = \frac{1}{r} \frac{2G}{c^4} \ddot{Q}_{ij}^{\text{TT}}(t - r/c)$$

The textbook definition

 Gravitational waves are ripples in the space-time continuum, emitted by any system with a non-constant quadrupole moment

Effect of GWs

- While passing through space, GWs vary the distance between free floating observers
 - Distances stretch in one direction and squeeze in the perpendicular direction

CO

Effect of GWs

 While passing through space, GWs vary the distance between free floating observers

and sluee e in the perpendicular

- Distances stretch in ne direction

Time

LIGO

Order of magnitude estimate

Two $30M_{\odot}$ BHs at 500 Mpc would produce a strain (i.e. relative length variation) at Earth of roughly 1 part in 10^{21}

19 April 2017

Order of magnitude estimate

 A typical source would produce a strain (i.e. relative length variation) at Earth of roughly 1 part in 10²¹

LIGO

- 4-Kilometer long arms interferometers
- If gravitational waves pass through, they change length of the arms and interference condition

LIGO

Advanced LIGO performance in the first science run

Binary neutron star inspiral range: **70-80 Mpc**

The Global Network

More detectors are needed to provide better source localization and polarization information

LIGO

Detections!!

Advanced LIGO detected 2 binary black hole coalescences in its first science run

BREAKING NEWS

Gravitational waves are real, say physicists, proving Einstein's theory to be true.

@POTUS

President Obama 📀

Thursday, February 11, 2016 Edition: U.S. & World | Regional

Meryl Streep Beyoncé KKK

Deer hunters 'Bloody mess'

Einstein was right! Congrats to @NSF and @LIGO on detecting gravitational waves - a huge breakthrough in how we understand the

universe.

Gravitational waves have been detected for the first time

Trumpism

Signs of black holes merging arrive a century after Albert Einstein predicted them Feb 13th 2016 | From the print edition

Einstein was right

👤 Follow

'We're opening a window on the universe,' says physicist

Formation of a binary star merger. (NASA)

Cosmic breakthrough: Physi detect Einstein's gravitation

The detection, which came from the violent m black holes in deep space, is being hailed as c key prediction of Albert Einstein's General The By Joel Achenbach and Rachel Feltman • 57 minu

Brief history of gravity, gravitational wa

Spectrum The Gravitational Wave

Multibanding

- Events such as GW150914 could be detected by both LISA and (later) ground based detectors (Sesana, PRL **116**, 231102)
 – Possibility of pre-merger alerts
- Can use LISA information as prior information for LIGO (Vitale, PRL 117, 051102)

Vitale, PRL 117, 051102