Mining Massive Data Sets in data rich sciences

astrophysics: a study case of how to face the modern data tsunami

M. Brescia ${ }^{1}$, G. Longo² ${ }^{2}$, F. Pasian ${ }^{3}$

1- INAF - Astronomical Observatory of Capodimonte in Napoli (longo@na.infn.it)
2 - Department of Physical Sciences - University Federico II Napoli
3 - INAF - Information systems unit \& Astronomical Observatory of Trieste

An overview of the topics:

- Information Fechnology revolution and science in the exponential world: i.e. coping with the data avalanche
-The Virtual Observatory: a new type of a scientific resea, ch environment
- Massive dáta sets and a new scientific methodology
- DAME project: Data Mining and Exploration

Some general considerations on the future

Astrophysics as a data rich science

- Telescopes (ground- and space-based, covering the full electromagnetic spectrum)
- Instruments (telescope/band dependent)
- Large digital sky surveys are becoming the dominant source of data in astronomy: ~ 10-100 TB/survey (soon PB), ~ $10^{6}-10^{9}$ sources/survey, many wavelengths...
- Data sets many orders of magnitude larger, more complex, and more homogeneous than in the past

Panchromatic Views of the Universe:
Data Fusion - A More Complete, Less Biased
Picture

2. The astronomical data tsunami:

Theoretical Simulations Are Becoming More Complex and Generate TB's of Data ...

Structure formation in the Universe

Supernova explosion instabilities

Comparing the massive, complex output of such simulations to equally massive and complex data sets is a non-trivial problem!

3. The data mining perspective. An example of Data

 complexity: the parameter space

Detect sources and measure their attributes (brightness, position, shapes, etc.)

$\mathrm{p}=\{$ isophotal, petrosian, aperture magnitudes

concentration indexes, shape parameters, etc.\}

3. Information Technology \& New Science

Due to new instruments and new diagnostic tools, the information volume grows exponentially

Most data will never be seen by humans!

The need for data storage, network, database-related technologies, standards, etc.
Information complexity is also increasing greatly
Most knowledge hidden behind data complexity is lost
Most (all) empirical relationships known so far depend on 3 parameters Simple universe or rather human bias?

Most data (and data constructs) cannot be comprehended by humans directly!

The need for data mining, KDD, data understanding technologies, hyperdimensional visualization, $\mathrm{Al} /$ Machine-assisted discovery

Extracting knowledge

The scientific exploitation of a multi band, multiepoch (K epochs) universe implies to search for hidden patterns, trends, etc. among N points in a DxK dimensional parameter space:

MASSIVE, COMPLEX DATA SETS with: N $>10^{9}$, $\mathrm{D} \gg 100, \mathrm{~K}>10$

The computational cost of Data Mining:

$\mathrm{N}=$ no. of data vectors, $\mathrm{D}=$ no. of data dimensions
$\mathrm{K}=$ no. of clusters chosen, $\mathrm{K}_{\max }=\max$ no. of clusters tried $\mathrm{I}=$ no. of iterations, $\mathrm{M}=$ no. of Monte Carlo trials/partitions

K-means: $\mathrm{K} \times \mathrm{N} \times \mathrm{I} \times \mathrm{D}$
Expectation Maximisation: $\mathrm{K} \times \mathrm{N} \times \mathrm{I} \times \mathbf{D}^{2}$
Monte Carlo Cross-Validation: $\mathrm{M} \times \mathrm{K}_{\max }^{2} \times \mathrm{N} \times \mathrm{I} \times \mathrm{D}^{2}$
Correlations ~ $N \log N$ or $N^{2}, ~ \sim D^{k}(k \geq 1)$
Likelihood, Bayesian ~ $\mathrm{N}^{m}(\mathrm{~m} \geq 3), \quad \sim D^{k}(k \geq 1)$
SVM > ~ (NxD) ${ }^{3}$

Lots of

computing power

More dimensions allow better disentanglement

From data to knowledge: KDD

Knowledge Discovery in Databases

Data Gathering (e.g., from sensor networks, telescopes...)
\rightarrow Data Farming:
Storage/Archiving
Indexing, Searchability
Data Fusion, Interoperability, ontologies, etc.
\rightarrow Data Mining (or Knowledge Discovery in Databases):
Pattern or correlation search
Clustering analysis, automated classification Outlier / anomaly searches
Hyperdimensional visualization
\rightarrow Data understanding
Computer aided understanding KDD
Etc.

