Estimation of W+jets background using Z+jets as a control sample

Maria Ilaria Besana, Umberto De Sanctis, Tommaso Lari (Milano group)

CONTENTS:

Introduction

- Datasets and selection cuts
- o W/Z as a function of jet multiplicity
- Differences between rel. 12 and rel. 14
- Estimation of backgroud W+jets to top analysis
- Method to reduce systematic error
- Conclusion and outlook

INTRODUCTION:

• Update of previous analyses:

- <u>http://indico.cern.ch/getFile.py/access?contribId=8&resId=0&materialId=slides&confId=25489</u>
- <u>http://indico.cern.ch/getFile.py/access?contribId=12&resId=0&materialId=slides&</u> <u>confId=25360</u>

• Similar work done by:

- Marisa Sandhoff (Wuppertal) : <u>http://indico.cern.ch/getFile.py/access?contribId=49&sessionId=6&resId=0&materialId=slides&confId=31799</u>
- LBNL group : Atlas note ATL-PHYS-COM-2007-100
- Bonn group :

 $\underline{http://indico.cern.ch/getFile.py/access?contribId=3\&resId=0\&materialId=slides\&confId=45163.pdf$

INTRODUCTION: MOTIVATION

theoretical Xsection of W+jets is rather uncertain especially ratio:

W+0j : W+1j : W+2j : W+3j : W+4j : W+5j

- □ tool: Z+jets
 - Z is "easy " to select with high purity (but $\sigma_W \sim 10^* \sigma_Z$)
 - idea: use Z to determine σ_W and properties of W+jets
- assumption: σ_{W+4jets} = c *σ_{Z+4jets} (σ_{W+0jets} / σ_{Z+0jets}) c = coef which takes into account mass difference for W and Z
 distributions for W and Z should look similar

DATASETS:

Pythia	Z →ee

Z inclusive 10

106050

Pythia W→	ev
W inclusive	06020

Alpgen : Z→ee		
Z + 0 partons	107650	
Z + 1 parton	107651	
Z + 2 partons	107652	
Z + 3 partons	107653	
Z + 4 partons	107654	
Z + 5 partons	107655	

$Alpgen: W \rightarrow ev$				
W + 0 partons	107680			
W + 1 parton	107681			
W + 2 partons	107682			
W + 3 partons	107683			
W + 4 partons	107684			
W + 5 partons	107685			

Datasets at 10 TeV rel 14: Alpgen datasets haven't any filter on jets.

SELECTION CUTS: OBJECT DEFINITION

	Reco level		MC level
Electrons:	IsEM medium	Electrons:	pdgld = 11
	p _T >15 GeV		р _т >15 GeV
	η <1.37 U 1.52< η <2.5		η <1.37 U 1.52< η <2.5
	Isolated: etcone20 < 6 GeV		
Jets	Cone4H1TowerJets	Jets	Cone4TruthJets
	Overlap removal: ΔR(jet,e)>0.2		Overlap removal: ΔR(jet,e)>0.2
	p _T >20 GeV		p _T >20 GeV
	η <2.5		η <2.5
ETmiss	MET_RefFinal	ETmiss	MET_Truth

SELECTION CUTS: EVENT SELECTION

Z→ee:

• Trigger: e20i

• 2 electrons with $p_T > 20 \text{ GeV}$

80 GeV < invariant mass < 100 GeV

• max ($|ETmiss_X|$, $|ETmiss_Y|$) < 3 σ_{gauss}

W→ev:

• Trigger: e20i

• 1 electron with $p_T > 20 \text{ GeV}$

ETmiss > 20 GeV

Top selection requires in addition:

• at least 4 jets with $p_T > 20 \text{ GeV } \& |\eta| < 2.5$

• at least 3 jets with $p_T > 40 \text{ GeV} \& |\eta| < 2.5$

SELECTION CUTS:

EFFICIENCY W SELECTION

Pythia

Cuts	efficiencies(%)	events $W \to e\nu \ at \ 200 pb^{-1}$
Tot	87.66	2835360
Trigger	48.25	1560600
$1\ good\ electron$	38.06	1231070
ETmiss > 20GeV	34.41	1112840

Alpgen

Cuts	efficiencies	events $W \to e\nu \ at \ 200 pb^{-1}$
Tot	-	3234180
Trigger	47.68	1541970
1 good electron	37.71	1219710
ETmiss > 20GeV	34.23	1106950

SELECTION CUTS:

EFFICIENCY Z SELECTION

Pythia

Cuts	efficiencies(%)	events $Z \to ee \ at \ 200 pb^{-1}$
Tot	96.01	275704
Trigger	67.72	194461
$2 \ good \ electrons$	23.46	67380
$80 GeV < Lepton \ invariant \ massa < 100 GeV$	21.05	60436
not in tails of ETmiss distribution	20.79	59695

