

Fourier-Transform Infrared Spectroscopic Ellipsometry for Material Identification

Michele Ortolani

CNR – Istituto di Fotonica e Nanotecnologie (IFN) Rome, Italy

Ulrich Schade

Berlin Synchrotron Radiation Facility (BESSY), Berlin, Germany

Heinz-Wilhelm Hübers

German Aerospace Center (DLR), Berlin, Germany

Outline of the talk

- Optical constants of solids
- Ellipsometry basics
- Fourier-transform infrared spectroscopy (FTS or FT-IR)
- Far-infrared/Terahertz setup: detectors, sources
- The case of remote identification of explosives:
 - transmission
 - reflection
 - ellipsometry

Optical constants of solids

Equivalent formulations:

- Dielectric constant ε
- Optical conductivity σ

$$\epsilon_1 = n^2 - k^2$$

$$\epsilon_2 = 2nk$$

$$\sigma_1 = \frac{\omega}{4\pi} \epsilon_2$$

$$\sigma_2 = \frac{\omega}{4\pi} (\epsilon_{\infty} - \epsilon_1)$$

Dipolar
Lattice
Vibrations
(optical phonons)
(normal modes)

Chemical element identification

ULTRAVIOLET

INFRARED

Chemical species identification

Ellipsometry

Material under analysis

n + ik

Fresnel formulae

$$\widetilde{r}_p = \widetilde{f}_1(n, k, \varphi)$$

Fourier-Transform Infrared Spectroscopy

Infrared spectrometer: Michelson Interferometer

- Reflected and/or Transmitted Power spectra are measured as a function of the frequency ω
- Optical constants are derived by Kramers-Kronig analysis or by Ellipsometry

Frequency range: 0.1 THz – 2 PHz Energy resolution: up to 0.01 THz

Material identification by Terahertz Spectroscopy

Far-Infrared spectra

"Fingerprint" region: each solid substance has a specific spectrum, or frequency-dependent optical constants (like a spectrometer)

Terahertz frequencies

Clothes, tissues, plastic, paper and atmosphere are partly transparent: remote identification is possible (like a radar)

Applications:

- ⇒ Remote security controls
- ⇒ Explosive detection

Infrared Spectroscopic Ellipsometry

Fresnel relations: trascendental

$$\widetilde{r}_{p} = \frac{(n+ik)\cos(\varphi) - \cos(\varphi')}{(n+ik)\cos(\varphi) + \cos(\varphi')} = |\widetilde{r}_{p}|e^{i\delta_{p}}$$

$$\widetilde{r}_{s} = \frac{\cos(\varphi) - (n+ik)\cos(\varphi')}{\cos(\varphi) + (n+ik)\cos(\varphi')} = |\widetilde{r}_{s}|e^{i\delta_{s}}$$

$$\sin(\varphi) = (n+ik)\sin(\varphi')$$

$$n + ik$$

Michelson: intrinsic beam polarization!

$$\widetilde{\rho} = \frac{\widetilde{r}_p}{\widetilde{r}_s} = \frac{(n+ik)\cos(\varphi) - \cos(\varphi')}{\cos(\varphi) - (n+ik)\cos(\varphi')} = \tan \Psi e^{i\Delta}$$

$$\tan \Psi = \frac{|\widetilde{r}_p|}{|\widetilde{r}_s|} \quad \Delta = \delta_p - \delta_s$$

Infrared ellipsometry requires calibration!

Normalized Stokes parameters calc with Mueller matrixes

$$\cos 2\Psi$$

 $\sin 2\Psi \cos \Delta$

$$n + ik$$

n + ik in the whole infrared range!

 $\sin 2\Psi \sin \Delta$

Detector: Liquid Helium-cooled Bolometer

- Room-temperature detectors (Pyroelectrics, Golay cells) are also available, but noise figures are 10³ times higher
- Development of sensitive detectors working at higher temperatures is ongoing (e.g. closed-cycle cooled, liquid nitrogen).
- CNR-IFN in Rome is developing superconducting bolometers.

Source: Synchrotron BESSY in Berlin

Start user operation: 1999

Circumference of the synchrotron: 96 m

Circumference of the storage ring: 240 m

Number of bending dipoles: 2 x 16

Number of possible insertion devices: 15

Number of beamlines commissioned: ~ 50

Commissioning of the IR-beamline IRIS: 2002

It is the only storage ring producing steady-state Coherent Synchrotron Radiation => high power, pulsed source in the 0.1-1 THz range based on electron bunch acceleration

The Infrared beamline at BESSY

Optical setups for measuring the optical constants

 Normal Incidence Reflectance

Transmittance

 Variable Angle Reflectance

Ellipsometry

Optical setups

Normal Incidence

Variable Angle

Transmission of pure pellets of explosives and Oxygen-reducing salts

Pure Material pellets Thickness: 2.0 mm

Bulk Polyethilene sample holder, 15° wedged

High Transparency only below 1 THz

⇒ No strong materialspecific features

Absolute Reflectivity of pure explosive pellets for different angles of incidence

- Reference is a gold mirror
- $R_s \sim R_p$ for $\varphi \sim 0$, $R_s > R_p$ anywhere else
- R_p goes to 0 at the Brewster angle (~60°)
- •The slope and the sharp features are material-specific and do not depend much on φ

Optical constants of explosives: Absolute Reflectivity and Kramers-Kronig analysis

KK

$$\phi_r(\omega) = -\frac{2\omega}{\pi} \mathcal{P} \int_0^\infty \frac{\ln \sqrt{R(\omega')}}{\omega'^2 - \omega^2} d\omega'$$

Absolute reflectivity R is measured at quasi-normal incidence from 0.7 to 20 THz to correctly evaluate the integral.

$$= Re^{i\phi} = n + i k$$
 $\tilde{n} = \frac{1 + \tilde{r}}{1 - \tilde{r}}$

- High signal intensity
- Practical geometry
- High output quality
- Need a reference measurement on a mirror
- Very sensitive to absolute value (acceptable: ±5%)
- Need for a databank of high frequency extrapolations

Spectroscopic Ellipsometry: optical constants with no reference measurement

Calibration: a known, nonabsorbing material at his Brewster angle, where the ellipse is most excentric

Data harvest:close to Brewster angle Polarizer rotated instead of analyzer (equivalent)

- •n, k or Ψ , Δ determined from 3 sample spectra only (no mirror)
- the incidence angle has to be large (>50°) and known (±0.5°)
- High sensitivity to noise (trigonometric functions)
- Low signal at low frequency (2 polarizers + 60° incidence)

Result 1: NaClO₃ (a salt)

Result 2: Octogen (an explosive)

Absorption coefficient of explosives in the THz range

Optical constants determined by Far-infrared ellipsometry

- ⇒ No need for reference measurements to correct for the frequency-dependent incident power
- ⇒ Up to 4 THz, no role of surface roughness (common-use objects are "shiny")