Database technologies

Key mathematical issues

Ongoing research

OK, So ...

Which was the answer of the astronomical community?

The Virtual Observatory (VObs)

Vobs standards for interoperability: UCD, VO-Table, ontology, etc..

UCD (Unified Content Descriptor): describing in unique \& standard way attributes contained in data tables

```
<DATA>
<TABLEDATA>
<TR>
<TD>010.68</TD><TD>+41.27</TD>
<TD>N 224</TD><TD>-297</TD>
</TR>
<TR>
<TD>287.43</TD><TD>-63.85</TD>
<TD>6</TD><TD>10.4</TD>
</TR>
```

</TABLEDATA>
</DATA>
<?xml version="1.0"?>
<VOTABLE version="1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/VOTable/v1.1">
<RESOURCE name="myFavouriteGalaxies">
<DESCRIPTION>Velocities and Distance estimations</DESCRIPTION>
<PARAM name="Telescope" datatype="float" ucd="phys.size;instr.tel" unit="m" value="3.6"/>
<FIELD name="RA" ID="col1" ="pos.eq.ra;meta.main" ref="J2000" datatype="float"
width="6" precision="2" unit="deg"/>
<FIELD name="Dec" ID="col2" =" "pos.eq.dec;meta.main" ref="J2000" datatype="float"
width="6" precision="2" unit="deg"/>
<FIELD name="R" ID="col6" ="phys.distance" datatype="float" width="4"
precision="1" unit="Mpc">
<DESCRIPTION>Distance of Galaxy, assuming $\mathrm{H}=75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}</ \mathrm{DESCRIPTION>}$ </FIELD>

Data mining is ...

Vobs standards and infrastructure

Data mining level

What is DAME

DAME is a joint effort between University Federico II, INAF-OACN, and Caltech aimed at implementing (as web application) a scientific gateway for data analysis, exploration, mining and visualization tools, on top of virtualized distributed computing environment.

The DAME architecture

Client

How to spread the word within the community

In parallel with the Suite R\&D process, all data processing algorithms (foreseen to be plugged in) have been massively tested on real astrophysical cases.
http://voneural.na.infn.it/ Technical and management info

In this page, you will find a description of the method for the extraction of photometric QSOs candidates described in the paper "Quasar candidates selection in the Virtual Observatory era" from D'Abrusco et al. submitted to MNRAS (preprint).

The inspiring principle of this work is the application of statistical and data-mining techniques to obtain a clustering of astronomical sources inside a photometric parameter space and fully characterize the distribution of different types of sources inside this parameter space. This concept has been applied to the problem of the selection of QSOS candidates from broadband photometric data by exploiting the availability
of large spectroscopic bases of knowledge (BoK: i.e., samples of sources with a reliable classification). The procedure for the extraction of candidates can be summarized as follows:

- A BoK consisting of a sample of stellar sources with spectroscopic classification is clustered inside the colour parameter space. This BoK is drawn from the catalogue of photometric sources from where, at the end of the process, the new QSOs candidates will be extracted.
- Several possible partitions of the distribution of sources of the BoK inside the colour space are produced by a combination of two clustering algorithm: PPS and NEC.
- The members of each cluster of each different partition are labelled using the BoK classification.
- Amongst all the possible partitions in the colour space, the one allowing the best separation between clusters populated mainly by confirmed QSOs ("successful" clusters) and clusters populated mainly by contaminants is considered.
- The new candidates QSOs are selected as the photometric sources which are associated, in the colour space, to the "successful" clusters by a suitable distance definition.
The details of the method and algorithms can be found in the paper.
here