Alpgen

Cuts	efficienze	$eventi \ Z \to ee \ attesi \ 200 pb^{-1}$
Tot	-	288813
Trigger	66.94	193336
$2 \ good \ electrons$	23.68	68391
80 GeV < Lepton invariant massa < 100 GeV	21.33	61618
not in tails of ETmiss distribution	20.99	60613

Ratio (signal/background) > 200

JET MULTEPLICITY

W/Z RATIO AS A FUNCTION OF N_{JETS}:

W/Z RATIO AS A FUNCTION OF N_{JETS}:

13/03/2009 I. Besana T.Lari U.De Sanctis

BOSON P_T DISTRIBUTION

Lepton filter: at least 1 lepton with $p_T > 10 \text{ GeV } \& |\eta| < 2.8$

BOSON P_T DISTRIBUTION

Lepton filter: at least 1 lepton with $p_T > 10 \text{ GeV } \& |\eta| < 2.8$

13/03/2009 I. Besana T.Lari U.De Sanctis

EVALUATION OF BACKGROUND TO SEMILEPTONIC TOP-ANTITOP SAMPLE

(200 pb⁻¹)

Generator	Pythia	Alpgen
Z events after top selection cuts	20	65
W events after top slection cuts	279	1205
Estimated background	356	1223
Ratio (estimated back.)/(true back.)	1.30	1.04
Statistical error (200 pb ⁻¹)	0.3	0.13
Statistical error	0.11	0.06
22 % difference between Alpgen and Pyhia		

13/03/200

REDUCTION OF SYSTEMATIC ERROR

- Problem: our determination of W+jets background relies on the W/Z ratio as a function of the number of jets being constant or at least known.
- The spread between different generators represents a systematic error, which is at least ~20% for the ttbar signal phase space.
- However, predictions for the ratio already starts to diverge for 1-jet and 2-jet (using 0 jet to normalize).
- For this jet multeplicity we should be able to select a relatively pure Z+jets and W+jets sample, with little ttbar contamination.
- The idea is thus to measure R_1/R_0 and R_2/R_0 ($R_N=W+Njet/Z+Njet$) to constraint the spread of Montecarlo predictions and reduce associated systematics.

EVENT SELECTION CUTS

- e10i trigger chain (10**31 menu)
- Electrons medium and isolated as before
- W selection: 1 electron pt >20 GeV, no muon pt>20GeV, etmiss > 20 GeV, mT(e,EtMiss) cut
- Z selection: 2 electrons pt>20 GeV, no muon pt>20GeV,
- PxMiss and PyMiss less than 3s from 0, m(ee) cut.

ttbar, W+jets (pythia), Z+jets (pythia) single top considered

Not checked yet:

- QCD contamination in W and Z selected sample, how to estimate and subtract its contribution from data
- other backgrounds, for exemple $W \rightarrow e \; v \; and \; W \rightarrow \tau v$

Z EVENTS:

Everything normalized to 10 pb⁻¹ ttbar and single top contamination in Z selection negligible Selection for ratio measurement: [80 GeV, 100 GeV]

13/03/2009 I. Besana T.Lari U.De Sanctis

W EVENTS:

13/03/2009

I.

Besana T.Lari

U.De Sanctis

22

Everything normalized to 10 pb^{-1} ttbar and single top contamination in W+2j a few per cent Selection for ratio measurement: [40 GeV, 90 GeV]

PREDICTIONS FOR R1 AND R2

	W,Z events only (with the error from MC statistics)	Effect of backgrounds	Statistical error with 10 pb ⁻¹
R1/R0	0.807 ± 0.023	+0.005	0.04
R2/R0	0.76 ± 0.05	+0.046	0.10

The statistical error which can be obtained with 10 pb⁻¹ is comparable to the difference between alpgen and pythia predictions, and larger than the effect from ttbar and single top contamination.

It looks promising. With more than 10 pb⁻¹, we may indeed be able to reduce the systematics on our W+jets prediction measuring the W/Z ratio at low jet multeplicity.

THREE-JET INVARIANT MASS DISTRIBUTION (200 PB⁻¹)

13/03/2009 I. Besana T.Lari U.De Sanctis

CONCLUSION & OUTLOOK

W+jets background can be estimated from Z+jets:

- with a statistical error of 13% (according to Alpgen) at 200 pb⁻¹
- o difference between Alpgen and Pythia of 22%,
- using R₁/R₀ and R₂/R₀ (R_N=W+Njet/Z+Njet) to constraint the spread of Montecarlo predictions and reduce associated systematics looks promising.

Next steps:

- o include background to Z selection,
- study systematics:

constrain generator dependence with first data.

PYTHIA SYSTEMATIC ERROR AT MC LEVEL (REL 12)

There is a distortion in the p_T shape of the most energetic jet wich comes from doing an η cut on the 2nd electron in Z→ee, but not on the v of W→ev

PYTHIA SYSTEMATIC ERROR AT MC LEVEL (REL 12)

13/03/2009 I. Besana T.Lari U.De Sanctis