Evaluation of photometric redshifts using neural networks

The work discussed here represents the natural
The work discussed here represents the natural evolution of a previous attempt described in these
pages and presented in the 2002 and 2003 papers.
The final result, namely the redshifts for a large subsample of the galaxies present in the SDSS are The inal result, namely the redshifts for a large subsample of the galaxies present in the SDSS are published in Ap.J (2007).
The main idea behind the wok is neural network to recognize photometric redshitts. The data wealth of the SDSS to train a supervised neural network to recognize photometric redshifts. The details of the work can be found in this paper.
In short the procedure can be summarized as it follows:

- The training, validation and test sets are built using the SDSS spectroscopic subsample. This sample is almost complete at $m(R)<17.7$, while for fainter magnitudes it includes mainly Luminous Red Galaxies or LRG's.
- A first MLP is trained at recognizing nearby $(z<0.25)$ objects from distant $(0.25<z<0.5)$ ones.
- Then two networks are trained in the two different redshift ranges and the optimal architecture is found by varying the NN parameters
- The resulting redshifts show a trend which is corrected by applying an interpolative correction.
- Once the three $N N$ have been trained the photometric data are processed for the whole galaxy sample and the photometric redshifts are derived

The whole procedure outlined above is repeated indipendently for all objects in the MAIN GALAXY sample of the SDSS and for the LRG's only. The resulting catalogues can be downloaded here.

The main results can be summarized as it follows.

1. The method leads to an r.m.s. error (evaluated on the test set only) better than any other metho so far appeared in the literature

Reference	Method	Data	Δz	σ

An EXAMPLE: photometric redshifts of SDSS galaxies

Photometric redshifts: the DM approach

Photometric redshifts are always a function approximation hence a DM problem:
$\mathbf{X} \equiv\left\{x_{1}, x_{2}, x_{3}, \ldots x_{N}\right\}$ input vectors
$\mathbf{Y} \equiv\left\{x_{1}, x_{2}, x_{3}, \ldots x_{M}\right\}$ target vectors $M \ll N$
BoK = Base of Knowledge
find $\hat{f}: \hat{\mathbf{Y}}=\hat{f}(\mathbf{X})$ is a good approximation of \mathbf{Y}

Data used in the science case:

SDSS: 10^{8} galaxies in 5 optical bands;
BoK: spectroscopic redshifts for 10^{6} galaxies \rightarrow Spectroscopic BoK BoK: incomplete and biased.

UKIDDS: overlap with SDSS

 3 infrared bands.
GALEX: overlap with SDSS

Ultraviolet bands;

Fig. 1.- The spectroscopic redahif histogram for the SDSs main EDR (molid), the EDR LRG
(long desh), the 2dF (whort dest) and the CNOC2 sets.

D'Abrusco et al. 2007

Traditional approaches: interpolation based on BoK

BoK from Spectral Energy Distribution (SED) fitting
Templates from synthetic colors obtained from theoretical SED's Mapping function from simple interpolation

BoK from Spectral Energy Distribution (SED) fitting Interpolative
Templates from synthetic colors obtained from theoretical SED's Mapping function from Bayesian inference

What do we learn if the BoK is biased:

- At high z LRG dominate and interpolative methods are not capable to "generalize" rules
- An unique method optimizes its performances on the parts of the parameter space which are best covered in the BoK

Step 1:
unsupervised clustering in parameter space

Step 2:
supervised training of different NN for each cluster

Step 3:

output of all NN go to WGE which learns the correct answer

Conclusion I. I.T. is changing the methodology of science

The old traditional, "Platonistic" view:

The modern and realistic view when dealing with complex data sets:

This synergy is stronger than ever and growing

Conclusion I. I.T. is changing the methodology of science

- Standardization of data access is indispensable to ensure data exploitation and to optimize both costs and scintific return
- VObs methodologies even though fine tuned on Astrophysics are general and can be easily exported to other domains
- Data Mining is the "fourth leg of science" (besides theory, experimentation and simulations)
- Sociological issues to be solved (formation, infrastructures, and so on)
- Sinergy between different worlds is required

